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Abstract: This essay proves the cyclic invariance of anti-NMHV and N2MHV tree amplitudes in N = 4

SYM up to any number of external particles as an interesting exercise. In the proof the two-fold simplex-

like structures introduced in 1609.08627 (and reviewed in 1712.10000) play a key role, as the cyclicity of

amplitudes also induces similar simplex-like structures for the boundary generators of homological identi-

ties. For this purpose, we only need a part of all distinct boundary generators, and the relevant identities

only involve BCFW-like cells.
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1. Introduction

Tree amplitudes in planar N =4 super Yang-Mills theory have an impressive simplicity in the language of

positive Grassmannian in momentum twistor space, namely the so-called two-fold simplex-like structures

[1], a concise review can be referred in [2]. In terms of Grassmannian geometry representatives specifying

linear dependencies of different ranks and empty slots for null columns, information of amplitudes can be

compactly captured by finite numbers of fully-spanning cells and their growing parameters. Given a fixed

k, as (k+2) is the number of negative helicities, there is no new full cell beyond n= 4k+1, then after we

identify all full cells with their growing parameters at this critical n, NkMHV amplitudes are known once

for all up to any number of external particles.

With the aid of this purely geometric description, homological identities can be understood in a much

more intuitive way, and most of them turn out to be the secret incarnation of the simple NMHV identity.

A part of these identities are crucial for interconnecting different BCFW cells, and hence different BCFW

recursion schemes [3]. Explicitly in this essay, we would like to manifest the cyclicity of amplitudes of two

specific classes: the anti-NMHV and the N2MHV families, by applying the simplex-like structures of both

the amplitudes and boundary generators of identities. From [1] we have fully understood the structures of

anti-NMHV, NMHV, N2MHV and N3MHV families while only the cyclicity of NMHV family and n=7, 8

anti-NMHV amplitudes has been shown. Now it is a helpful warmup exercise to reconsider the cyclicity of

NMHV family in a more formal way as presented below, which precedes the main body of this work.

Recall the NMHV n=6 amplitude in the default recursion scheme is given by

Y 1
6 = [6] + [4] + [2], (1.1)

so the difference between itself and its cyclicly shifted (by +1) counterpart is

Y 1
6 − Y 1

6,+1 = − [1] + [2]− [3] + [4]− [5] + [6] ≡ I123456, (1.2)
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here the 6-term NMHV identity of labels 1, 2, 3, 4, 5, 6 is defined as I123456. According to the simplex-like

structures of amplitudes, or more explicitly, the 2-mode of Y 1
6 with growing parameters (6, 4, 2), we have

the following relation for n=7:

Y 1
7 − Y 1

7,+1 =

 [23]

[27] [25]

[67] [47] [45]

−
 [34]

[31] [36]

[71] [51] [56]

 =

(
[3] I124567

[7] I123456 [5] I123467

)
, (1.3)

which completes the proof of cyclicity for all NMHV amplitudes since the growing parameters (7, 5, 3) of

I123456 have been identified. We see that (7, 5, 3) are closely related to (6, 4, 2) of Y 1
6 , and this shows how

the cyclicity of amplitudes induces similar simplex-like structures for the relevant homological identities.

As we will see, this intriguing feature appears in a much more nontrivial form for N2MHV amplitudes.

2. Cyclicity of Anti-NMHV Amplitudes

Before moving to the N2MHV family, let’s first consider the cyclicity of all anti-NMHV amplitudes, since

this is in fact the nontrivial starting point for all NkMHV cases. More explicitly, recall that for a given k

non-vanishing amplitudes start with the anti-MHV sector n=k+4, which contains just one top cell, then

the first interesting case is the anti-NMHV sector n=k+5. It can be rearranged in the similar form of a

triangle-shape sum as its parity conjugate (the NMHV sector).

The anti-NMHV triangle-like pattern can be clearly observed in the series of examples below

Y 1
6 =

(
[2]

{
[6]

[4]

)
, (2.1)

Y 2
7 =

 [2] (23)

{
(67)

(45)


[7]

(45)(71)

[5]

 , (2.2)

Y 3
8 =

 [2] (23)

{
(678)

(456)
(234)


(78)

(456)(781)

(56)


[8]

(456)(81)

(56)(812)

[6]

 , (2.3)

Y 4
9 =

 [2] (23)

{
(6789)

(4567)
(234)


(789)

(4567)(7891)

(567)

(2345)


(89)

(4567)(891)

(567)(8912)

(67)



[9]

(4567)(91)

(567)(912)

(67)(9123)

[7]

 , (2.4)

and its general form can be proved by induction. From [1] it is already known that

Y 2
7 − Y 2

7,+1 = − ∂(23)− ∂(56)− ∂(71), (2.5)
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Y 3
8 − Y 3

8,+1 = ∂(23) + ∂(67) + ∂(81) + ∂(234)(567) + ∂(567)(812) + ∂(781)(234), (2.6)

which manifest the cyclicity of Y 2
7 and Y 3

8 . These results can be rearranged in a more suggestive form as

Y 2
7 − Y 2

7,+1 = − ∂

(
(23)

{
(71)

(56)

)
, (2.7)

Y 3
8 − Y 3

8,+1 = ∂

 (23) (234)

{
(781)

(567)


(81)

(567)(812)

(67)

 , (2.8)

as well as a further extension of this pattern, for which k=4:

Y 4
9 − Y 4

9,+1 = − ∂

 (23) (234)

{
(7891)

(5678)
(2345)


(891)

(5678)(8912)

(678)


(91)

(5678)(912)

(678)(9123)

(78)

 , (2.9)

where the sign factor (−)k+1 for each of these relations follows the convention of [3, 4]. And the types of

homological identities used in (2.7) and (2.8), as already proved in [1], include

∂(23) = − [2] + [3]− (23)(45) + (23)(56)− (23)(67) + (23)(71), (2.10)

for k=2 (for comparison we have used boundary generator (23) instead of (12) in [1], and similar below),

as well as

∂(23) = + [2]− [3] + (23)(456)− (23)(567) + (23)(678)− (23)(781), (2.11)

∂(234)(567) = + (23)(567)− (34)(567) + (234)(56)− (234)(67)

+ (234)(567)(781)− (234)(567)(812),
(2.12)

for k=3, while those for k=4 used in (2.9) are new, as given by

∂(23) = − [2] + [3]− (23)(4567) + (23)(5678)− (23)(6789) + (23)(7891), (2.13)

∂(234)(5678) =− (23)(5678) + (34)(5678)− (234)(567) + (234)(678)

− (234)(5678)(7891) + (234)(5678)(8912),
(2.14)

∂(2345)(678) =− (234)(678) + (345)(678)− (2345)(67) + (2345)(78)

− (2345)(678)(8912) + (2345)(678)(9123),
(2.15)

∂(2345)(5678)(8912) =− (234)(5678)(8912) + (345)(5678)(8912)− (2345)(567)(8912)

+ (2345)(678)(8912)− (2345)(5678)(891) + (2345)(5678)(912),
(2.16)

and they can be proved by using the similar matrix approach as done in [1]. The examples of anti-NMHV

family again show how the cyclicity of amplitudes induces similar structures for the relevant identities.
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3. Cyclicity of N2MHV Amplitudes

Now we will start with the cyclicity of N2MHV n=7 amplitude, namely (2.7), to explore its generalization

towards n≥8. Recall the N2MHV full cells along with their growing parameters are given by

G7,0 =

{
(45)(71)

[5]
(5) (3.1)

G7,1 = (23)

{
(67)

(45)
(6, 4) (3.2)

G8,1 =


(234)2(678)2 (7, 4)

(456)2(781)2 (7, 5)

(23)(456)2(81) (6, 4)

(3.3)

G9,2 =

{
(2345)2(6789)2

(23)(4567)2(891)2
(8, 6, 4) (3.4)

and for notational convenience, below we will suppress subscript ‘2’ for consecutive vanishing 2×2 minors,

such as (234)2≡(234)=(23)(34), which is unambiguous as we restrict the discussion to the N2MHV sector

from now on. Given the information above (or refer to [1]), the N2MHV n=8 amplitude is then

Y 2
8 = S8,2 + S8,1 + S8,0, (3.5)

where we have separated the terms containing 2, 1, 0 empty slots respectively as

S8,2 =

 [23]

[28] [26]

[78] [58] [56]

 , S8,1 =



[2](56)(81)

[2](34)

{
(78)

(56)

[8](45)(71) [5](46)(81)

[8](23)

{
(67)

(45)
[6](23)

{
(78)

(45)

[4](23)

{
(78)

(56)



, S8,0 =


(234)(678)

(456)(781)

(23)(456)(81)

, (3.6)

as indicated by the second subscript of Sn,i. Now the cyclicity of Y 2
8 is separated into three different parts:

Y 2
8 − Y 2

8,+1 = (S8,2 − S8,2,+1) + (S8,1 − S8,1,+1) + (S8,0 − S8,0,+1), (3.7)

where the third subscript ‘+1’ similarly denotes the cyclic shift. Straightforwardly we find

S8,2 − S8,2,+1 =


[8] (− ∂(23)− ∂(56)− ∂(71))

[6] (− ∂(23)− ∂(57)− ∂(81))

[3] (− ∂(24)− ∂(67)− ∂(81))

∣∣∣∣∣
1

, (3.8)
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and ‘ | 1’ denotes the truncation that only keeps terms containing one empty slot. For example, (2.10) can

be separated as

∂(23) | 1 = − [2] + [3], ∂(23) | 0 = − (23)(45) + (23)(56)− (23)(67) + (23)(71). (3.9)

Knowing growing parameters (8, 6, 3) of n=7 boundary generators, or identities (−∂(23)−∂(56)−∂(71)),

we can denote this result as (Bn stands for boundary generators first induced by the cyclicity of Y 2
n )

B7 = − (23)− (56)− (71) (8, 6, 3) (3.10)

so that

S8,2 − S8,2,+1 = (∂B7 | 1)1, S8,1 − S8,1,+1 = (∂B7 | 0)1 + ∂B8 | 1, S8,0 − S8,0,+1 = ∂B8 | 0, (3.11)

where (∂B7 | 1)1 denotes the counterpart of ∂B7 | 1 when n increases from 7 to 8, according to its simplex-

like growing patterns. In this way, we can figure out ∂B8 | 1 (and hence B8) via the second relation above,

namely (in the 4th and 7th lines below we have added +[4](56)(81) and −[4](56)(81) respectively)

∂B8 | 1 = (S8,1 − S8,1,+1)− (∂B7 | 0)1

= − [7](81)(34) + [8](71)(34)− [1](78)(34)

+ [2](34)(56)− [3](24)(56) + [4](23)(56)

+ [2](34)(78)− [3](24)(78) + [4](23)(78)

− [3](56)(81) + [4](56)(81)− [5](34)(81) + [6](34)(81) + [8](34)(56)− [1](34)(56)

+ [8](12)(56)− [1](82)(56) + [2](81)(56)

− [5](67)(34) + [6](57)(34)− [7](56)(34)

− [4](56)(81) + [5](46)(81)− [6](45)(81)

= ∂ (+ (781)(34)− (234)(56)− (234)(78) + (34)(56)(81) + (567)(34)− (812)(56) + (456)(81)) | 1.
(3.12)

After identifying B8 (by trial and error), we can check the third relation above, as

∂B8 | 0 = + (781)(234)− (781)(345) + (781)(34)(56)

− (234)(567) + (234)(56)(78)− (234)(56)(81)

− (234)(56)(78) + (234)(678)− (234)(781)

− (34)(567)(81)− (34)(56)(781) + (34)(56)(812) + (234)(56)(81)

+ (567)(81)(34)− (567)(12)(34) + (567)(234)

− (812)(34)(56) + (812)(456)− (812)(567)

+ (456)(781)− (456)(812) + (456)(81)(23)

= S8,0 − S8,0,+1

(3.13)
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nicely obeys the required consistency. The identities used above can be referred in appendix A and they

can be classified into five distinct types at n=8.

Next, for the cyclicity of Y 2
9 we similarly have

S9,2−S9,2,+1 = (∂B7 | 0)2 +(∂B8 | 1)1, S9,1−S9,1,+1 = (∂B8 | 0)1 +∂B9 | 1, S9,0−S9,0,+1 = ∂B9 | 0, (3.14)

where the simplex-like growing patterns give

S9,1 =



[2]


(345)(789)

(567)(891)

(34)(567)(91)

{
[7](234)(689)

[4](235)(789){
[7](456)(891)

[5](467)(891)

[9]


(234)(678)

(456)(781)

(23)(456)(81)

{
[6](23)(457)(91)

[4](23)(567)(91)


, S9,0 =

{
(2345)(6789)

(23)(4567)(891)
, (3.15)

and via the first relation above we can figure out (∂B8 | 1)1, or the growing parameters of B8, as

B8 = + (781)(34)− (234)(56)− (234)(78) + (34)(56)(81) (9, 7, 5, 3)

+ (567)(34) (9, 8, 6, 3)

− (812)(56) (9, 6, 3)

+ (456)(81) (9, 6, 4)

(3.16)

so that via the second relation we can similarly figure out ∂B9 | 1 (and hence B9), and the third one again

serves as a consistency check. Explicitly, we find

B9 =− (2345)(789)− (7891)(345)

+ (8912)(567)− (5678)(234)− (5678)(91)(34) + (5678)(12)(34)

− (912)(34)(567) + (4567)(891).

(3.17)

Following exactly the same logic, for the cyclicity of Y 2
10 we have

S10,2−S10,2,+1=(∂B8 | 0)2+(∂B9 | 1)1, S10,1−S10,1,+1=(∂B9 | 0)1+∂B10 | 1, S10,0−S10,0,+1=∂B10 | 0, (3.18)

where the simplex-like growing patterns give

S10,1 =



[2]

{
(3456)(789 10)

(34)(5678)(9 10 1)
[8]

{
(2345)(679 10)

(23)(4567)(9 10 1)

[6]

{
(2345)(789 10)

(23)(4578)(9 10 1)

[10]

{
(2345)(6789)

(23)(4567)(891)
[4]

{
(2356)(789 10)

(23)(5678)(9 10 1)


, (3.19)
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note that S10,0=0 since there is no new full cell at n≥10, and hence ∂B10 | 0=0. Explicitly, we find

B9 =− (2345)(789)− (7891)(345) (10, 8, 5, 3)

+ (8912)(567)− (5678)(234)− (5678)(91)(34) + (5678)(12)(34) (10, 8, 6, 3)

− (912)(34)(567) (10, 7, 5, 3)

+ (4567)(891) (10, 7, 5)

(3.20)

as well as

B10 = + (789 10 1)(3456)− (23456)(789 10) + (5678)(9 10 1 2)(34) + (45678)(9 10 1 2)− (45678)(9 10 1)(23).

(3.21)

Finally, for the cyclicity of Y 2
11 we have

S11,2−S11,2,+1=(∂B9 | 0)2+(∂B10 | 1)1, S11,1−S11,1,+1=(∂B10 | 0)1+∂B11 | 1, S11,0−S11,0,+1=∂B11 | 0, (3.22)

and explicitly we find

B10 = + (789 10 1)(3456)− (23456)(789 10) + (5678)(9 10 1 2)(34) (11, 9, 7, 5, 3)

+ (45678)(9 10 1 2)− (45678)(9 10 1)(23) (11, 9, 7, 5)
(3.23)

which leads to (∂B10 | 0)1 = 0, and hence ∂B11 | 1 = 0. From S11,0 = 0 we also have ∂B11 | 0 = 0, therefore it

is safe to conclude that B11=0. We can summarize these intriguing results as

B7 = − (23)− (56)− (71) (8, 6, 3) (3.24)

B8 = + (781)(34)− (234)(56)− (234)(78) + (34)(56)(81) (9, 7, 5, 3)

+ (567)(34) (9, 8, 6, 3)

− (812)(56) (9, 6, 3)

+ (456)(81) (9, 6, 4)

(3.25)

B9 =− (2345)(789)− (7891)(345) (10, 8, 5, 3)

+ (8912)(567)− (5678)(234)− (5678)(91)(34) + (5678)(12)(34) (10, 8, 6, 3)

− (912)(34)(567) (10, 7, 5, 3)

+ (4567)(891) (10, 7, 5)

(3.26)

B10 = + (789 10 1)(3456)− (23456)(789 10) + (5678)(9 10 1 2)(34) (11, 9, 7, 5, 3)

+ (45678)(9 10 1 2)− (45678)(9 10 1)(23) (11, 9, 7, 5)
(3.27)

which terminate at n=10 like the full cells. With B7, B8, B9, B10 and the growing parameters of relevant

boundary generators identified, the cyclicity of Y 2
n for any n is proved. These identities are classified into

1, 5, 6, 4 distinct types with respect to B7, B8, B9, B10 in appendix A.
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A final remark is, not all N2MHV homological identities are required for this proof. Especially, those

involving the quadratic cell at n=8, namely (12)(34)(56)(78), or the composite-linear cell at n=9, namely

(123)(456)(789), are irrelevant. These two non-BCFW-like cells will result in extra non-unity factors along

with the 5-brackets [1], which cannot be generated by recursion. Therefore it is desirable to find that they

do not appear at all in the proof of cyclicity for N2MHV amplitudes, not even appear as canceling pairs in

the intermediate steps.

A. Relevant N2MHV Homological Identities

Below we list all distinct N2MHV homological identities that are relevant in this work. Note that we have

discarded boundary cells that fail to have kinematical supports in terms of momentum twistors, but still

we abuse the term ‘homological’ here while the actual kinematics also matters [1, 2].

n=7

∂(12) = − [1] + [2]− (12)(34) + (12)(45)− (12)(56) + (12)(67). (A.1)

n=8

∂(123)(45) = − [1](23)(45) + [2](13)(45)− [3](12)(45) + (123)(456)− (123)(45)(67) + (123)(45)(78). (A.2)

∂(123)(56) = − [1](23)(56) + [2](13)(56)− [3](12)(56) + (123)(456)− (123)(567) + (123)(56)(78). (A.3)

∂(123)(67) = − [1](23)(67) + [2](13)(67)− [3](12)(67) + (123)(45)(67)− (123)(567) + (123)(678). (A.4)

∂(123)(78) = − [1](23)(78) + [2](13)(78)− [3](12)(78) + (123)(45)(78)− (123)(56)(78) + (123)(678). (A.5)

∂(12)(34)(67) =− [1](34)(67) + [2](34)(67)− [3](12)(67) + [4](12)(67) + [6](12)(34)− [7](12)(34)

− (12)(345)(67)− (12)(34)(567) + (12)(34)(678) + (812)(34)(67).
(A.6)

n=9
∂(1234)(567) =− [1](234)(567) + [2](134)(567)− [3](124)(567) + [4](123)(567)

− (1234)(5678) + (1234)(567)(89).
(A.7)

∂(1234)(678) =− [1](234)(678) + [2](134)(678)− [3](124)(678) + [4](123)(678)

− (1234)(5678) + (1234)(6789).
(A.8)

∂(1234)(789) =− [1](234)(789) + [2](134)(789)− [3](124)(789) + [4](123)(789)

− (1234)(56)(789) + (1234)(6789).
(A.9)

∂(1234)(56)(89) =− [1](234)(56)(89) + [2](134)(56)(89)− [3](124)(56)(89) + [4](123)(56)(89)

− (1234)(567)(89) + (1234)(56)(789).
(A.10)
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∂(1234)(67)(89) =− [1](234)(67)(89) + [2](134)(67)(89)− [3](124)(67)(89) + [4](123)(67)(89)

− (1234)(567)(89) + (1234)(6789).
(A.11)

∂(123)(45)(678) =− [1](23)(45)(678) + [2](13)(45)(678)− [3](12)(45)(678)

+ [4](123)(678)− [5](123)(678) + [6](123)(45)(78)

− [7](123)(45)(68) + [8](123)(45)(67)

+ (123)(45)(6789)− (9123)(45)(678).

(A.12)

n=10
∂(12345)(6789) =− [1](2345)(6789) + [2](1345)(6789)− [3](1245)(6789)

+ [4](1235)(6789)− [5](1234)(6789) + (12345)(6789 10).
(A.13)

∂(12345)(789 10) =− [1](2345)(789 10) + [2](1345)(789 10)− [3](1245)(678 10)

+ [4](1235)(789 10)− [5](1234)(789 10) + (12345)(6789 10).
(A.14)

∂(12345)(678)(9 10) =− [1](2345)(678)(9 10) + [2](1345)(678)(9 10)− [3](1245)(678)(9 10)

+ [4](1235)(678)(9 10)− [5](1234)(678)(9 10) + (12345)(6789 10).
(A.15)

∂(1234)(5678)(9 10) =− [1](234)(5678)(9 10) + [2](134)(5678)(9 10)− [3](124)(5678)(9 10)

+ [4](123)(5678)(9 10)− [5](1234)(678)(9 10) + [6](1234)(578)(9 10)

− [7](1234)(568)(9 10) + [8](1234)(567)(9 10)

− [9](1234)(5678) + [10](1234)(5678).

(A.16)
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