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Abstract

Following the direction of 1712.09990 and 1712.09994, this article continues to excavate more interesting 
aspects of the 4-particle amplituhedron for a better understanding of the 4-particle integrand of planar N =
4 SYM to all loop orders, from the perspective of positive geometry. At 3-loop order, we introduce a much 
more refined dissection of the amplituhedron to understand its essential structure and maximally simplify 
its direct calculation, by fully utilizing its symmetry as well as the efficient Mondrian way for reorganizing 
all contributing pieces. Although significantly improved, this approach immediately encounters its technical 
bottleneck at 4-loop. Still, we manage to alleviate this difficulty by imitating the traditional (generalized) 
unitarity cuts, which is to use the so-called positive cuts. Given a basis of dual conformally invariant (DCI) 
loop integrals, we can figure out the coefficient of each DCI topology using its d log form via positivity 
conditions. Explicit examples include all 2+5 non-rung-rule topologies at 4- and 5-loop respectively. These 
results remarkably agree with previous knowledge, which confirms the validity of amplituhedron up to 
5-loop and develops a new approach of determining the coefficient of each distinct DCI loop integral.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and the 3-loop amplituhedron revisited

The amplituhedron proposal for 4-particle all-loop integrand of planar N = 4 SYM [1,2] is a 
novel reformulation which only uses positivity conditions for all physical poles to construct the 
integrand. At L-loop order, for any two sets of loop variables labeled by i, j = 1, . . . , L we have 
the mutual positivity condition
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Dij = (xj − xi)(zi − zj ) + (yj − yi)(wi − wj) > 0, (1.1)

where xi = 〈AiBi 14〉, yi = 〈AiBi 34〉, zi = 〈AiBi 23〉, wi = 〈AiBi 12〉 and Dij = 〈AiBi AjBj 〉
are all possible physical poles in terms of momentum twistor contractions, and xi, yi, zi, wi are 
trivially set to be positive. A simplest nontrivial case is the 2-loop integrand given in [2]. Though 
the dominating principle is simple and symmetric up to all loops, as the loop order increases, 
its calculational complexity grows explosively due to the highly nontrivial intertwining of all 
L(L − 1)/2 positivity conditions.

So far the 4-particle amplituhedron has been fully understood up to 3-loop [3], from which we 
have incidentally found an intriguing pattern valid at all loop orders for a special subset of dual 
conformally invariant (DCI) loop integrals: the Mondrian diagrammatics [4]. Even though there 
still remain unknown characteristics of the connection between this neat formalism and down-
to-earth physics, to say the very least, it offers us a much more efficient way for reorganizing the 
3-loop results via a direct calculation, by extensively using the properties of ordered subspaces 
which further refine the space spanned by x, y, z, w.

This work continues the exploration of 4-particle amplituhedron at higher loop orders, which 
mainly includes two parts: a more refined understanding of the 3-loop case, and the motivation 
and application of positive cuts at 4- and 5-loop. We will see that even the maximally refined 
recipe can hardly handle the 4-loop case, hence we are forced to verify the amplituhedron pro-
posal in a somehow compromised way but even this concession is very interesting and nontrivial, 
and most importantly, it is consistent with known results via the traditional approach.

Let’s first briefly summarize some notions with relevant notations introduced in [3,4] which 
are frequently used in this work.

For the 3-loop amplituhedron as an example, given positive variables x1, x2, x3, an ordered 
subspace X(abc) denotes the region in which xa < xb < xc . There are 3! = 6 such subspaces and 
they together make up the space spanned by x1, x2, x3. We also use X(abc) as its corresponding 
d log form, namely

X(abc) = 1

xa(xb − xa)(xc − xb)
≡ 1

xaxbaxcb

, (1.2)

note that we have omitted the measure factor, following the convention of [3,4]. Originally, the 
full d log form is defined as

d logx = dx

x
, (1.3)

where x must be positive, and it becomes singular when x → 0. For x > a, the d log form is then

da

a

d(x − a)

x − a
= da

a

dx

x − a
, (1.4)

since the measure factor remains the same, we can safely omit such universal factors for conve-
nience when triangulating positive regions. Back to X(abc), obviously there is a completeness 
relation

X(123) + X(132) + X(213) + X(231) + X(312) + X(321) = 1

x1x2x3
. (1.5)

The same notion applies for loop variables x, y, z, w, for example, X(123)Z(321)Y (123)W(123)

is simply a direct product of these four subspaces, and the overall d log form is the product of 
their corresponding d log forms.
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Each subspace admits some Mondrian seed diagrams [3], for example, X(123)Z(321)Y (123)

W(123) admits the ladder diagram in Fig. 5, which can be characterized by a Mondrian factor 
X12X23D13, with Xij = (xj − xi)(zi − zj ), Yij = (yj − yi)(wi − wj) and Dij = Xij + Yij . This 
factor is determined by the contact rules between any two loops defined in [3,4] as

horizontal contact: Xij

vertical contact: Yij

no contact: Dij (always taking i < j for Dij )

(1.6)

For a particular subspace we can derive its d log form by demanding D12, D13, D23 > 0. Then 
multiplying its form by all positive denominators gives its proper numerator, and the dimension-
less ratio between this numerator and D12D13D23 encodes the positivity constraints, which be-
comes 1 if the positivity is trivial. For example, the d log form of X(123)Z(321)Y (123)W(123)

takes the form
1

x1x21x32

1

z3z23z12

1

y1y21y32

1

w1w21w32

N

D12D23D13
, (1.7)

then N is its proper numerator and N/(D12D23D13) is the dimensionless ratio. In contrast, the 
d log form of X(123)Z(321)Y (123)W(321) simply reads

1

x1x21x32

1

z3z23z12

1

y1y21y32

1

w3w23w12
(1.8)

since D12, D13, D23 are trivially positive, then the proper numerator is D12D23D13 and the di-
mensionless ratio is simply 1.

The difference between the proper numerator and all admitted Mondrian factors (or the con-
tributing part) of a particular subspace is called the spurious part. The spurious parts sum to zero 
(over all ordered subspaces) at the end as their name implies.

For a DCI topology as those given in Figs. 7, 10 and 11, which can be Mondrian or non-
Mondrian, to enumerate all relevant DCI loop integrals, one must consider all its orientations
and configurations of loop numbers. For each topology by dihedral symmetry there can be 8, 
4, 2, or 1 orientations, depending on the additional symmetries it may have [4], and for each 
orientation there are L! configurations of loop numbers. This finishes the summary.

Now we would like to improve all these techniques to extract the essential structure of the 
4-particle amplituhedron by fully utilizing the symmetry of (mutual) positivity conditions. Before 
this, let’s briefly review the standard calculation for the 2-loop case as a simplest nontrivial 
example below. For its single positivity condition

D12 = (x2 − x1)(z1 − z2) + (y2 − y1)(w1 − w2) > 0, (1.9)

without loss of generality, we can fix the ordered subspace as X(12) in which x1 < x2, so it 
becomes

z1 − z2 + (y2 − y1)(w1 − w2)

x21
> 0, (1.10)

where x21 = x2 −x1 is a positive variable. Then depending on the choice of ordered subspaces of 
y, w, there are 4 combinations to be considered, while the z-space is used for imposing D12 > 0. 
After that, we sum the result over all permutations of loop numbers, which are just 1, 2 in the 
2-loop case [2]. This has been used for the 3-loop case as well [3], while for the latter we have 
to deal with three intertwining conditions D12, D23, D13 > 0. Though such a straightforward 



4 J. Rao / Nuclear Physics B 943 (2019) 114625
approach successfully works for the first two nontrivial cases, it inevitably gets complicated 
by the tension between the simplicity of each contributing piece of a corresponding ordered 
subspace, and the number and variety of such building blocks. That is to say, the more refined 
each piece is, naturally, the simpler it looks, but there are more situations to be considered and 
hence their sum will be more involved, as one has to carefully ensure that all spurious poles 
brought by the subspace division must be wiped off after the summation. This disadvantage is 
due to overlooking the symmetry of positivity conditions. In the following, instead of picking 
subspace X(123) at 3-loop, we will treat all x, y, z, w variables on the same footing.

To classify all possible positive configurations in a totally symmetric way, let’s first explicitly 
write

D12 = X12 + Y12, D23 = X23 + Y23, D13 = X13 + Y13, (1.11)

with Xij = (xj − xi)(zi − zj ) and Yij = (yj − yi)(wi − wj) as introduced before. For each 
Dij , there are three possible configurations: Xij is positive while Yij is negative and the other 
way around, as well as both Xij and Yij are positive. It goes without saying, the configuration 
of which both Xij and Yij are negative must be excluded. We can use a convenient notation to 
precisely characterize each configuration, such as{

(+−)12, (+−)23, (+−)13
}
, (1.12)

which means X12, X23, X13 are positive and Y12, Y23, Y13 are negative. Since the positivity con-
ditions are symmetric in combinations 12, 23, 13, the counting of all possible configurations is 
given by a “generating function” which does not distinguish 12, 23, 13, namely

(D + X + Y)3 = D3 + 3D2(X + Y) + 3D
(
X2 + Y 2) + 6DXY + (

X3 + Y 3)
+ 3

(
X2Y + XY 2), (1.13)

where D, X, Y stand for both X and Y are positive, only X is positive and only Y is positive 
respectively. Essentially there are only 6 distinct configurations, as we also treat X and Y on 
the same footing, which leads to switching x, z ↔ y, w. We see the coefficient 1, 3 or 6 above 
precisely represents the number of combinations within each distinct configuration. For example, 
for the 2nd term in the RHS above 3D2X tells that X can be chosen to be X12, X23 or X13, and 
also for the 4th term there are 3! = 6 combinations of 12, 23, 13 for D, X, Y . Moreover, we can 
count the number of ordered subspaces for each configuration and sum them as

36 + 24 × 6 + 24 × 6 + 16 × 6 + 36 × 2 + 16 × 6 = 588, (1.14)

where each number in the sum will be explained in a detailed analysis of its corresponding con-
figuration. On the other hand, the total number of ordered subspaces of x, y, z, w is (3!)4 = 1296, 
so we see that the contributing pieces take up 49/108 of all subspaces. By this more refined dis-
section, we immediately get rid of more than half of all subspaces which do not contribute, since 
they violate positivity conditions. In contrast, the standard way used in [3] has implicitly taken all 
non-contributing subspaces into account so it naturally looks more involved and contains more 
repetitive calculation. Using notations of (1.12), we select one representative for each of the 6 
distinct configurations above for further calculation, as summarized in the following list:

{
(++)12, (++)23, (++)13

}
,

{
(++)12, (++)23, (+−)13

}
,

{
(++)12, (+−)23, (+−)13

}
,{

(++)12, (+−)23, (−+)13
}
,

{
(+−)12, (+−)23, (+−)13

}
,

{
(+−)12, (+−)23, (−+)13

}
.

(1.15)
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Fig. 1. Mondrian seed diagrams in subspace X(123)Z(321) ⊗ Y (123)W(321).

Note that after we obtain the d log forms of these 6 configurations, the multiplicity in (1.13) must 
be taken into account for correctly summing all relevant terms. Now we start to analyze them one 
by one.

1.1. Configuration {(++)12, (++)23, (++)13}

For the simplest configuration {(++)12, (++)23, (++)13}, since it is totally positive for all 
Xij ’s and Yij ’s, there is no multiplicity as its coefficient in (1.13) is simply 1. This corresponds 
to the collection of ordered subspaces (here ⊗ is used for separating X, Z and Y, W only, it is 
equivalent to the ordinary product)

X(σ1σ2σ3)Z(σ3σ2σ1) ⊗ Y(τ1τ2τ3)W(τ3τ2τ1), (1.16)

which means the orderings of x1, x2, x3 are always opposite to those of z1, z2, z3 and the same 
for y1, y2, y3 and w1, w2, w3. For x- and z-space there are 3! = 6 combinations, so there are in 
total 36 ordered subspaces in this collection, which explains the counting in (1.14). Since for 
each Dij , both Xij and Yij are positive, the positivity of Dij is trivial, which leads to the proper 
numerator

N = D12D23D13 (1.17)

in the d log form (of any subspace in this collection)

1

xσ1xσ2σ1xσ3σ2

1

zσ3zσ2σ3zσ1σ2

1

yτ1yτ2τ1yτ3τ2

1

wτ3wτ2τ3wτ1τ2

N

D12D23D13
. (1.18)

To make use of the Mondrian diagrammatics, we pick an explicit subspace X(123)Z(321) ⊗
Y(123)W(321) as a representative to separate its contributing and spurious parts. As extensively 
discussed in [3,4], the identity

D12D23D13 = X12X23D13 + Y12Y23D13 + X13X23Y12 + X12X13Y23

+ X12Y13Y23 + Y12Y13X23 (1.19)

results in a vanishing spurious part, denoted by S = 0. The relevant Mondrian seed diagrams are 
given in Fig. 1, corresponding to the six terms in the RHS above. This separation has significantly 
simplified the summation as we only need to check whether the final sum of all spurious parts 
vanishes.

1.2. Configuration {(++)12, (++)23, (+−)13}

If we flip one plus into minus in the former case, we obtain the configuration {(++)12, (++)23,

(+−)13}. Here Y13 is chosen to be negative but of course, the negative quantity can be Y12, Y23, 
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Fig. 2. Mondrian seed diagrams in subspaces X(123)Z(321) ⊗ Y (132)W(213), X(132)Z(231) ⊗ Y (132)W(213) and 
X(213)Z(312) ⊗ Y (132)W(213). Each row corresponds to one subspace respectively.

X12, X23 or X13 as well, which explains the multiplicity of 3D2(X + Y) in (1.13). This corre-
sponds to the collection of ordered subspaces

X(σ1σ2σ3)Z(σ3σ2σ1) ⊗ Y(· · 2)W(2 · ·), (1.20)

where

Y(· · 2)W(2 · ·) ≡ Y(132)W(213) + Y(231)W(312) + (Y ↔ W)

= Y(132)W(213) + Y(231)W(312) + Y(213)W(132) + Y(312)W(231)

(1.21)

is the part satisfying Y12, Y23 > 0 and Y13 < 0. It is clear that there are in total 6 ×4 = 24 ordered 
subspaces in this collection. With the extra multiplicity 3 ×2, this explains the counting 24 ×6 in 
(1.14). To calculate the proper numerator, we observe that since only Y13 is negative, the 2-loop 
analysis for loop numbers 1,3 already suffices. Therefore we have

N = D12D23X13. (1.22)

Then as usual, we pick some explicit representative subspaces to separate their contributing 
and spurious parts, which include X(123)Z(321), X(132)Z(231) and X(213)Z(312) among 
X(σ1σ2σ3)Z(σ3σ2σ1) as we can get the rest three by reversing the orderings of loop numbers in 
all parentheses or switching X ↔ Z, and similarly Y(132)W(213) among Y(· · 2)W(2 · ·). The 
relevant Mondrian seed diagrams of these three subspaces are given in Fig. 2.

Among these three cases, the only one with a nonzero spurious part is X(123)Z(321) ⊗
Y(132)W(213) with (recall that it is the difference between the proper numerator and Mondrian 
factors)

S = D12D23X13 − X12X23D13 − X13X23Y12 − X13X12Y23 − X13Y12Y23 = −X12X23Y13.

(1.23)
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To collect all spurious parts of this configuration, we need to permutate 13, 23, 12 and switch 
x, z ↔ y, w. For compactness, we can consider those associated with X(123) only [3], so the 
relevant terms are

X(123)Z(321) ⊗ Y(· · 2)W(2 · ·) : − X12X23Y13, (1.24)

as well as[
Y(132)W(231) + Y(231)W(132)

] ⊗ X(123)Z(312) : − Y13Y23X12,[
Y(213)W(312) + Y(312)W(213)

] ⊗ X(123)Z(231) : − Y12Y13X23.
(1.25)

These results will be summed over the forms of corresponding ordered subspaces for proving all 
spurious parts finally cancel.

1.3. Configuration {(++)12, (+−)23, (+−)13}

If we flip one more plus into minus at the same side in the former case, we get {(++)12,

(+−)23, (+−)13}. Its multiplicity is similar to that of {(++)12, (++)23, (+−)13} as can be seen 
in (1.13). This corresponds to the collection of ordered subspaces

X(σ1σ2σ3)Z(σ3σ2σ1) ⊗ Y(· · 3)W(· · 3), (1.26)

where

Y(· · 3)W(· · 3) ≡ Y(123)W(213) + Y(321)W(312) + (Y ↔ W)

= Y(123)W(213) + Y(321)W(312) + Y(213)W(123) + Y(312)W(321)

(1.27)

is the part satisfying Y12 > 0 and Y23, Y13 < 0. Similarly, there are in total 6 ×4 = 24 ordered sub-
spaces in this collection. This explains the counting 24 ×6 in (1.14) with the extra multiplicity 3 ×
2. In this case, to calculate the proper numerator is nontrivial and we can again pick some explicit 
representative subspaces to analyze, which similarly include X(123)Z(321), X(132)Z(231), 
X(213)Z(312) and also Y(123)W(213). Note that X(213)Z(312) ⊗ Y(123)W(213) is identi-
cal to X(123)Z(321) ⊗ Y(123)W(213) if we switch 1 ↔ 2 and Y ↔ W , so there are only two 
distinct cases under consideration.

For X(123)Z(321) ⊗ Y(123)W(213), D12 is trivially positive, so we need to impose

D23 = x32z23 − y32(w31 +w12) > 0, D13 = (x32 + x21)(z12 + z23)− (y32 + y21)w31 > 0.

(1.28)

For D23 let’s define

z′
23 ≡ z23 − y32(w31 + w12)

x32
> 0, (1.29)

and its d log form is simply (for later convenience we multiply it by z23 to make a dimensionless 
ratio)

z23

z′
23

= X23

D23
. (1.30)

Next, for D13 we have
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Fig. 3. Mondrian seed diagrams in subspaces X(123)Z(321) ⊗ Y (123)W(213) and X(132)Z(231) ⊗ Y (123)W(213).

z12 + z23 − (y32 + y21)w31

x32 + x21
= z12 + z′

23 + y32(w31 + w12)

x32
− (y32 + y21)w31

x32 + x21

= z12 + z′
23 + y32

x32

(
w12 + w31

x21

x32 + x21

)
− y21w31

x32 + x21
> 0,

(1.31)

we can focus on z12, z′
23 and y32, so its d log form is simply (omitting z12, z′

23 and y32 in the 
denominator to make a dimensionless ratio, and the form of x1 + . . . + xn > a can be referred in 
[3]) [

z12 + z′
23 + y32

x32

(
w12 + w31

x21

x32 + x21

)]
/[

z12 + z′
23 + y32

x32

(
w12 + w31

x21

x32 + x21

)
− y21w31

x32 + x21

]

= D13 + y21w31

D13
.

(1.32)

Collecting all three dimensionless ratios from the d log forms gives

D12

D12

X23

D23

D13 + y21w31

D13
, (1.33)

the proper numerator is then N = D12X23(D13 +y21w31). The relevant Mondrian seed diagrams 
of this subspace are given in the 1st row of Fig. 3, and its spurious part is given by

S = D12X23(D13 + y21w31) − X12X23D13 − X13X23Y12 = X23(Y12Y13 + D12 y21w31).

(1.34)

For X(132)Z(231) ⊗ Y(123)W(213), similarly we need to impose

D23 = x23z32 − y32(w31 + w12) > 0, D13 = x31z13 − (y32 + y21)w31 > 0. (1.35)

If we focus on x23 and x31, we find these two conditions in fact “decouple”. Then the dimension-
less ratios (as a product) are simply

D12

D12

X23

D23

X13

D13
, (1.36)

with the proper numerator N = D12X23X13. The relevant Mondrian seed diagram is given in the 
2nd row of Fig. 3, and its spurious part is obviously S = 0.
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To collect all spurious parts of this configuration, we again permutate 13, 23, 12 and switch 
x, z ↔ y, w for X(123)Z(321) ⊗ Y(123)W(213) and its derivative subspaces via reversing the 
orderings of loop numbers and/or switching Y ↔ W . Fixing X(123), the relevant terms are

X(123)Z(321) ⊗ Y(123)W(213) : X23(Y12Y13 + D12 y21w31),

. . . ⊗ Y(321)W(312) : X23(Y12Y13 + D12 y12w13),

. . . ⊗ Y(213)W(123) : X23(Y12Y13 + D12 w21y31),

. . . ⊗ Y(312)W(321) : X23(Y12Y13 + D12 w12y13),

(1.37)

X(123)Z(321) ⊗ Y(321)W(231) : X12(Y23Y13 + D23 y23w13),

. . . ⊗ Y(123)W(132) : X12(Y23Y13 + D23 y32w31),

. . . ⊗ Y(231)W(321) : X12(Y23Y13 + D23 w23y13),

. . . ⊗ Y(132)W(123) : X12(Y23Y13 + D23 w32y31),

(1.38)

where . . . stands for the repetitive subspace (and similar below), as well as[
Y(123)W(321) + Y(321)W(123)

] ⊗ X(123)Z(213): Y23(X12X13 + D12 x21z31),[
Y(213)W(312) + Y(312)W(213)

] ⊗ . . . : Y13(X12X23 + D12 z12x32),

(1.39)[
Y(321)W(123) + Y(123)W(321)

] ⊗ X(123)Z(132): Y12(X23X13 + D23 x32z31),[
Y(231)W(132) + Y(132)W(231)

] ⊗ . . . : Y13(X23X12 + D23 z23x21).

(1.40)

These results will be used for proving all spurious parts finally cancel.

1.4. Configuration {(++)12, (+−)23, (−+)13}

If we replace (+−)13 by (−+)13 in the former case, we get {(++)12, (+−)23, (−+)13}. Now 
its multiplicity becomes 6 as can be seen in (1.13). This corresponds to the collection of ordered 
subspaces

X(· · 2)Z(2 · ·) ⊗ Y(· · 1)W(1 · ·), (1.41)

where X(· · 2)Z(2 · ·) and Y(· · 1)W(1 · ·) are similarly defined by (1.21). There are in total 
42 = 16 ordered subspaces in this collection, which explains the counting 16 ×6 in (1.14). To get 
the proper numerator, we again pick a representative subspace X(132)Z(213) ⊗Y(231)W(123)

to analyze.
Since D12 is trivially positive, we need to impose

D23 = x23(z31 + z12) − y32w32 > 0, D13 = −x31z31 + y13(w32 + w21) > 0. (1.42)

Focusing on x23 and x31, we find these two conditions decouple. Then the dimensionless ratios 
are

D12

D12

X23

D23

Y13

D13
, (1.43)

with the proper numerator N = D12X23Y13. The relevant Mondrian seed diagrams are given 
in Fig. 4, and its spurious part is obviously S = 0. Therefore, similar to configuration 
{(++)12, (++)23, (++)13}, in this case there is no spurious part to be collected.
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Fig. 4. Mondrian seed diagrams in subspace X(132)Z(213) ⊗ Y (231)W(123).

1.5. Configuration {(+−)12, (+−)23, (+−)13}

For this configuration, we have three minus signs at the same side. Its multiplicity is 2, due to 
switching X ↔ Y in (1.13). This corresponds to the collection of ordered subspaces

X(σ1σ2σ3)Z(σ3σ2σ1) ⊗ Y(τ1τ2τ3)W(τ1τ2τ3). (1.44)

Similar to (1.16), there are in total 36 ordered subspaces in this collection, which explains 
the counting 36 × 2 in (1.14). We again pick some representative subspaces to analyze, in 
fact there are only two distinct cases: X(123)Z(321) ⊗ Y(123)W(123) and X(123)Z(321) ⊗
Y(132)W(132).

For X(123)Z(321) ⊗ Y(123)W(123), we need to impose

D12 = x21z12 − y21w21 > 0, D23 = x32z23 − y32w32 > 0,

D13 = (x32 + x21)(z12 + z23) − (y32 + y21)(w32 + w21) > 0.
(1.45)

For D12 and D23 let’s define

z′
12 ≡ z12 − y21w21

x21
> 0, z′

23 ≡ z23 − y32w32

x32
> 0, (1.46)

next for D13 we have

z′
12 + z′

23 −
(

(y32 + y21)(w32 + w21)

x32 + x21
− y21w21

x21
− y32w32

x32

)

= z′
12 + z′

23 − x21

x32(x32 + x21)

(
y32 − y21

x32

x21

)(
x32

x21
w21 − w32

)
> 0,

(1.47)

this condition is only nontrivial when

a ≡ x21

x32(x32 + x21)

(
y32 − y21

x32

x21

)(
x32

x21
w21 − w32

)
> 0, (1.48)

so its d log form is (omitting z′
12 and z′

23 in the denominator as usual)[
1

y32 − y21x32/x21

(
1

w32
− 1

w32 − w21x32/x21

)

+
(

1

y32
− 1

y32 − y21x32/x21

)
1

w32 − w21x32/x21

]
z′

12 + z′
23

z′
12 + z′

23 − a

+
[

1

y32 − y21x32/x21

1

w32 − w21x32/x21

+
(

1

y32
− 1

y32 − y21x32/x21

)(
1

w32
− 1

w32 − w21x32/x21

)]

= D13 + y32w21 + y21w32
.

(1.49)
y32w32D13
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Fig. 5. Mondrian seed diagram in subspaces X(123)Z(321) ⊗ Y (123)W(123) and X(123)Z(321) ⊗ Y (132)W(132).

Collecting all three dimensionless ratios gives

X12

D12

X23

D23

D13 + y32w21 + y21w32

D13
, (1.50)

with the proper numerator N = X12X23(D13 + y32w21 + y21w32). The relevant Mondrian seed 
diagram is given in Fig. 5, and its spurious part is obviously S = X12X23(y32w21 + y21w32).

For X(123)Z(321) ⊗ Y(132)W(132), similarly we need to impose

D12 = x21z12 − (y23 + y31)(w23 + w31) > 0, D23 = x32z23 − y23w23 > 0,

D13 = (x32 + x21)(z12 + z23) − y31w31 > 0.
(1.51)

Focusing on z12 and z23, we find D12 > 0 and D23 > 0 decouple, and D12 > 0 can trivialize 
D13 > 0. Then the dimensionless ratios are

X12

D12

X23

D23

D13

D13
, (1.52)

with the proper numerator N = X12X23D13. The relevant Mondrian seed diagram is identical to 
that of X(123)Z(321) ⊗Y(123)W(123) given in Fig. 5, and its spurious part is obviously S = 0.

To collect all spurious parts of this configuration, we again permutate 13, 23, 12 and switch 
x, z ↔ y, w for X(123)Z(321) ⊗ Y(123)W(123) and its derivative subspaces. Fixing X(123), 
the relevant terms are

X(123)Z(321) ⊗ Y(123)W(123) : X12X23(y32w21 + y21w32),

. . . ⊗ Y(321)W(321) : X12X23(y23w12 + y12w23),
(1.53)

as well as

Y(123)W(321) ⊗ X(123)Z(123): Y12Y23(x32z21 + x21z32),

Y (321)W(123) ⊗ . . . : Y12Y23(x32z21 + x21z32).
(1.54)

These results will be used for proving all spurious parts finally cancel.

1.6. Configuration {(+−)12, (+−)23, (−+)13}

If we replace (+−)13 by (−+)13 in the former case, we get {(+−)12, (+−)23, (−+)13}. Its 
multiplicity is 3 × 2, due to choosing one of 12, 23, 13 to assign (−+) and switching X ↔ Y in 
(1.13). This corresponds to the collection of ordered subspaces

X(· · 2)Z(2 · ·) ⊗ Y(· · 2)W(· · 2). (1.55)

There are in total 42 = 16 ordered subspaces in this collection, which explains the counting 16 ×6
in (1.14). To get the proper numerator, we again pick a representative subspace X(132)Z(213) ⊗
Y(132)W(312) to analyze, for which we need to impose

D12 = (x23 + x31)z12 − (y23 + y31)w21 ≡ (x23 + x31)z
′
12 > 0,

D23 = x23(z31 + z12) − y23(w21 + w13) > 0,

D = −x z + y w ≡ y w′ > 0,

(1.56)
13 31 31 31 13 31 13



12 J. Rao / Nuclear Physics B 943 (2019) 114625
Fig. 6. Mondrian seed diagram in subspace X(132)Z(213) ⊗ Y (132)W(312).

where similarly z′
12 and w′

13 are positive variables, so that for D23 we have

(
1 − y23

x23

x31

y31

)
z31 + z′

12 +
(

y23 + y31

x23 + x31
− y23

x23

)
w21 − y23

x23
w′

13 > 0, (1.57)

note that

y23

x23
≶ y31

x31
=⇒ y23

x23
≶ y23 + y31

x23 + x31
≶ y31

x31
, (1.58)

which determines signs of the factors of z31 and w21, so its d log form is (omitting z31, z′
12 and 

w21 in the denominator)

1

y31 − y23 x31/x23

[(
1 − y23

x23

x31

y31

)
z31 + z′

12 +
(

y23 + y31

x23 + x31
− y23

x23

)
w21

]
x23

D23

+
(

1

y31
− 1

y31 − y23 x31/x23

)
z′

12 x23

D23

= 1

y31D23

(
x23(z31 + z12) − x23

x23 + x31
y23w21

)
.

(1.59)

Collecting all three dimensionless ratios gives

X12

D12

Y13

D13

1

D23

(
X23 − x23

x23 + x31
y23w21

)
, (1.60)

with the proper numerator N = X12Y13(X23 − y23w21x23/(x23 + x31)). The relevant Mondrian 
seed diagram is given in Fig. 6, and its spurious part is obviously S = X12Y13(−y23w21x23/(x23 +
x31)).

To collect all spurious parts of this configuration, we again permutate 13, 23, 12 and switch 
x, z ↔ y, w for X(132)Z(213) ⊗ Y(132)W(312) and its derivative subspaces. Fixing X(123), 
the relevant terms are

X(123)Z(312) ⊗ Y(123)W(213) : X13Y12

(
− x32

x32 + x21
y32w31

)
,

. . . ⊗ Y(321)W(312) : X13Y12

(
− x32

x32 + x21
y23w13

)
,

. . . ⊗ Y(213)W(123) : X13Y12

(
− x32

x32 + x21
w32y31

)
,

. . . ⊗ Y(312)W(321) : X13Y12

(
− x32

w23y13

)
,

(1.61)
x32 + x21



J. Rao / Nuclear Physics B 943 (2019) 114625 13
X(123)Z(231) ⊗ Y(231)W(321) : X12Y23

(
− z13

z13 + z32
y13w12

)
,

. . . ⊗ Y(132)W(123) : X12Y23

(
− z13

z13 + z32
y31w21

)
,

. . . ⊗ Y(321)W(231) : X12Y23

(
− z13

z13 + z32
w13y12

)
,

. . . ⊗ Y(123)W(132) : X12Y23

(
− z13

z13 + z32
w31y21

)
,

(1.62)

as well as

Y(123)W(312) ⊗ X(123)Z(213): Y13X12

(
− y32

y32 + y21
x32z31

)
,

Y (321)W(213) ⊗ . . . : Y13X12

(
− y23

y12 + y23
x32z31

)
,

Y (312)W(123) ⊗ . . . : Y13X12

(
− w32

w32 + w21
x32z31

)
,

Y (213)W(321) ⊗ . . . : Y13X12

(
− w23

w12 + w23
x32z31

)
,

(1.63)

Y(231)W(123) ⊗ X(123)Z(132): Y12X23

(
− y13

y13 + y32
z31x21

)
,

Y (132)W(321) ⊗ . . . : Y12X23

(
− y31

y23 + y31
z31x21

)
,

Y (123)W(231) ⊗ . . . : Y12X23

(
− w13

w13 + w32
z31x21

)
,

Y (321)W(132) ⊗ . . . : Y12X23

(
− w31

w23 + w31
z31x21

)
.

(1.64)

These results will be used for proving all spurious parts finally cancel.

1.7. Final sum of all spurious parts

One might notice that, even though we treat all x, y, z, w variables on the same footing and 
preserve the symmetry in combinations 12, 23, 13, we can still consider terms associated with 
X(123) only because we would like to confirm the sum of all spurious parts in subspace X(123)

matches the result in [3].
Explicitly, we collect those nonzero spurious parts in configurations {(++)12, (++)23,

(+−)13}, {(++)12, (+−)23, (+−)13}, {(+−)12, (+−)23, (+−)13} and {(+−)12, (+−)23,

(−+)13} then sum them over the forms of corresponding ordered subspaces, which gives the 
proper numerator

S123 = x21
(−2 z1y2y3w2w3 − z1y1w1(y2w3 + y3w2) + z2y3w3(y1w2 + y2w1)

+ z3y2w2(y1w3 + y3w1)
)
, (1.65)

and hence the final sum over permutations of loop numbers

S123X(123) + (5 permutations of 1,2,3) = 0. (1.66)
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In fact, this vanishing result can be further refined as S123X(123) + S132X(132) = 0, which has 
not been noticed in [3].

1.8. Technical bottleneck at 4-loop

Completing the 3-loop proof, it is appealing to continue this approach at 4-loop. We can have a 
glance at the variety of its positive configurations via the generating function, as a generalization 
of (1.13):

(D + X + Y)6 = D6 + 6D5(X + Y) + 15D4(X2 + Y 2) + 30D4XY + 20D3(X3 + Y 3)
+ 60D3(X2Y + XY 2) + 15D2(X4 + Y 4) + 60D2(X3Y + XY 3)
+ 90D2X2Y 2 + 6D

(
X5 + Y 5) + 30D

(
X4Y + XY 4)

+ 60D
(
X3Y 2 + X2Y 3) + (

X6 + Y 6) + 6
(
X5Y + XY 5)

+ 15
(
X4Y 2 + X2Y 4) + 20X3Y 3, (1.67)

so there are 16 distinct configurations. Taking X6 as one of the most nontrivial examples, or 
equivalently, the configuration in terms of plus and minus signs{

(+−)12, (+−)23, (+−)34, (+−)13, (+−)24, (+−)14
}
, (1.68)

we can pick the representative subspace X(1234)Z(4321) ⊗ Y(1234)W(1234) to analyze, for 
which we need to impose

D12 = x21z12 − y21w21 > 0, D23 = x32z23 − y32w32 > 0, D34 = x43z34 − y43w43 > 0,

D13 = (x32 + x21)(z12 + z23) − (y32 + y21)(w32 + w21) > 0,

D24 = (x43 + x32)(z23 + z34) − (y43 + y32)(w43 + w32) > 0,

D14 = (x43 + x32 + x21)(z12 + z23 + z34) − (y43 + y32 + y21)(w43 + w32 + w21) > 0.

(1.69)

For D12, D23 and D34 let’s define

z′
12 ≡ z12 − y21w21

x21
> 0, z′

23 ≡ z23 − y32w32

x32
> 0, z′

34 ≡ z34 − y43w43

x43
> 0, (1.70)

then for D13, D24 and D14 we have

(x32 + x21)
(
z′

12 + z′
23

) − x32 x21

(
y32

x32
− y21

x21

)(
w21

x21
− w32

x32

)
> 0,

(x43 + x32)
(
z′

23 + z′
34

) − x43 x32

(
y43

x43
− y32

x32

)(
w32

x32
− w43

x43

)
> 0,

(x43 + x32 + x21)
(
z′

12 + z′
23 + z′

34

) − x32 x21

(
y32

x32
− y21

x21

)(
w21

x21
− w32

x32

)

−x43 x32

(
y43

x43
− y32

x32

)(
w32

x32
− w43

x43

)
− x43 x21

(
y43

x43
− y21

x21

)(
w21

x21
− w43

x43

)
> 0.

(1.71)

Note that this smallest sector of the 4-loop amplituhedron almost has the complexity of the entire 
3-loop case already! As the loop order increases, the calculational complexity grows explosively. 
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This advises us to stop at 4-loop even though we have a maximally refined recipe to dissect the 
iceberg of amplituhedron.

1.9. Motivation of positive cuts

Before moving on to the 4-loop amplituhedron using a different approach, it is pedagogical 
to manipulate the known 3-loop case first to see how it works. Naturally, we would like to im-
pose traditional cuts on the amplituhedron and check the validity of positivity conditions in this 
simplified situation.

Back to the two distinct 3-loop topologies, namely the diagrams given in Figs. 5 and 6 without 
loss of generality, we can tentatively cut all of their external propagators and evaluate the d log
forms of the remaining variables. Explicitly, for Fig. 5 the corresponding integrand is

1

x1z3 y1y2y3w1w2w3D12D23
, (1.72)

cutting all external propagators as x1 = z3 = y1 = y2 = y3 = w1 = w2 = w3 = 0 gives

D12 = x2(z1 − z2), D23 = z2(x3 − x2), D13 = x3z1. (1.73)

The remaining variables are x2, x3, z1, z2, and we need to further impose z1 > z2 and x3 > x2 to 
ensure the positivity of D12 and D23, while D13 is trivially positive. The residue of this integrand 
is

1

D12D23
= 1

x2(x3 − x2)z2(z1 − z2)
, (1.74)

and the RHS above is clearly the d log form of remaining variables x2, x3, z1, z2, consistent with 
positivity. Then for Fig. 6 with the integrand (numerator x2 below is the rung rule factor [5,6])

x2

x1x3z2 y1y2w2w3D12D23D13
, (1.75)

similarly the cuts x1 = x3 = z2 = y1 = y2 = w2 = w3 = 0 lead to

D12 = x2z1, D23 = x2z3, D13 = y3w1. (1.76)

The remaining variables are x2, z1, z3, y3, w1, and since D12, D23, D13 are all trivially positive, 
there is no further positivity condition to be imposed. The residue of this integrand is

x2

D12D23D13
= 1

x2z1z3 y3w1
, (1.77)

and the RHS above is trivially the d log form of x2, z1, z3, y3, w1.
From these simple examples we see the traditional cuts work in an even easier way in the 

context of amplituhedron, which inspires us to apply these techniques at higher loop orders, and 
it is interesting to check the consistency between amplituhedron and the known results obtained 
via cuts.

In fact, in the first case of Fig. 5 above, we can even further cut internal propagators D12 and 
D23 by setting z1 = z2 and x3 = x2, which are the positive cuts that we will introduce immedi-
ately. Compared to the straightforward approach, calculation of amplituhedron with positive cuts 
is much simpler, but we need the ansatz of a basis of DCI loop integrals as explained in the next 
section.
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2. Positive cuts at 4-loop

For the 4-loop case besides continuing a direct derivation, we will also alleviate the calcu-
lational difficulty by imitating the traditional (generalized) unitarity cuts, which is to use the 
positive cuts. In this way, we can peel off the unnecessary flesh of the amplituhedron and con-
centrate on its essential skeleton – the pole structure. Given a basis of DCI loop integrals, we can 
first assign each DCI topology with an undetermined coefficient. Then after imposing as many 
positive cuts as possible for various pole structures, in general we obtain a set of equations by 
equating each resulting d log form via positivity conditions, and the deformed integrand as a 
sum of all non-vanishing DCI diagrams under the corresponding cuts. These equations will be 
complete for determining all coefficients.

However, as a simplified demonstration, below we will focus on the non-rung-rule topologies 
at 4-loop (of course, it is an interesting and challenging problem to prove the rung rule preserves 
coefficients of DCI topologies while increasing the number of loops, using the amplituhedron 
approach). First, we enumerate all eight distinct DCI topologies at 4-loop in Fig. 7, among which 
the cross and the only non-Mondrian topology are of the non-rung-rule type, while the other 
six rung-rule (and also Mondrian) topologies are all associated with the coefficient +1. It is 
important to recall that, the term ‘DCI topology’ includes the numerator part as this matters 
for dual conformal invariance [4], but for convenience we will not draw the extra numerators 
explicitly as they can be inferred from the rung rule, as long as there is no ambiguity in the choices 
of DCI numerator. Then we assign the cross and non-Mondrian topologies with coefficients s1
and s2 respectively, and consider a particular diagram of the latter type given in Fig. 8.

For this diagram, we can first maximally impose all 6 available external cuts, as indicated by 
the red segments around its rim. Following the convention of external face variables in [3,4], 
these 6 cuts result in x1 = y1 = y2 = z4 = w4 = w3 = 0, which can simplify the six D’s as

D12 = x2(z1 − z2),

D34 = z3(x4 − x3),

D13 = x3(z1 − z3) + y3w1,

D24 = z2(x4 − x2) + y4w2,

D23 = (x3 − x2)(z2 − z3) + y3w2,

D14 = x4z1 + y4w1.

(2.1)

Now for part of these D’s as internal propagators, we can either cut them or impose their pos-
itivity. Note that there is no way to further cut D14 by fixing one variable, as discussed in [2], 
but since it is manifestly positive already, there is no positivity condition to be imposed. By 
tentatively setting

z1 = z2, x4 = x3, z3 = z2 + y3w1

x3
≡ ẑ3, x2 = x3 + y4w2

z2
≡ x̂2, (2.2)

we can turn off D12, D34, D13, D24, and incidentally we have

D23 = y3w2

(
1 + y4w1

x3z2

)
, (2.3)

which is also manifestly positive, therefore we are done with this further simplification. Note 
the solutions of D12 = D34 = D13 = D24 = 0, namely (2.2), are also manifestly positive. In 
contrast, solutions that involve relative minus signs, such as z3 = z2 − y3w1/x3, are clearly not, 
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Fig. 7. All eight distinct DCI topologies at 4-loop. s1 and s2 are coefficients of two non-rung-rule topologies.

Fig. 8. A particular diagram of the non-Mondrian topology at 4-loop with 6 external and 4 internal cuts. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 9. All other 8 diagrams that survive the 10 cuts x1 = y1 = y2 = z4 = w4 = w3 = D12 = D34 = D13 = D24 = 0.

since we also have to impose z2 > y3w1/x3. Such a category of manifestly positive solutions will 
be named as the positive cuts.

The further 4 internal cuts are also drawn in Fig. 8, and besides this diagram, other diagrams 
of all topologies, orientations and configurations of loop numbers at 4-loop that survive these 10 
cuts, are given in Fig. 9, as can be enumerated from the topologies in Fig. 7 then picked out by 
identifying all 10 poles x1, y1, y2, z4, w4, w3, D12, D34, D13, D24. Let’s define the sum of these 
9 surviving diagrams as a function of x, y, z, w (we only sum their proper numerators as usual)

S (x1, y1, z1,w1, x2, y2, z2,w2, x3, y3, z3,w3, x4, y4, z4,w4)

= x2x3x4z1z2z3 y3w2 D14(s2 y4w1 + D14) + x2x4z1z3 y3w2 D14(x4z2 y3w1 + x3z1 y4w2)

+ x2x4z1z3 y3y4w1w2 (y3w2D14 + x2z3D14 + y4w1D23 + x4z1D23 + s1D14D23),

(2.4)
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where s1 and s2 are coefficients to be determined. Since the cross diagram in Fig. 9 can survive 
these 10 cuts like the non-Mondrian one in Fig. 7, we can fix both s1 and s2 in only one equation. 
In contrast, if we impose all 8 external cuts available for the cross diagram, the non-Mondrian one 
cannot survive these cuts and hence s2 will disappear in this equation, then one more equation 
that involves s2 is needed. This explains why to determine s1 and s2 in one equation, we choose a 
set of external cuts in the non-Mondrian diagram which has less available external cuts than the 
cross diagram, as it is a general trick to minimize the number of equations needed for determining 
all coefficients.

On the other hand, from the positivity conditions of the amplituhedron we have the following 
dimensionless ratios with respect to D12, D34, D13, D24:

z1

z1 − z2
= x2z1

D12
→ x̂2z2

D12
,

x4

x4 − x3
= z3x4

D34
→ ẑ3x3

D34
,

z3

(
1

z3
− 1

z3 − ẑ3

)
= x3ẑ3

D13
,

x2

(
1

x2
− 1

x2 − x̂2

)
= z2x̂2

D24
,

(2.5)

where x̂2 and ẑ3 are defined in (2.2), and → denotes some variables are replaced by the solutions 
of cuts. Since D14 and D23 are trivially positive, we get the proper numerator

(x̂2x3z2ẑ3)
2D14D23

=
[(

x3 + y4w2

z2

)(
z2 + y3w1

x3

)
x3z2

]2

y3w2

(
1 + y4w1

x3z2

)
(x3z2 + y4w1). (2.6)

Now the critical step is to equate the deformed S defined in (2.4) on the 10 cuts and the quantity 
above, or consider their difference

S

(
0 , 0 , z2,w1, x3 + y4w2

z2
, 0 , z2,w2, x3, y3, z2 + y3w1

x3
, 0 , x3, y4, 0 , 0

)

−
[(

x3 + y4w2

z2

)(
z2 + y3w1

x3

)
x3z2

]2

y3w2

(
1 + y4w1

x3z2

)
(x3z2 + y4w1)

= y3y4w1w2

(
1 + y4w1

x3z2

)
(x3z2 + y3w1)(x3z2 + y4w2)

[
(1 + s1)y3w2(x3z2 + y4w1)

+ (1 + s2)x
2
3z2

2

]
, (2.7)

then it is clear that to make this difference vanish, we must take s1 = s2 = −1, which agrees with 
[5]. For this 4-loop case, we see the analysis and calculation are very simple, due to there is in 
fact no positivity condition to be imposed – all D’s are either cut or manifestly positive. But in 
general this simplicity does not always occur, as immediately at 5-loop we will encounter some 
quite nontrivial and hence much more complicated examples. Still, with the aid of positive cuts, 
our calculational capability is greatly enhanced so that unlike the hopeless case study of (1.71), 
we manage to tackle all 5-loop examples.
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3. Positive cuts at 5-loop

For the 5-loop application of positive cuts, there is nothing new in its principle but we will see 
much more complexity in various techniques, as well as its miraculous agreement with previous 
knowledge. As usual, we first enumerate all 34 distinct DCI topologies at 5-loop: Fig. 10 lists 
all 24 Mondrian DCI topologies labeled by T1, . . . , T24, as indicated by the red subscripts, and 
Fig. 11 all 10 non-Mondrian ones labeled by T25, . . . , T34 similarly.

Note that there exist two distinct choices of DCI numerator for the pinwheel’s pole structure, 
namely T15 and T16 given in Fig. 10, so we must explicitly draw their numerators while sup-
pressing those of the rest Mondrian topologies as they can be uniquely inferred from the rung 
rule. And for non-Mondrian ones in Fig. 11, we draw all numerators explicitly since the rung 
rule cannot account for all of them. Among all these 34 topologies, T16, T30 are generated by ap-
plying the substitution rule to the 4-loop counterparts in Fig. 7, which also preserves coefficients 
[6], while the rules for T32, T33, T34 are unknown, and the rest are generated by the rung rule. As 
a simplified demonstration, we focus on non-rung-rule topologies only, so T16, T30, T32, T33, T34
assigned with coefficients s1, s2, s3, s4, s5 respectively are of our concern. Let’s now determine 
these coefficients one by one using the amplituhedron approach.

3.1. Determination of s1

To determine s1, let’s consider a particular diagram of DCI topology T16 given in Fig. 12. As 
usual, we can maximally impose all 8 available external cuts, as indicated by the red segments. 
These 8 cuts result in x1 = y1 = y2 = z2 = z3 = w3 = w4 = x4 = 0, which can simplify the ten 
D’s as

D12 = x2z1, D23 = y3w2, D34 = x3z4, D14 = y4w1,

D13 = x3z1 + y3w1, D24 = x2z4 + y4w2,
(3.1)

as well as

D15 = x5z1 + y5w1 − x5z5 − y5w5,

D25 = z5x2 + y5w2 − x5z5 − y5w5,

D35 = z5x3 + w5y3 − x5z5 − y5w5,

D45 = x5z4 + w5y4 − x5z5 − y5w5.

(3.2)

Since D12, D23, D34, D14, D13, D24 are manifestly positive, we only need to either cut D15,

D25,D35,D45 or impose their positivity. However, there is no straightforward positive cut for 
positivity conditions of the form x+y > a in this case – the discussion can be rather complicated. 
Therefore let’s keep their positivity and see what happens next, in fact, D15, D25, D35, D45 totally 
decouple partly due to the symmetry of the 8 external cuts in Fig. 12, so that we can impose the 
positivity for each Di5 individually. This leads to the simple proper numerator

N = (x5z1 + y5w1)(z5x2 + y5w2)(z5x3 + w5y3)(x5z4 + w5y4)D12D23D34D14D13D24

= (x5z1 + y5w1)(z5x2 + y5w2)(z5x3 + w5y3)(x5z4 + w5y4) x2x3z1z4 y3y4w1w2 (x3z1

+ y3w1)(x2z4 + y4w2). (3.3)

On the other hand, diagrams of all topologies, orientations and configurations of loop numbers 
at 5-loop that survive these 8 cuts are summarized below:
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Fig. 10. Mondrian DCI topologies T1, . . . , T24 at 5-loop. T16 assigned with s1 is a non-rung-rule topolo
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Fig. 11. Non-Mondrian DCI topologies T25, . . . , T34 at 5-loop. T30, T32, T33, T34 assigned with s2, s3, s4, s5 respectively 
are non-rung-rule topologies (T30 is generated by the substitution rule while T32, T33, T34 are neither generated by the 
rung nor substitution rule).

Fig. 12. A particular diagram of T16 at 5-loop with 8 external cuts.

T8 T15 T16 T20 T21 T22 T23 T24 T32 T33

2 4 1 8 4 8 8 8 4 2
(3.4)

where all orientations generated by dihedral symmetry of these topologies contribute and each 
orientation exactly contributes one configuration of loop numbers, as given by the numbers of 
contributing diagrams of each Ti above. It is easy to enumerate all of them, and the sum of their 
proper numerators is

S (x1, y1, z1,w1, x2, y2, z2,w2, x3, y3, z3,w3, x4, y4, z4,w4, x5, y5, z5,w5)

=x2x3x5z1z4z5 y3y4y5w1w2w5 (S8 + S15−16 + S20 + S21 + S22 + S23

+ S24 + S32 + S33), (3.5)

where for compactness we have factored out a common factor, and each piece in the sum is given 
by

S8 = y5w5

x5z5
D13D14D23D24 + x5z5

y5w5
D12D13D24D34, (3.6)

S15−16 = D13D24(x3z1D24 + y3w1D24 + x2z4D13 + y4w2D13 + s1D13D24), (3.7)
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S20 = −y4

y5
D12D13D24D35 − y3

y5
D12D13D24D45 − w1

w5
D13D24D25D34

− w2

w5
D13D15D24D34 − z4

z5
D13D15D23D24 − x3

x5
D13D14D24D25

− z1

z5
D13D23D24D45 − x2

x5
D13D14D24D35,

(3.8)

S21 = y3y4w5

y5
D12D13D24 + y5w1w2

w5
D13D24D34 + x2x3z5

x5
D13D14D24

+ x5z1z4

z5
D13D23D24, (3.9)

S22 = x3z5y4

y5
D12D13D24 + x5z4y3

y5
D12D13D24 + x2z5w1

w5
D13D24D34

+ x5z1w2

w5
D13D24D34 + x2y3w5

x5
D13D14D24 + z1y4w5

z5
D13D23D24

+ x3y5w2

x5
D13D14D24 + z4y5w1

z5
D13D23D24, (3.10)

S23 = y2
4w2

y5
D12D13D35 + y4w

2
2

w5
D13D15D34 + y2

3w1

y5
D12D24D45 + y3w

2
1

w5
D24D25D34

+ x2
2z4

x5
D13D14D35 + x2z

2
4

z5
D13D15D23 + x3z

2
1

z5
D23D24D45 + x2

3z1

x5
D14D24D25,

(3.11)

S24 = x2z4y4

y5
D12D13D35 + x3z1y3

y5
D12D24D45 + x3z1w1

w5
D24D25D34

+ x2z4w2

w5
D13D15D34 + x2y4w2

x5
D13D14D35 + z1y3w1

z5
D23D24D45

+ x3y3w1

x5
D14D24D25 + z4y4w2

z5
D13D15D23, (3.12)

S32 = s3(y3w2D13D14D24 + y4w1D13D23D24 + x3z4D12D13D24 + x2z1D13D24D34),

(3.13)

S33 = s4(D13D14D23D24 + D12D13D24D34). (3.14)

The difference between the deformed S on the 8 cuts and the proper numerator from positivity 
conditions is then

S (0 , 0 , z1,w1, x2, 0 , 0 ,w2, x3, y3, 0 , 0 , 0 , y4, z4, 0 , x5, y5, z5,w5)

− (x5z1 + y5w1)(z5x2 + y5w2)(z5x3 + w5y3)(x5z4 + w5y4) x2x3z1z4 y3y4w1w2 (x3z1

+ y3w1)(x2z4 + y4w2)

= x2x3x5z1z4z5 y3y4y5w1w2w5 (x3z1 + y3w1)(x2z4 + y4w2)

× [
(1 + s1)(x3z1 y4w2 + x2z4 y3w1) + (2 + s1 + 2s3 + s4)(x3x2z1z4 + y3y4w1w2)

]
,

(3.15)

to make this difference vanish we must take s1 = −1 which agrees with [5], and 1 +2s3 + s4 = 0. 
Even though s3 and s4 cannot be determined by these 8 external cuts yet, we can determine one 
with the aid of further cuts then get the other via relation 1 + 2s3 + s4 = 0.
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Fig. 13. A particular diagram of T32 at 5-loop with 7 external and 2 internal cuts. The external cut z2 = 0 is traded for 
two internal cuts D12 = D23 = 0 which are free of the subtlety of composite residues.

3.2. Determination of s2, s3, s4

To figure out s3 or s4, we have to disentangle T32 and T33, otherwise combination (1 + 2s3 +
s4) will always obstruct our intention. Since T32 has one internal propagator more than T33 while 
their other topological features are identical, it is feasible to impose further internal cuts to kill 
T33 but let T32 survive so that s3 can be isolated then determined. If we consider a particular 
diagram of T32 given in Fig. 13, a simplest choice is to impose D12 = D23 = 0, as one can easily 
check that none of the diagrams of T33 can survive it regardless of orientations and number 
configurations (we also maintain the 8 external cuts in Fig. 12).

However, since D12 = x2z1 and D23 = y3w2, setting D12 = D23 = 0 will force two external 
propagators which do not belong to the diagram in Fig. 12 to vanish. This involves a technical 
subtlety of composite residues, although there is no problem in this way after some clarification, 
we prefer to avoid this subtlety for the moment. Therefore, a simplest alternative is to relax one 
external cut, which is chosen to be z2.

In summary, upon the 7 external cuts x1 = y1 = y2 = z3 = w3 = w4 = x4 = 0, we can further 
impose

z1 = z2, x2 = x3 + y3w2

z2
≡ x̂2, (3.16)

so these 7 + 2 cuts can simplify the ten D’s as

D12 = D23 = 0, D34 = x3z4, D14 = y4w1, D13 = x3z2 + y3w1 (3.17)

which are either zero or manifestly positive, as well as

D15 = x5z2 + y5w1 − x5z5 − y5w5,

D45 = x5z4 + w5y4 − x5z5 − y5w5,

D35 = z5x3 + w5y3 − x5z5 − y5w5,

D24 = (x3z2 + y3w2)

(
z4

z2
+ y4

y3 + x3z2/w2
− 1

)
,

D25 = (z5 − z2)

(
x3 + y3

w2 − x5

)
+ y5(w2 − w5),

(3.18)
z2
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again there is no straightforward positive cut for any of these five positivity conditions, so it is 
better to keep their positivity. In this case, D15, D45, D35, D24, D25 do not trivially decouple, as 
we can see it more clearly after the following reorganization:

z2

z5 + y5w5/x5
+ w1

w5 + x5z5/y5
> 1,

x3

x5 + y5w5/z5
+ y3

y5 + x5z5/w5
> 1, (z5 − z2)

(
x3 + y3

w2

z2
− x5

)
+ y5(w2 − w5) > 0,

z4

z5 + y5w5/x5
+ y4

y5 + x5z5/w5
> 1,

z4

z2
+ y4

y3 + x3z2/w2
> 1. (3.19)

In the first line we focus on z2, w1, in the second x3, y3 and in the third z4, y4. For the lat-
ter two lines, the discussion of imposing positivity is nontrivial, since we need to choose one 
condition (or both) as the relations among several variables vary. Explicitly, the second line’s 
discussion depends on how z2 varies in the first line, and the third line’s discussion depends on 
how x3, y3 vary in the second line. Its technical details are elaborated in appendix A, and be-
low we just present the resulting d log form after analyzing all possible situations of variables 
z2, w1, w2, y3, x3, z4, y4:

M

z3
2w1w2y3x3z4y4 D15D35D25D45D24

≡ R

z2w1w2y3x3z4y4
, (3.20)

where the expression of M is given below, as the result simplified by MATHEMATICA, and R is 
the desired dimensionless ratio.

M = w1y5(w5x5y3z
2
2(w5(y4 − y5) + x5z4)(w2y4z2 + w2y3z4 + x3z2z4) +

(w2w5y4z2(w2w5y
2
3(y4 − y5) + x3(w5y3y4 + w2(−y3 + y4)y5 − w5(y3 + y4)y5)z2 − (x2

5y3 +
x2

3y5)z
2
2) + (w2

2w
2
5y

3
3y4 + w2w5y3(w5x3y4(2y3 − y5) + w2(x5y3(−y3 + y4) + x3y4y5))z2 +

(w5y3(−w2x5(2x3 + x5)y3 + x3(w5x3 + w2x5)y4) + x3(w2w5x5y3 + (w2 − w5)(w5x3 +
w2x5)y4)y5)z

2
2 − w5x3x5((x3 + x5)y3 − x3y5)z

3
2)z4 + x5(w2y3 + x3z2)(w2w5y

2
3 + x3(w5(y3 −

y5) + w2y5)z2)z
2
4)z5 + (w2w5y4z2(w2y3(−x5y3 + x3y4) + x3(x3y4 − x5(y3 + y4))z2) +

x3(w2y3 + (x3 − x5)z2)(x3z2(w5y4 − x5z2) +w2(w5y3y4 + x5(−y3 + y4)z2))z4 + x3x5(w2y3 +
x3z2)(w2y3 + (x3 − x5)z2)z

2
4)z

2
5) + x5z

2
2(w

2
2x3y5(w5y4(−y3 + y4)z2 + w5y3(y4 − y5)z4 +

x5z4(y4z2 +y3(z4 − z5)))z5 −w5x3y3z2z4(w5(y4 − y5) + x5(z4 − z5))(w5y5 + x5(−z2 + z5)) +
w2(−w3

5y3(y4 − y5)y5(y4z2 + y3z4) + w2
5x5y3(y4z2 + y3z4)(−y5(z2 + z4 − 2z5) + y4(z2 −

z5)) +x2
3x5y5z2z4(z4 −z5)z5 +w5(x

2
5y3(y4z2 +y3z4)(z2 −z5)(z4 −z5) −x2

3y5z2(y4z2 −y4z4 +
y5z4)z5))).

To get the overall dimensionless ratio, we also need

z1

z1 − z2
= x2z1

D12
→ x̂2z2

D12
,

x2

(
1

x2
− 1

x2 − x̂2

)
= z2x̂2

D23
,

(3.21)

where x̂2 is defined in (3.16), and since the positivity of D34, D14, D13 is trivial, we finally obtain

x̂2z2

D12

z2x̂2

D23

D34D14D13

D34D14D13
R = (x̂2z2)

2D34D14D13

D12D23D34D14D13

1

D15D35D25D45D24

M

z2
2

, (3.22)

therefore the proper numerator is
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N = x̂2
2 D34D14D13 M =

(
x3 + y3w2

z2

)2

x3z4 y4w1 (x3z2 + y3w1)M. (3.23)

On the other hand, diagrams of all topologies, orientations and configurations of loop numbers 
at 5-loop that survive these 7 + 2 cuts are summarized below:

T3 T8 T9 T11 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T30 T31 T32

4 1 4 2 4 4 4 2
1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1

(3.24)

where the first line denotes a subset of diagrams among (3.5), and the second line the additional 
surviving contribution due to relaxing z2 = 0. Again, each orientation of Ti can at most contribute 
one configuration of loop numbers. The sum of their proper numerators is

S (x1, y1, z1,w1, x2, y2, z2,w2, x3, y3, z3,w3, x4, y4, z4,w4, x5, y5, z5,w5)

= x2x3x5z1z4z5 y3y4y5w1w2w5 (S15−16 + S20 + S21 + S22 + S23 + S24 + S32)

+ S3 + S8 + S9 + S11 + S13 + S14 + S17−19 + S20−24 + S30 + S31,

(3.25)

where each piece in the sum is given by

S15−16 = D13D24(x3z1D24 + y3w1D24 + x2z4D13 + y4w2D13 + s1D13D24), (3.26)

S20 = −0 − 0 − w1

w5
D13D24D25D34 − w2

w5
D13D15D24D34 − 0

− x3

x5
D13D14D24D25 − 0 − x2

x5
D13D14D24D35, (3.27)

S21 = 0 + y5w1w2

w5
D13D24D34 + x2x3z5

x5
D13D14D24 + 0, (3.28)

S22 = 0 + 0 + x2z5w1

w5
D13D24D34 + x5z1w2

w5
D13D24D34 + x2y3w5

x5
D13D14D24 + 0

+ x3y5w2

x5
D13D14D24 + 0, (3.29)

S23 = 0 + y4w
2
2

w5
D13D15D34 + 0 + y3w

2
1

w5
D24D25D34 + x2

2z4

x5
D13D14D35 + 0 + 0

+ x2
3z1

x5
D14D24D25, (3.30)

S24 = 0 + 0 + x3z1w1

w5
D24D25D34 + x2z4w2

w5
D13D15D34 + x2y4w2

x5
D13D14D35 + 0

+ x3y3w1

x5
D14D24D25 + 0, (3.31)

S32 = s3(y3w2D13D14D24 + 0 + 0 + x2z1D13D24D34) (3.32)

for the subset among (3.5) (the zeros denote diagrams killed by D12 = D23 = 0), as well as

S3 = x3
2x3z1z2z4z5 y4y5w1w5D13D14D34D35, (3.33)

S8 = x2
2x3x5z1z

2
2z4 y3y4w1w5D13D15D34D45, (3.34)

S9 = x2
2x3x5z1z2z4z5 y4y5w

2
1D13D24D34D35, (3.35)

S11 = x2x
3z1z2z4z5 y4y

2w1w2w5D13D14D24, (3.36)
3 5
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S13 = x2
2x2

3z1z2z4z5 y2
4y5w1w2w5D13D14D35, (3.37)

S14 = x2x
2
3x5z1z2z4z5 y2

4y5w1w2w5D
2
13D24, (3.38)

S17−19 = x2x3x5z1z2z4z5 y4y5w1w2D13D34

× (−x3D15D24 + x3 y4w2D15 + x3 y5w1D24 + x2D15D34 + x5D13D24),

(3.39)

S20−24 = x2x3x5z1z2z4 y2
3y4w1w2w5D15D45

×
(

−D13D24 + y4w2D13 + y4

y3
x3z2D13 + x2z4D13 + y3w1D24

+ x3z1D24

)
,

(3.40)

S30 = s2 x2x3x
2
5z1z2z4z5 y3y4y5w

2
1w2D13D24D34, (3.41)

S31 = −x2x
2
3x5z1z2z4z5 y3y4y5w1w2w5D13D14D24 (3.42)

for the additional surviving contribution. The difference between the deformed S on the 7 + 2
cuts and the proper numerator is then

S

(
0 , 0 , z2,w1, x3 + y3w2

z2
, 0 , z2,w2, x3, y3, 0 , 0 , 0 , y4, z4, 0 , x5, y5, z5,w5

)

−
(

x3 + y3w2

z2

)2

x3z4 y4w1 (x3z2 + y3w1)M

= x3x5z4z5 y3y4y5w1w2 (x3z2 + y3w1)(x3z2 + y3w2)

[
(x3z2 + y3w2)

(
z4

z2
− 1

)
+ y4w2

]

× [
(1 + s2)x3x5z2z4 w1 + (1 + s3)w5

(
x3z4(x3z2 + y3w2) + y3y4w1w2

)]
,

(3.43)

to make this difference vanish we must take s2 = s3 = −1, so via 1 + 2s3 + s4 = 0 we also obtain 
s4 = +1, all of which agree with [5]. We see that determining s2 is a byproduct of determining 
s3.

It is worth noticing the complexity of 5-loop topologies which have a purely internal loop: 
the simple case of T16 with 8 symmetric external cuts is clearly rather rare, as merely relaxing 
one cut results in five positivity conditions that do not trivially decouple. In general, the more 
external cuts a topology has, the easier its calculation might be. We will see how dramatic this 
qualitative criterion looks from the case of T34, which merely has two external cuts less than 
T16 but becomes extremely complicated, even compared to the case of T32 which is already very 
nontrivial.

3.3. Determination of s5

To determine s5, the coefficient of T34, turns out to be the most difficult case at 5-loop. We 
again consider a particular diagram given in Fig. 14, in which all 6 available external cuts are 
imposed, now let’s again impose internal cuts D12 = D23 = 0 upon x1 = y1 = z2 = z3 = w4 =
x4 = 0. Even though this diagram has only one external cut less than the one in Fig. 13, it is 
very different from the latter. In fact, the structure and complexity of the simplified positivity 
conditions are very sensitive to the choice of cuts.
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Fig. 14. A particular diagram of T34 at 5-loop with 6 external and 2 internal cuts.

Explicitly, for the two internal cuts we can impose

w2 = w3 = w1 + x2z1

y2
≡ ŵ3, (3.44)

so the ten D’s can be simplified as

D12 = D23 = 0, D14 = y4w1 (3.45)

which are either zero or manifestly positive, as well as

D13 = z1

(
x3 − x2

y3

y2

)
≡ z1x

′
3,

D15 = x5z1 + y5w1 − x5z5 − y5w5,

D45 = x5z4 + w5y4 − x5z5 − y5w5,

D24 = (x2z1 + y2w1)

(
z4

z1 + w1y2/x2
+ y4

y2
− 1

)
,

D34 = (x2z1 + y2w1)
y3

y2

(
x3

y3

z4

z1x2/y2 + w1
+ y4

y3
− 1

)
,

D25 = (y5 − y2)

(
w1 + z1

x2

y2
− w5

)
+ z5(x2 − x5),

D35 = (y5 − y3)

(
w1 + z1

x2

y2
− w5

)
+ z5(x3 − x5),

(3.46)

where x′
3 is defined to trivialize D13 > 0, and the rest six conditions can be analyzed more clearly 

after the following reorganization:

w1 + z1
x5

y5
> w5 + z5

x5

y5
, (y5 − y2)

(
w1 + z1

x2

y2
− w5

)
+ z5(x2 − x5) > 0,

(y5 − y3)

(
w1 + z1

x2

y2
− w5

)
+ z5(x3 − x5) > 0,

z4

z5 + y5w5/x5
+ y4

y5 + x5z5/w5
> 1,

z4

z1 + w1y2/x2
+ y4

y2
> 1,

z4

k(z1 + w1y2/x2)
+ y4

y3
> 1,

(3.47)

where k = y3x2/(y2x3) < 1 due to D13 > 0. In the first line we focus on w1, z1 and in the 
second z4, y4, as the second line’s discussion depends on how w1, z1 vary in the first line, and its 
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technical details are briefly given in appendix B. Below we just present the resulting d log form 
after analyzing all possible situations of variables y2, y3, y5, x5, x′

3, w5, z1, w1, y4, z4:

1

y2y3y5x5x
′
3w5z1w1y4z4 D15D25D35D45D24D34

ŵ3

D23

y2(M1y2D34) + y3M2

y4
2

≡ R

y2y3y5x5x3w5z1w1y4z4
,

(3.48)

where the expressions of M1 and M2 simplified by MATHEMATICA can be referred in ap-
pendix B, and R is the desired dimensionless ratio, which is explicitly given by

R = x3

x′
3

ŵ3

D15D25D35D45D24D34D23

y2(M1y2D34) + y3M2

y4
2

= x3z1ŵ3

D13D15D25D35D45D24D34D23

y2(M1y2D34) + y3M2

y4
2

.

(3.49)

To get the overall dimensionless ratio, we also need

w2

(
1

w2
− 1

w2 − ŵ3

)
= y2ŵ3

D12
, (3.50)

where ŵ3 is defined in (3.44), and since the positivity of D14 is trivial, we finally obtain

y2ŵ3

D12

D14

D14
R = y2ŵ3D14

D12D14

x3z1ŵ3

D13D15D25D35D45D24D34D23

y2(M1y2D34) + y3M2

y4
2

,

(3.51)

therefore the proper numerator is

N = ŵ2
3 D14 x3z1

y2(M1y2D34) + y3M2

y3
2

=
(

w1 + x2z1

y2

)2

y4w1 x3z1
y2(M1y2D34) + y3M2

y3
2

. (3.52)

On the other hand, diagrams of all topologies, orientations and configurations of loop numbers 
at 5-loop that survive these 6 + 2 cuts are summarized below:

T1 T3 T5 T6 T7 T8 T9 T10 T11 T13 T14 T15 T16 T17 T18

4 1
1 2 (4) + 1 (3) + 1 2 (3) (4) + 3 1 1 2 2 2 (2) + 3

T19 T20 T21 T22 T23 T24 T25 T30 T31 T32 T34

4 2 4 4 4 2
(2) + 3 (3) + 1 (3) (3) + 3 (4) + 4 (4) + 4 2 2 1 1

(3.53)

where the first line denotes a subset of diagrams among (3.5) which are identical to those given in 
(3.25), and the second line the additional surviving contribution. Now for some Ti’s, a particular 
orientation can contribute more than one configuration of loop numbers, as the numbers in paren-
theses above denote this kind of multiplicity. An explicit example is (4) +1 for T5 corresponding 
to the diagrams given in Fig. 15, of which the first four with different number configurations share 
the same orientation.
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Fig. 15. The (4) + 1 multiplicity of T5.

The sum of their proper numerators is

S (x1, y1, z1,w1, x2, y2, z2,w2, x3, y3, z3,w3, x4, y4, z4,w4, x5, y5, z5,w5)

= x2x3x5z1z4z5 y3y4y5w1w2w5 (S15−16 + S20 + S21 + S22 + S23 + S24 + S32 + S34)

+ S1 + S3 + S5 + S6 + S7 + S8 + S9 + S10 + S11 + S13 + S14 + S17−19

+ S′
20−24 + S25 + S30 + S31. (3.54)

Recall that S15−16, S20, S21, S22, S23, S24, S32 are already given in (3.25), while

S34 = s5 y2w3D13D14D24 (3.55)

is the extra term in the second line above, and each piece in the third line is given by

S1 = y2y3y4y5w1w2w3w5D13D14D15D24D25D34, (3.56)

S3 = x3x5z4z5 y2y3y4y5w1w
3
2D13D14D15D34

+ x3x5z1z5 y3
2y4w1w2w3w5D13D14D34D45, (3.57)

S5 = x2x3x5z
3
1 y2

4w1w2w3w5(y3y5D24D25D34 + y2y5D24D34D35 + y2y3D24D35D45

+ y2y3D25D34D45) + x2x3x5z
3
4 y2y3y4y5w

2
1w2w3D13D15D25, (3.58)

S6 = z1 y4w1w2w3w5D14D24
(
x2 y2

3y5D15D25D34 + x3 y2
2y5D15D34D35

+ x5 y2
2y3D13D35D45

) + x5z4 y2y3y4y5w1w2w
2
3D13D14D15D24D25, (3.59)

S7 = z5 y2y3y4y5w1w2w3w5D13D14D24(x2D13D45 + x3D15D24), (3.60)

S8 = x5z1z4 y4w1w2D14
(
x3 y2

2y3w2w5D13D35D45 + x2 y2
3y5w

2
3D15D24D25

+ x3 y2
2y5w2w3D15D34D35

)
, (3.61)

S9 = z2
1 y4w1w2w3w5D14

(
x2x3 y3y

2
5D24D25D34 + x2x3 y2y

2
5D24D34D35

+ x2x5 y2y
2
3D24D35D45 + x3x5 y2

2y3D25D34D45
)

+ x2
2z1z5 y2

3y4y5w1w2w3w5D13D14D24D45

+ x3z4 y2y3y4y5w1w
2
2D13D14D15(x3z5 w5D24 + x5z4 w3D25), (3.62)

S10 = x2x3z
2
5 y2y3y4y5w1w2w3w5D13D

2
14D24, (3.63)

S11 = x2x3x5z4z
2
5 y2y3y4y5w

3
1w2D13D24D34, (3.64)

S13 = x2x3x5z
2
4z5 y2y3y4y5w

2
1w

2
2D13D15D34 + x2x3x5z

2
1z5 y2

2y2
4w1w2w3w5D13D34D45,

(3.65)

S14 = x2x3x5z5 y3y4y5w1w2w5D13D24
(
z2 y4w3D24 + z2 y2w1D13

)
, (3.66)
1 4
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S17−19 = x2x3z4z5 y2y3y4y5w1w2w5D13D14(−w1D24D35 + w1x2z4D35 + w1x3z5D24

+ w2D14D35 + w5D13D24) + x2x3z1z5 y3y4y5w1w2w3w5D14D24(−y4D13D25

+ x3z1y4D25 + x2z5 y4D13 + y3D14D25 + y5D13D24)

+ x2x3z1z5 y2y4y5w1w2w3w5D14D34D35(x2z1 y4 + y2D14), (3.67)

S′
20−24 = (

x2x3x5z1z4z5 y2y4y5w
2
1w3D24D34D35

+ x2
2x3z1z4z5 y2y4y5w1w3w5D14D34D35

+ x2x3x5z1z4z5 y2
2y4w1w3w5D13D34D45

)
(x2z1 + y2w1)

+ x2x3x5z
2
1z4 y2y3y4w1w2w5D35D45

(
−D13D24 + x2z4D13 + y4w2D13

+ z4

z1
y2w1D13 + x3z1D24 + y3w1D24

)

+ x2x3x5z
2
1z4 y2y3y4w1w3w5D25D34D45(x2z1 + y2w1)

+ x2x3x5z
2
1z4 y3y4y5w1w2w3D24D25

(
−D15D34 − z4

z1
D13D15

+ x3z4D15 + y4w3D15 + z4

z1
y3w1D15 + x5z1D34 + y5w1D34

)

+ x2x3x5z1z
2
4 y3y4y5w1w2w3D13D15D25(x2z4 + y4w2)

+ x2x3x5z
2
1z4 y2y4y5w1w2w3D34D35

(
−D15D24 + x2z4D15 + y4w2D15

+ z4

z1
y2w1D15 + x5z1D24 + y5w1D24

)
, (3.68)

S25 = −x2x3z5 y2y3y4y5w1w2w3w5D13D14D24(z4D15 + z1D45), (3.69)

S30 = s2 x2x3z1z4z5 y3y4y5w1w2w5D13D14D24(x2 y5w3 + x3 y2w5), (3.70)

S31 = −x2x3x5z1z4z5 y2y3y4y5w
2
1w2w5D13D24D34. (3.71)

The difference between the deformed S on the 6 + 2 cuts and the proper numerator is then

S

(
0 , 0 , z1,w1, x2, y2, 0 ,w1 + x2z1

y2
, x3, y3, 0 ,w1

+ x2z1

y2
, 0 , y4, z4, 0 , x5, y5, z5,w5

)

−
(

w1 + x2z1

y2

)2

y4w1 x3z1
y2(M1y2D34) + y3M2

y3
2

=x2x3x5z
2
1z4z5 y3y

2
4y5w

2
1w5 (x3y2 − x2y3)

(
w1 + x2z1

y2

)2

×
[
x2z4 + (y4 − y2)

(
w1 + x2z1

y2

)]
(s5 − 1), (3.72)

to make this difference vanish we must take s5 = +1, which agrees with [6].
This completes the determination of s1, s2, s3, s4, s5 for all five non-rung-rule topologies at 

5-loop.
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4. Beyond 5-loop order?

It is clear that for the 4- and 5-loop 4-particle amplituhedra we are no longer using the Mon-
drian diagrammatics, instead we use the purely amplituhedronic way to obtain the d log forms 
from positivity conditions simplified by external and internal cuts, which are similar to the tra-
ditional unitarity cuts. As discussed in the end of [4], it is appealing to generalize the Mondrian 
diagrammatics to include the non-Mondrian complexity. In [7] there is some kind of evidence 
about how the Mondrian DCI topologies can be related to non-Mondrian ones, and it would 
be interesting to prove those rules which determine the coefficients of non-rung-rule topologies 
from the amplituhedronic perspective. All the effort on discovering new rules and patterns finally 
aims to help us go beyond the current understanding of the 5-loop case, such as to explain the co-
efficient +2 of a special 6-loop DCI topology in [8] since we believe a simple integer coefficient 
must have a simple origin. The brute-force calculation merely using positivity conditions might 
be significantly simplified by clever new observations, as we have witnessed in the Mondrian 
diagrammatics at 3-loop and the positive cuts at 4- and 5-loop. After extracting sufficient deeper 
features of positivity conditions, it is even possible to conceive a purely combinatoric description 
of the amplituhedron.

Still, the standard geometric way has a lot to be excavated beyond the current primitive level. 
When we use positive cuts to determine the coefficient of a particular DCI topology, this looks 
like “projecting” the entire amplituhedron onto a subspace that contains a subset of all bound-
aries, we then would like to get more intuition of its geometric interpretation. And why the DCI 
topologies must be planar, as a basis in what sense they are complete, how this completeness is 
related to the triangulation of amplituhedron, as well as what role dual conformal invariance plays 
in the geometric picture, are very vague so far while we believe clarification of these questions 
will be a significant progress. When searching for various novel formalisms and connections to 
mathematics to better aid the practical calculation of physical integrands at sufficiently higher 
loop orders, we will also pay attention to some aspects discussed in [9–11] which may provide 
unexpected inspirations. For example, it is interesting to explore how the off-shell finiteness 
finds its basis in the amplituhedronic setting. And starting at 8-loop [12,13], novelties such as 
fractional coefficients and non-d log contributions also call for amplituhedronic explanations, if 
the amplituhedron manages to pass all the lower loop tests.

Besides the outlook, it is also helpful to give some remarks on the technical aspects. To sim-
plify the determination of coefficients as much as possible, we must maximally utilize the crucial 
difference in pole structure of DCI topologies, namely, we will impose sufficient cuts to isolate 
the particular diagram under consideration while minimizing its accompanying surviving dia-
grams of different topologies. Note that in our convention, diagrams with the same denominator 
but different numerators such that they cannot be related to each other by dihedral symmetry, are 
considered as different DCI topologies, such as T15 and T16 in Fig. 10. If finally it is inevitable 
to deal with these accompanying diagrams, we can still use cuts to separate them, so that their 
coefficients must satisfy independent sub-equalities in the overall equality required by positivity 
conditions.

Also, as we have seen from various examples, the calculation of 4-particle loop integrands 
from positivity conditions with or without cuts, is magically effective: as long as the final answer 
is free of spurious poles, it is correct and physical. Besides the possible geometric interpreta-
tion using DCI topologies, this mystery should have a more self-contained mathematical reason, 
which can in return refine the laborious and foamy cancellation of spurious poles. And the pro-
cess of combining the so-called d log forms, in fact, indicates properties more general than 
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logarithmic singularities or differential forms, as it only depends on the universal fact that the 
integrand is a rational function in which physical propagators appear as simple poles. The con-
jectured positivity conditions further serve as some kind of “residue theorems” to provide an 
effective prescription for constructing the integrand. Such observations may imply that the d log
forms function beyond their definitions, which may hopefully unleash the possibility to account 
for the non-d log novelty from the amplituhedronic perspective at 8-loop and higher.

Finally, it has been appealing to extend the techniques for 4-particle amplituhedron to han-
dle more external particles and various configurations of helicities. Attempts include the recent 
development using sign flips [14,15], and the discovery of the key role of 4-particle loop in-
tegrand from which the integrand of more particles can be extracted [16]. It is worth noticing 
that, positivity of the pure loop sector and that of the supersymmetric sector encoding helicities 
use quite different mathematical prescriptions. This difference somehow obstructs an effective 
unified framework, while from the perspective of positivity, the 4-particle amplituhedron with 
pure loop sector only (and the 4-particle sign-flip constraints are trivial) is the simplest object, in 
particular, it is even simpler than the pure tree amplituhedron.

Appendix A. Details of the d log form for determining s2, s3, s4

Below we derive the d log form for determining s2, s3, s4, with respect to positivity conditions

z2

z5 + y5w5/x5
+ w1

w5 + x5z5/y5
> 1,

x3

x5 + y5w5/z5
+ y3

y5 + x5z5/w5
> 1, (z5 − z2)

(
x3 + y3

w2

z2
− x5

)
+ y5(w2 − w5) > 0,

z4

z5 + y5w5/x5
+ y4

y5 + x5z5/w5
> 1,

z4

z2
+ y4

y3 + x3z2/w2
> 1. (A.1)

For later convenience, we define quantities

n3 = x3 + y3
w5

z5
− x5 − y5w5

z5
, n5 = x3 + y3

w2

z2
− x5 − y5

w5 − w2

z5 − z2
,

p3 = y5 + x5z5

w5
, p5 = z2

w2

(
x5 + y5

w5 − w2

z5 − z2

)
, p35 = y5

z2

z2 − z5
,

n24 = x3 − w2

z2

(
y5 + x5z5

w5
− y3

)
(A.2)

for the discussion involving y3, x3, as well as

a2 = z5 + y5w5

x5
, b2 = y5 + x5z5

w5
, a4 = z2, b4 = y3 + x3z2

w2
, z∗

4 = b4 − b2

b4/a4 − b2/a2
,

n2 = z4
b2

a2
+ y4 − b2, n4 = z4

b4

a4
+ y4 − b4,

A =
(

1

z4
− 1

z4 − z∗
4

)
1

n4
+

(
1

z4 − z∗
4

− 1

z4 − a2

)
1

n2
+ 1

z4 − a2

1

y4
, B = 1

z4y4

n2 + b2

n2
,

F = 1

z4y4

n4 + b4

n4
, G =

(
1

z4
− 1

z4 − z∗
4

)
1

n2
+

(
1

z4 − z∗
4

− 1

z4 − a4

)
1

n4
+ 1

z4 − a4

1

y4

(A.3)
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for the discussion involving z4, y4. We will also use identities

w5

z5
− w5 − w2

z5 − z2
= z2

z2 − z5

(
w5

z5
− w2

z2

)
,

p3 − p5 = z2z5

w2w5

x5

z2 − z5

(
w5

z5
− w2

z2

)(
z5 + y5w5

x5
− z2

)
.

(A.4)

Now let’s analyze all possible situations of variables z2, w1, w2, y3, x3, z4, y4, by first separating 
situations z2 < z5, z5 < z2 < z5 + y5w5/w5 and z2 > z5 + y5w5/w5.

A.1. z2 < z5

For z2 < z5, the 1st line of (A.1) in terms of w1 is nontrivial. The 2nd condition in its 2nd line 
becomes

x3 + y3
w2

z2
> x5 + y5

w5 − w2

z5 − z2
, (A.5)

and for comparison we can rewrite the 1st condition in the same line as

x3 + y3
w5

z5
> x5 + y5

w5

z5
, (A.6)

using the 1st identity in (A.4), for w2 < w5z2/z5 we find

w2 < w5
z2

z5
=⇒ w5

z5
<

w5 − w2

z5 − z2
. (A.7)

For these two conditions in the 2nd line of (A.1), in terms of n3 and n5 defined in (A.2), we have 
a clear picture in the y3-x3 plane: the x3-intercept of n3 = 0 is less than that of n5 = 0, while its 
slope is greater than that of n5 = 0, therefore n5 > 0 already implies n3 > 0 in the 1st quadrant.

For the two conditions in the 3rd line of (A.1), in terms of n2 and n4 defined in (A.3), since 
z2 < z5 < z5 + y5w5/w5 and

y3 + x3
z2

w2
> y3 + x3

z5

w5
> y5 + x5

z5

w5
, (A.8)

in the z4-y4 plane the y4-intercept of n4 = 0 is greater than that of n2 = 0 while its z4-intercept 
is less than that of n2 = 0, so they intercept at z4 = z∗

4 in the 1st quadrant. Its d log form is given 
by A, where z∗

4 and A are defined in (A.3), and the corresponding geometric picture is given in 
Fig. 16.

Now for w2 > w5z2/z5, similarly we have

w2 > w5
z2

z5
=⇒ w5

z5
>

w5 − w2

z5 − z2
, (A.9)

therefore n3 > 0 already implies n5 > 0. Since

y3 + x3
z2

w2
< y3 + x3

z5

w5
, (A.10)

we need n24 defined in (A.2) for comparing y3 + x3z2/w2 and y5 + x5z5/w5. If y3 + x3z2/w2 <

y5 + x5z5/w5, n2 > 0 already implies n4 > 0 in the z4-y4 plane, A will be replaced by B defined 
in (A.3), which involves n2 only. This bifurcation divides the region of n3 > 0 in the y3-x3 plane 
as shown in Fig. 17, in which p3 defined in (A.2) is the y3-intercept of both n3 = 0 and n24 = 0.
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Fig. 16. Geometric picture of the d log form A.

Fig. 17. Bifurcation of y3 + x3z2/w2 ≶ y5 + x5z5/w5 in the y3-x3 plane.

In summary, the d log form for z2 < z5 is given by (omitting the part of z2, w1 for the mo-
ment)

S1 =
(

1

w2
− 1

w2 − w5z2/z5

)
1

y3x3

x3 + y3w2/z2

n5
A

+ 1

w2 − w5z2/z5

[(
1

y3
− 1

y3 − p3

)((
1

n3
− 1

n24

)
B + 1

n24
A

)

+ 1

y3 − p3

1

x3
A

]
.

(A.11)
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Fig. 18. The only contributing part of z5 < z2 < z5 + y5w5/w5, for which w2 > w5z2/z5.

A.2. z5 < z2 < z5 + y5w5/w5

For z5 < z2 < z5 + y5w5/w5, the 1st line of (A.1) remains nontrivial. Its 2nd line becomes

x3 + y3
w5

z5
> x5 + y5

w5

z5
, x3 + y3

w2

z2
< x5 + y5

w2 − w5

z2 − z5
, (A.12)

using both identities in (A.4) we find (below p5 defined in (A.2) is the y3-intercept of n5 = 0)

w2 ≶ w5
z2

z5
=⇒ w5

z5
≷ w2 − w5

z2 − z5

=⇒ p3 ≷ p5.

(A.13)

If w2 < w5z2/z5, both the x3- and y3-intercept of n3 = 0 are greater than that of n5 = 0, so 
regions of n3 > 0 and n5 < 0 have no overlap. Therefore only the w2 > w5z2/z5 part contributes, 
for which both the x3- and y3-intercept of n3 = 0 are less than that of n5 = 0 as shown in Fig. 18. 
In this case, we again need n24 to divide the region, as the slope of n24 = 0 is greater than that of 
n3 = 0 (n24 = 0 is parallel to n5 = 0).

In summary, the d log form for z5 < z2 < z5 + y5w5/w5 is given by

S2 = 1

w2 − w5z2/z5

[(
1

y3
− 1

y3 − p3

)((
1

n3
− 1

n24

)
B +

(
1

n24
− 1

n5

)
A

)

+
(

1

y3 − p3
− 1

y3 − p5

)(
1

x3
− 1

n5

)
A

]
. (A.14)

A.3. z2 > z5 + y5w5/w5

For z2 > z5 + y5w5/w5, the 1st line of (A.1) now becomes trivial. Its 2nd line remains the 
same as that for z5 < z2 < z5 + y5w5/w5, but there is a slight difference in the 2nd identity in 
(A.4) as
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Fig. 19. n3 = 0 and n5 = 0 intercept when w2 < w5z2/z5.

Fig. 20. n3 = 0 and n5 = 0 intercept when w2 > w5z2/z5.

w2 ≶ w5
z2

z5
=⇒ w5

z5
≷ w2 − w5

z2 − z5

=⇒ p3 ≶ p5,

(A.15)

so that n3 = 0 and n5 = 0 always intercept, and its geometric pictures are given in Figs. 19 and 
20 with respect to w2 ≶ w5z2/z5. For w2 < w5z2/z5 we again have

y3 + x3
z2

w2
> y3 + x3

z5

w5
> y5 + x5

z5

w5
, (A.16)

and since z2 > z5 + y5w5/w5, n4 > 0 already implies n2 > 0 in the z4-y4 plane. Its d log form is 
given by F defined in (A.3), which involves n4 only. For w2 > w5z2/z5, since n24 = 0 intercepts 
n3 = 0 at p3 with p3 > p5 and n24 = 0 is parallel to n5 = 0, n5 < 0 already implies n24 < 0, 
which means
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y3 + x3
z2

w2
< y5 + x5

z5

w5
, (A.17)

and hence F will be replaced by G defined in (A.3), as it can be obtained from A by switching 
n2, a2, b2 ↔ n4, a4, b4.

In summary, the d log form for z2 > z5 + y5w5/w5 is given by

S3 =
(

1

w2
− 1

w2 − w5z2/z5

)[(
1

y3 − p35
− 1

y3 − p3

)(
1

n3
− 1

n5

)

+
(

1

y3 − p3
− 1

y3 − p5

)(
1

x3
− 1

n5

)]
F

+ 1

w2 − w5z2/z5

(
1

y3
− 1

y3 − p35

)(
1

n3
− 1

n5

)
G. (A.18)

Collecting S1, S2, S3, the overall d log form is then
[(

1

z2
− 1

z2 − z5

)
S1 +

(
1

z2 − z5
− 1

z2 − z5 − y5w5/x5

)
S2

]

× 1

x5z2/y5 + w1 − x5z5/y5 − w5

+ 1

z2 − z5 − y5w5/x5

1

w1
S3 = M

z3
2w1w2y3x3z4y4 D15D35D25D45D24

,

(A.19)

where M is the numerator simplified by MATHEMATICA as given in the expression below 
(3.20).

Appendix B. Details of the d log form for determining s5

Below we present the d log form for determining s5 with a brief description of its derivation, 
with respect to positivity conditions

w1 + z1
x5

y5
> w5 + z5

x5

y5
, (y5 − y2)

(
w1 + z1

x2

y2
− w5

)
+ z5(x2 − x5) > 0,

(y5 − y3)

(
w1 + z1

x2

y2
− w5

)
+ z5(x3 − x5) > 0,

z4

z5 + y5w5/x5
+ y4

y5 + x5z5/w5
> 1,

z4

z1 + w1y2/x2
+ y4

y2
> 1,

z4

k(z1 + w1y2/x2)
+ y4

y3
> 1, (B.1)

where k = y3x2/(y2x3) < 1. Recall that we focus on w1, z1 in the first line and z4, y4 in the 
second, so that the discussions can be done within two planes: the z1-w1 and the y4-z4 plane. For 
a clear picture, we can rewrite the 2nd and 3rd conditions in the 1st line as

w1 + z1
x2

y2
> w5 + z5

x5 − x2

y5 − y2
for y2 < y5

< w5 + z5
x2 − x5 for y2 > y5,

(B.2)
y2 − y5
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w1 + z1
x2

y2
> w5 + z5

x5 − x3

y5 − y3
for y3 < y5

< w5 + z5
x3 − x5

y3 − y5
for y3 > y5.

(B.3)

We also have noticed that since k < 1, if y3 < y2 the 2nd condition in the 2nd line already implies 
the 3rd, which explains the factor D34 in the numerator of (3.48). There is another tricky issue 
depending on the relation between y2 and y3 as well, namely before we impose w2 = w3 for 
setting D23 = 0, we have

D23 = (y3 − y2)(w2 − w3), (B.4)

so there is a bifurcation of y3 ≶ y2 in the relevant dimensionless ratio

y2

y2 − y3

w3

w3 − w2
R1 + y3

y3 − y2

w2

w2 − w3
R2 → ŵ3

D23
(y2R1 + y3R2) (B.5)

after imposing w2 = w3 = ŵ3, where R1 and R2 are proportional to M1 and M2 in (3.48) re-
spectively which are the numerators simplified by MATHEMATICA as given in the expressions 
below.

As indicated above, it is better to separately consider situations y3 < y2 < y5, y3 < y5 < y2, 
y5 < y3 < y2, y2 < y3 < y5, y2 < y5 < y3 and y5 < y2 < y3 first, then depending on each case 
we may need to discuss various situations involving x5, x′

3, w5 as well. For example, to compare 
x5/y5 and x2/y2 involves x5. And in the identity which will be frequently used in the relevant 
discussions

x5 − x2

y5 − y2
− x5 − x3

y5 − y3
= y2 − y3

(y5 − y2)(y5 − y3)

(
x5 + x′

3
y5 − y2

y2 − y3
− x2

y5

y2

)
, (B.6)

both x5 and x′
3 are involved. Finally in the 2nd line of (B.1), to compare y5 + x5z5/w5, y2 and 

y3 may also involve w5 given a fixed order of y2, y3, y5.

M1 = w4
1y

3
2y4(y3 − y5)y

2
5(w5(y2 − y4) − x5z4) + w3

1y
2
2y5(−2w2

5y2(y2 − y4)y4(y3 − y5)y5 +
x5z4(x3y2y4y5z5 − x2(y3 − y5)(3y4y5z1 + y2y5z4 − y2

2z5 + y2y4z5) + x5y2y4(y5(z1 − 2z5) +
y3(−z1 + z5))) + w5y4(x3y2(−y2 + y4)y5z5 − x2(y3 − y5)(3y4y5z1 + y2(y5(−3z1 + z4) +
y4z5)) + x5y2(y5(y4z1 − 2y5z4 − 2y4z5) + y3(−y4z1 + 2y5z4 + y4z5) + y2(y3z1 − y5z1 −
y3z5 + 2y5z5)))) − x2x5z1(w

3
5y

2
2y3(y2 − y5)(−y4 + y5)(y4z1 + y2z4) + x2x5y5z1z4(y4z1 +

y2(z4 − z5))(x2(y3 − y5)z1 + (−x3 + x5)y2z5) + w2
5y2(x2z1(y4y5(y4y5 + y3(−2y4 + y5))z1 +

y2
2y3(y4 − y5)z4 + y2(−y2

5(y4z1 − y4z4 + y5z4) + y3(y
2
4z1 − 2y4y5z4 + 2y2

5z4))) − y2(y4z1 +
y2z4)(x3y2(y4 − y5)z5 − x5y3(y5z4 + y4z5 − 2y5z5 + y2(−z4 + z5)))) + w5(−x2

2(y3 −
y5)y5z

2
1(−y2

4z1 + y2(y4(z1 − z4) + y5z4)) + x5y
2
2(−x3y2 + x5y3)(y4z1 + y2z4)(z4 − z5)z5 +

x2y2z1(x3y5(−y2
4z1 + y2(y4z1 − y4z4 + y5z4))z5 + x5(y

2
2y3z4(z4 − z5) + y4y5z1(y5z4 +

y4z5 + y3(−2z4 + z5)) + y2(y3(y4z1 − 2y5z4)(z4 − z5) + y5(y5z4(z4 − 2z5) + y4(−z1 +
z4)z5)))))) + w1(w

3
5y

2
2y4(x5y2y3(y2 − y5)(y4 − y5)z1 − x2(y3 − y5)y

2
5(y4z1 + y2(−z1 +

z4))) + x2x5y5z4(−x2
2(y3 − y5)z1(y4z1(y5z1 + y2z5) + y2(y5z1z4 + y2(−z1 + z4)z5)) − (x3 −

x5)x5y
2
2z5(y4z1(−2z1 + z5) + y2(z4z5 + z1(−z4 + z5))) + x2y2(x3z5(y4z1(y5z1 + y2z5) +

y2(y5z1z4 + y2(−z1 + z4)z5)) + x5(y4z1(y5z1(3z1 − 2z5) − y2z
2
5) + y2(y2(z1 − z4)z

2
5 +

2y5z1(z1z4 − z1z5 − z4z5)) + y3z1(y4z1(−3z1 + z5) + y2(−2z1z4 + 2z1z5 + z4z5))))) −
w5(x

2y3(−x3y2 +x5y3)y4z1(z4 −z5)z5 +x3y4(y3 −y5)y5z1(y4y5z
2 +y2z4z5 +y2z1(y5(−z1 +
5 2 2 1 2
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z4) +y4z5)) −x2
2y2y5(x3y4z5(y4y5z

2
1 +y2

2z4z5 +y2z1(y5(−z1 +z4) +y4z5)) −x5(y
2
2z4z5(y3(z1 −

z4) + y5(−z1 + z4) + y4z5) + y4z
2
1(y3(3y4z1 − 2y5z4 − y4z5) + y5(−3y4z1 + 2y5z4 + 2y4z5)) +

y2z1(2y2
5z4(z1 + z4) + y2

4z2
5 + y4y5(3z2

1 + 3z4z5 − 2z1(z4 + z5)) + y3(−2y5z4(z1 + z4) +
y4(−3z2

1 + 2z1z4 + z1z5 − 2z4z5))))) + x2x5y
2
2(x3y5z5(y4z1(y5z4 + y4(−2z1 + z5)) +

y2(y5z4(z1 + z4) + y4(2z2
1 + z4z5 − z1(z4 + z5)))) + x5(y

2
2y3z1z4(z4 − z5) + y4y5z1(2y5z4(z1 −

z5) + y4(2z1 − z5)z5 + y3(−4z1z4 + 2z1z5 + z4z5)) + y2(y3(2y4z
2
1(z4 − z5) + y5z4(−2z1z4 +

2z1z5 + z4z5)) + y5(y5z4(z1(z4 − 2z5) − 2z4z5) + y4z5(−2z2
1 − z4z5 + z1(z4 + z5))))))) −

w2
5y2(−x2

2y4(y3 − y5)y5(2y4y5z
2
1 + y2

2z4z5 + y2z1(−2y5z1 + 2y5z4 + y4z5)) +
x5y

2
2y4z1(x3y2(−y4 +y5)z5 +x5y3(y5z4 +y4z5 −2y5z5 +y2(−z4 +z5))) +x2y2(x3y4y

2
5(y4z1 +

y2(−z1 + z4))z5 + x5(y
2
2y3(y4 − y5)z1z4 + y4y5z1(y3(−4y4z1 + 2y5z1 + y5z4 + y4z5) −

y5(−2y4z1 + y5z4 + 2y4z5)) + y2(y3(2y2
4z2

1 + y2
5z4(2z1 + z4) + y4y5(z4z5 − z1(2z4 + z5))) −

y2
5(y5z4(z1 + z4) +y4(2z2

1 +2z4z5 − z1(z4 +2z5)))))))) +w2
1y2(w

3
5y

2
2(y2 −y4)y4(y3 −y5)y

2
5 −

w2
5y2y4(y5(x3y2(−y2 + y4)y5z5 − x2(y3 − y5)(4y4y5z1 + y2(−4y5z1 + 2y5z4 + y4z5))) +

x5y2(y2(−y2
5(z1 − 2z5) + y3(y4z1 − y5z5)) + y5(y5(−y5z4 + y4(z1 − 2z5)) + y3(y5(z1 +

z4) + y4(−2z1 + z5))))) + x5y5z4((x3 − x5)x5y
2
2y4(z1 − z5)z5 − x2

2(y3 − y5)(y4z1(3y5z1 +
2y2z5) + y2(2y5z1z4 + y2(−2z1 + z4)z5)) + x2y2(x3z5(2y4y5z1 + y2y5z4 − y2

2z5 + y2y4z5) +
x5(y4(y5z1(3z1 − 4z5) − y2z

2
5) + y2(y2z

2
5 + y5(z1z4 − z1z5 − 2z4z5)) + y3(y4z1(−3z1 +

2z5) + y2(−z1z4 + z1z5 + z4z5))))) − w5(x
2
2y4(y3 − y5)y5(3y4y5z

2
1 + y2

2z4z5 + y2z1(−3y5z1 +
2y5z4 + 2y4z5)) + x5y

2
2y4(x3y5z5(y5z4 + y2(z1 − z5) + y4(−z1 + z5)) + x5(y2(y3z1(z4 −

z5) + y5z5(−z1 + z5)) + y5(y5z4(z1 − 2z5) + y4(z1 − z5)z5 + y3(z4z5 + z1(−2z4 + z5))))) −
x2y2y5(x3y4z5(2y4y5z1 + y2(y5(−2z1 + z4) + y4z5)) − x5(y

2
2(y3 − y5)z4z5 + y4z1(y3(3y4z1 −

4y5z4 −2y4z5) +y5(−3y4z1 +4y5z4 +4y4z5)) +y2(y
2
5z4(z1 +2z4) +y2

4z2
5 +y4y5(3z2

1 +3z4z5 −
z1(z4 + 4z5)) − y3(y5z4(z1 + 2z4) + y4(3z2

1 + 2z4z5 − z1(z4 + 2z5))))))));

M2 = w5
1y

4
2(y2 − y4)y4(y2 − y5)y

2
5(w5(−y3 + y4) + x5z4) + w4

1y
3
2y5(2w2

5y2(y2 − y4)(y3 −
y4)y4(y2 −y5)y5 +w5y4(x3y2(y2 −y4)y5(−y5z4 −y4z5 +y2(z4 +z5)) +x5y2(y2 −y4)(y5(−y4z1
+ 2y5z4 + y3(z1 − 2z5) + 2y4z5) + y2(y4z1 − 2y5z4 − y4z5 + y3(−z1 + z5))) + x2(4y4(−y3 +
y4)y

2
5z1 +y2

2(y4y5(4z1 −z4 −z5) +y3(−4y5z1 +y5z4 +y4z5)) +y2(−y3(−4y4y5z1 +y2
5(−4z1 +

z4) +y2
4z5) +y4y5(y5(−4z1 + z4) +y4(−4z1 + z5))))) +x5z4(x3y2y4y5(−y2z4 +y5z4 −y3z5 +

y4z5) + x5y2(y2 − y4)y4(y2z1 − y5z1 − y2z5 + 2y5z5) + x2(4y2
4y2

5z1 + y2
2(y3(y5z4 − y3z5) +

y4(4y5z1 − y5z4 + y3z5 − y5z5)) + y2(y3y5(−y5z4 + y3z5) + y4(y
2
5(−4z1 + z4) + y2

3z5 −
y3y5z5) + y2

4(−y3z5 + y5(−4z1 + z5)))))) + x2x5z1(−w3
5y

3
2(y3 − y5)(−y4 + y5)(x3y2z4(y4z1 +

y2z4) + x2z1(y
2
4z1 − y2(y4z1 + y3z4 − y4z4))) − x2x5y5z1z4(−x3(x3 − x5)y

2
2z4(y4z1 + y2(z4 −

z5))z5 +x2
2z1(−y2

2(y4(z1 − z4) +y3(z4 − z5))(z1 − z5) +y2(y
2
4z1(z1 − z5) +y4(z1 − z4)(y5z1 −

y3z5) +y3(z4 −z5)(y5z1 −y3z5)) +y4z1(y3(−y3 +y5)z5 +y4(−y5z1 +y3z5))) +x2y2(x3(y4z1 +
y2(z4 − z5))(−y5z1z4 + y2z4(z1 − z5) + (−y4z1 + y3(z1 + z4))z5) + x5z1z5(y4(y4z1 − y3z5) +
y2(y4(−z1 + z4) + y3(−z4 + z5))))) − w5(−x3(x3 − x5)x5y

4
2z4(y4z1 + y2z4)(z4 − z5)z5 +

x2y
2
2z1(x

2
3y5z4(−y2

4z1 +y2(y4(z1 −z4) +y5z4))z5 −x2
5y2(−y2

4z1 +y2(y4(z1 −z4) +y3z4))(z4 −
z5)z5 + x3x5(y4y5z1z4(y5z4 + y4z5) + y2(y

2
5z2

4(z4 − 2z5) + y3y4z1z4(z4 − z5) + y4y5z
2
4(−2z1 +

z5) + y2
4z1z5(−z4 + z5)) + y2

2(z4 − z5)(−2y5z
2
4 + y4(z1 − z4)z5 + y3z4(z4 + z5)))) +

x3
2y5z

2
1(y

2
2(y3(y4z1(z1 − z4) + y5z4(z1 − z5)) − y2

4(z1 − z4)(z1 − z5)) + y4z1(−y2
4y5z1 +

y3(y4y5z1 + y2
5z4 + y2

4z5)) + y2(y
2
4z1(y5(z1 − z4) + y4(z1 − z5)) + y2

3y5z4z5 − y3(y4y5z
2
1 +

y2
5z1z4 + y2

4(z2
1 + z1z5 − z4z5)))) + x2

2y2z1(x5z1(y
2
2(−y3(y4z1 − y4z4 − 2y5z4)(z4 − z5) +

y4y5(z1 − z4)(2z4 − z5) + y2z4(−z4 + z5)) + y4y5(y
2z1z5 − 2y3y5z4z5 + y4z1(y5z4 − y3z5)) +
3 4
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y2(y3(−y2
5z4(z4 − 2z5) + y2

4z1(z4 − z5) + y4y5z1z5) + y4y5z4(y5(−z1 + z4) + y4(−2z1 +
z5)))) + x3y5(−y2

4z1(y5z1z4 + y4z1z5 − y3z4z5) − y2
2(y5z

2
4(z1 − z5) + y4(z1 − z4)(−z4z5 +

z1(z4 + z5))) +y2(y5z4(y5z1z4 −y3(z1 + z4)z5) +y4z4(y3(−z1 + z4)z5 +y5z1(z1 − z4 + z5)) +
y2

4z1(−2z4z5 + z1(z4 + 2z5)))))) + w2
5y2(x

2
2z2

1(y4y
2
5(y3y4z1 − y2

4z1 + y3y5z4) + y2
2(−y4(2y4 −

y5)y5(z1 − z4) + y2
3(y4 − y5)z4 + y3(y

2
4(z1 − z4) − y4y5z4 + 2y2

5z4)) − y2(y
2
4y5(−2y4z1 +

y5z4) + y3(y
3
4z1 + y4y

2
5z1 + y3

5z4))) − x3y
3
2z4(y4z1 + y2z4)(x3(−y4 + y5)z5 + x5(y5z4 + y4z5 −

2y5z5 +y3(−z4 +z5))) −x2y2z1(−x5y2(−y2
4z1 +y2(y4(z1 −z4) +y3z4))(y5(z4 −2z5) +y4z5 +

y3(−z4 +z5)) +x3(y
2
4y2

5z1z4 +y2(y3y4(y4 −y5)z1z4 +y4y
2
5z2

4 −y3
5z2

4 −y3
4z1z5 +y2

4y5z1(−2z4 +
z5)) + y2

2(y2
4(z1 − z4)z5 + y5z4(2y5z4 − y3(z4 + z5)) + y4(y3z4(z4 + z5) + y5(z1(z4 − z5) +

z4(−2z4 + z5)))))))) + w3
1y

2
2(w3

5y
2
2(y2 − y4)y4(−y3 + y4)(y2 − y5)y

2
5 + w2

5y2y4(x5y2(y2 −
y4)(−y2

5(−y4z1 + y5z4 + y3(z1 − 2z5) + 2y4z5) + y2(y3(y4z1 − y5z5) + y5(y5(z1 + z4) +
y4(−2z1 + z5)))) − y5(x3y2(y2 − y4)y5(−2y5z4 − y4z5 + y2(2z4 + z5)) + x2(6y4(−y3 +
y4)y

2
5z1 +y2

2(y4y5(6z1 −2z4 − z5) +y3(−6y5z1 +2y5z4 +y4z5)) +y2(y4y5(−6y4z1 −6y5z1 +
2y5z4 + y4z5) + y3(6y4y5z1 + 6y2

5z1 − 2y2
5z4 − y2

4z5))))) + x5y5z4(y
2
2y4(x

2
3y5z4z5 + x2

5(y2 −
y4)(z1 −z5)z5 +x3x5(y5z4(z1 −2z5) − (y3 −y4)(z1 −z5)z5 +y2z4(−z1 +z5))) +x2

2(6y2
4y2

5z2
1 −

3y2z1(y3y5(y5z4 − y3z5) + y2
4(2y5z1 + y3z5 − y5z5) + y4(y

2
5(2z1 − z4) − y2

3z5 + y3y5z5)) +
y2

2(y3(y5z4(3z1 − z5) + y3(−3z1 + z4)z5) + y4(y3(3z1 − z4)z5 + y5(6z2
1 + z4z5 − 3z1(z4 +

z5))))) + x2y2(x3(3y4y5z1(y5z4 + (−y3 + y4)z5) + y2
2(−y5z

2
4 + z5(−y4z5 + y3(z4 + z5))) +

y2(y
2
4z2

5 +y5z4(y5z4 −2y3z5) −y4(y5z4(3z1 −2z5) +y3z5(z4 +z5)))) +x5(y4z1(y3(y3 −y5)z5 +
y4(4y5z1 −y3z5 −6y5z5)) +y2

2(y3(z1(z4 −z5) −z4z5) +y4(4z2
1 +z5(z4 +z5) −z1(z4 +4z5))) +

y2(−y2
4(−2z1 + z5)

2 + y4(y3z5(z1 + z5) + y5(−4z2
1 + z1z4 + 6z1z5 − 2z4z5)) + y3(−y3z

2
5 +

y5(−z1z4 + z1z5 + 2z4z5)))))) + w5(x
2
2y4y5(6y4(−y3 + y4)y

2
5z2

1 + 3y2z1(−y3(−2y4y5z1 +
y2

5(−2z1 + z4) + y2
4z5) + y4y5(y5(−2z1 + z4) + y4(−2z1 + z5))) + y2

2(y2
3z4z5 + y4y5(6z2

1 +
z4z5 − 3z1(z4 + z5)) − y3(y4(−3z1 + z4)z5 + y5(6z2

1 − 3z1z4 + z4z5)))) + y2
2y4(x

2
3(−y2 +

y4)y
2
5z4z5 + x2

5(y2 − y4)(y5(y5z4(z1 − 2z5) − (y3 − y4)(z1 − z5)z5) + y2(y3z1(z4 − z5) +
y5(−2z1z4 + z1z5 + z4z5))) + x3x5y5(y4y5z4(z1 − 3z5) + y2

4(z1 − z5)z5 + y2
2(z1 − z5)(z4 +

z5) + y5z4(−2y5z4 + y3z5) + y2(−y4(z1 − z5)(z4 + 2z5) + y5z4(−z1 + 2(z4 + z5))))) −
x2y2y5(x3y4(−3y4y5z1(y5z4 + y4z5) + y2

2(y4z
2
5 − y5(3z1 − z4)(z4 + z5)) + y2(y

2
5(3z1 − z4)z4 −

y2
4z2

5 + y4(3y5z1z4 + 6y5z1z5 + y3z4z5 − 2y5z4z5))) + x5(y4z1(2y4y5(−2y4z1 + 3y5z4 +
3y4z5) + y3(4y4y5z1 + y2

5z4 + y2
4z5 − 6y4y5z5)) + y2(y

2
3(y4 + y5)z4z5 − y3(y

2
5z4(z1 + 2z4) +

y2
4(4z2

1 − 2z1z5 + z4z5) + y4y5(4z2
1 − 6z1z5 + 3z4z5)) + y4(2y2

5z4(−3z1 + z4) + y2
4(−2z1 +

z5)
2 + y4y5(4z2

1 − 7z1z4 − 6z1z5 + 3z4z5))) − y2
2(y2

3z4z5 − y3(y5z4(z1 + 2z4) + y4(4z2
1 +

2z4z5 − z1(z4 + 3z5))) + y4(y5z4(−6z1 + 2z4 + z5) + y4(4z2
1 + z5(z4 + z5) − z1(z4 +

4z5)))))))) + w2
1y2(w

3
5y

2
2y4(x5y

2
2(y2 − y4)(y4 − y5)(−y3 + y5)z1 + (y2 − y5)y

2
5(x3y2(y2 −

y4)z4 + x2(y3 − y4)(2y4z1 + y2(−2z1 + z4)))) + x5y5z4(x3(x3 − x5)x5y
3
2y4z4(z1 − z5)z5 +

x3
2z1(4y2

4y2
5z2

1 + y2z1(3y3y5(−y5z4 + y3z5) + y2
4(−4y5z1 − 3y3z5 + 3y5z5) + y4(y

2
5(−4z1 +

3z4) + 3y2
3z5 − 3y3y5z5)) + y2

2(y3(y5z4(3z1 − 2z5) + y3(−3z1 + 2z4)z5) + y4(y3(3z1 −
2z4)z5 + y5(4z2

1 + 2z4z5 − 3z1(z4 + z5))))) + x2y
2
2(x2

3z4z5(2y4y5z1 + y2y5z4 − y2
2z5 +

y2y4z5) − x3x5(y
2
2z4(z1(z4 − z5) − z4z5) + y4z1(z5(−3y4z1 + y3(3z1 + z4 − 2z5) + 2y4z5) +

y5(−3z1z4 + 4z4z5)) + y2(y4(3z2
1z4 + 2z4z

2
5 + z1z5(−4z4 + z5)) + (y5z4 − y3z5)(2z4z5 +

z1(−z4 + z5)))) + x2
5z5(y4z1(−3y4z1 + y3z5 + 2y4z5) + y2(y3(z1(z4 − z5) − z4z5) + y4(3z2

1 +
z4z5 − z1(z4 + 2z5))))) + x2

2y2(x3(3y4y5z
2
1(y5z4 + (−y3 + y4)z5) + y2

2(y5z
2
4(−2z1 + z5) +

(2z1 − z4)z5(−y4z5 + y3(z4 + z5))) + y2z1(2y2z2 + 2y5z4(y5z4 − 2y3z5) − y4(y5z4(3z1 −
4 5
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4z5) + 2y3z5(z4 + z5)))) + x5(3y4z
2
1(y3(y3 − y5)z5 + y4(2y5z1 − y3z5 − 2y5z5)) + y2

2(y4(2z1 −
z4)(3z2

1 −3z1z5 +z2
5) +y3(3z2

1(z4 −z5) +z4z
2
5 +z1z5(−3z4 +z5))) +y2z1(−2y2

4(3z2
1 −3z1z5 +

z2
5) + y4(y3z5(3z1 − z4 + 2z5) + y5(−6z2

1 + 3z1z4 + 6z1z5 − 4z4z5)) + y3(y3(z4 − 3z5)z5 +
y5(−3z1z4 + 3z1z5 + 4z4z5)))))) − w2

5y2(x
2
2y4y5(6y4(−y3 + y4)y

2
5z2

1 + 2y2z1(y3(3y4y5z1 +
y2

5(3z1 − 2z4) − y2
4z5) + y4y5(−3y5z1 + 2y5z4 + y4(−3z1 + z5))) + y2

2(y2
3z4z5 + y4y5(6z2

1 +
z4z5 − 2z1(2z4 + z5)) − y3(y4(−2z1 + z4)z5 + y5(6z2

1 − 4z1z4 + z4z5)))) + y2
2y4(x

2
3(−y2 +

y4)y
2
5z4z5 − x2

5y2(y2 − y4)z1(y5(z4 − 2z5) + y4z5 + y3(−z4 + z5)) + x3x5(y
2
5z4(−y5z4 +

y4(z1 − 2z5)) + y2
2(y4z1z5 + y5(z1(z4 − z5) − z4z5)) + y2(y3(y4 − y5)z1z4 − y2

4z1z5 +
y2

5z4(z4 +2z5) +y4y5(−2z1z4 +z1z5 +z4z5)))) +x2y2(x5(y4y
2
5z1(y4(3y4z1 −2y5z4 −4y4z5) −

y3(3y4z1 + y5z4 − 4y4z5)) + y2(y4y5(y
2
5(2z1 − z4)z4 + 2y2

4z1(−3z1 + z5) + y4y5(3z1z4 +
4z1z5 − 2z4z5)) + y3(3y3

4z2
1 + y3

5z4(z1 + z4) − 2y2
4y5z1z5 + y4y

2
5(3z2

1 − 4z1z5 + 2z4z5))) +
y2

2(y2
3(−y4 + y5)z1z4 + y3(y

2
4z1(−3z1 + z4) − y2

5z4(2z1 + z4) + y4y5(z1z4 + 2z1z5 − z4z5)) +
y4y5(y5(−3z2

1 − z1z4 + z2
4) + y4(6z2

1 + z4z5 − 2z1(z4 + z5))))) + x3y4y5(y
2
2y5(2z1 − z4)(2z4 +

z5) + 2y4y5z1(2y5z4 + y4z5) − y2(2y2
5(2z1 − z4)z4 + y4(y3z4z5 + y5(−2z4z5 + 4z1(z4 +

z5))))))) + w5(x
3
2y4y5z1(4y4(−y3 + y4)y

2
5z2

1 + y2z1(y4y5(−4y4z1 − 4y5z1 + 3y5z4 + 3y4z5) +
y3(4y4y5z1 + y2

5(4z1 − 3z4) − 3y2
4z5)) + y2

2(2y2
3z4z5 + y4y5(4z2

1 + 2z4z5 − 3z1(z4 + z5)) +
y3(y4(3z1 − 2z4)z5 + y5(−4z2

1 + 3z1z4 − 2z4z5)))) + x5y
3
2y4(x

2
5y2(y2 − y4)z1(z4 − z5)z5 −

x2
3y5z4z5(y5z4 + y2(z1 − z5) + y4(−z1 + z5)) − x3x5(y

2
2z1(z4 − z5)z5 + y5z4(y5z4(z1 − 2z5) +

y4(z1 − z5)z5) + y2(y3z1z4(z4 − z5) + y4z1z5(−z4 + z5) + y5z4(−2z1z4 + z5(z4 + z5))))) +
x2

2y2y5(x3y4(3y4y5z
2
1(y5z4 +y4z5) +y2z1(y

2
5z4(−3z1 +2z4) +2y2

4z2
5 −y4(3y5z1z4 +6y5z1z5 +

2y3z4z5 − 4y5z4z5)) + y2
2(−z5(y4(2z1 − z4)z5 + y3z4(z4 + z5)) + y5(z

2
4z5 + 3z2

1(z4 + z5) −
2z1z4(z4 + z5)))) + x5(−3y4z

2
1(y3(y

2
5z4 + 2y4y5(z1 − z5) + y2

4z5) + 2y4y5(y5z4 + y4(−z1 +
z5))) + y2z1(−y2

3(2y4 + 3y5)z4z5 + y3(y
2
5z4(3z1 + 4z4) + y2

4(6z2
1 + z4z5) + 6y4y5(z

2
1 −

z1z5 + z4z5)) + y4(2y2
5(3z1 − 2z4)z4 + 3y4y5(−2z2

1 + 3z1z4 + 2z1z5 − 2z4z5) − 2y2
4(3z2

1 −
3z1z5 + z2

5))) + y2
2(y2

3(2z1 − z4)z4z5 + y4(y5z4(−6z2
1 + 4z1z4 + 2z1z5 − z4z5) + y4(2z1 −

z4)(3z2
1 − 3z1z5 + z2

5)) + y3(y5z4(−3z2
1 + z4z5 + z1(−4z4 + z5)) + y4(−6z3

1 − 4z1z4z5 +
3z2

1(z4 + z5) + z4z5(z4 + z5)))))) + x2y
2
2(x2

3y4y5z4z5(2y4y5z1 + y2(y5(−2z1 + z4) + y4z5)) +
x3x5y5(y4z1(y

2
4(3z1 − 2z5)z5 + 2y5z4(−2y5z4 + y3z5) + y4z4(3y5z1 − y3z5 − 6y5z5)) +

y2(−y5z4(z1 +2z4)(y5z4 −y3z5) +y2
4(−2z4z

2
5 +4z1z5(z4 +z5) −3z2

1(z4 +2z5)) +y4z4(y3(z1 +
z4)z5 + y5(−3z2

1 + 5z1z4 + 3z1z5 − 4z4z5))) + y2
2(z2

4(y5(z1 + 2z4) − y3z5) + y4(3z2
1(z4 +

z5) + z4z5(z4 + z5) − z1(z
2
4 + 4z4z5 + 2z2

5)))) + x2
5(y4y5z1(2y3y5z4z5 + y2

4z5(−3z1 + 2z5) +
y4(−3y5z1z4 + 3y3z1z5 + 4y5z4z5 − 2y3z

2
5)) + y2

2(y2
3z1z4(z4 − z5) + y4y5(−z2

4z5 + z1z4(2z4 +
z5) + z2

1(−6z4 + 3z5)) + y3(y4z1(3z1 − z4)(z4 − z5) + y5z4(−2z1z4 + 2z1z5 + z4z5))) −
y2(y3(3y2

4z2
1(z4 − z5) + y4y5z5(3z2

1 − 2z1z5 + z4z5) + y2
5z4(−z1z4 + 2z1z5 + 2z4z5)) +

y4y5(y4(−6z2
1z4 − z4z

2
5 + z1z5(3z4 + 2z5)) + y5z4(−3z2

1 − 2z4z5 + z1(z4 + 4z5)))))))) −
w1(w

3
5y

2
2(x3x5y

3
2y4(y3 − y5)(−y4 + y5)z1z4 − x2

2(y3 − y4)y4(y2 − y5)y
2
5z1(y4z1 + y2(−z1 +

z4)) + x2y2(x3y4(y2 − y5)y
2
5z4(y4z1 + y2(−z1 + z4)) + x5y2(y3 − y5)(y4 − y5)z1(−2y2

4z1 +
y2(2y4z1 + y3z4 − y4z4)))) + x2x5y5z4(x3(x3 − x5)x5y

3
2z4z5(y4z1(−2z1 + z5) + y2(z4z5 +

z1(−z4 + z5))) + x3
2z2

1(−y2
4y2

5z2
1 + y2z1(y3y5(y5z4 − y3z5) + y2

4(y5(z1 − z5) + y3z5) +
y4(y

2
5(z1 − z4) − y2

3z5 + y3y5z5)) + y2
2(−y4(z1 − z4)(y5(z1 − z5) + y3z5) + y3(y3(z1 − z4)z5 +

y5z4(−z1 + z5)))) + x2y
2
2(−x2

3z4z5(y4z1(y5z1 + y2z5) + y2(y5z1z4 + y2(−z1 + z4)z5)) +
x2

5z1z5(y4z1(3y4z1 − 2y3z5 − y4z5) + y2(y4(−3z2
1 + 2z1z4 + z1z5 − z4z5) + y3(−2z1z4 +

2z1z5 + z4z5))) + x3x5(y
2z4(2z2(z4 − z5) + z4z

2 + z1z5(−2z4 + z5)) + y4z
2(y5(−3z1z4 +
2 1 5 1
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2z4z5) + z5(y3(3z1 + 2z4 − z5) + y4(−3z1 + z5))) + y2z1(y3z5(2z1z4 + z2
4 − 2z1z5 − 3z4z5) +

2y5z4(−z1z4 +z1z5 +z4z5) +y4(3z2
1z4 +2z4z

2
5 +z1z5(−5z4 +2z5))))) −x2

2y2z1(x3(y4y5z
2
1(y5z4

+ (−y3 + y4)z5) + y2
2(y5z

2
4(−z1 + z5) + (z1 − z4)z5(−y4z5 + y3(z4 + z5))) − y2z1(−y2

4z2
5 +

y5z4(−y5z4 + 2y3z5) + y4(y5z4(z1 − 2z5) + y3z5(z4 + z5)))) + x5(y4z
2
1(3y3(y3 − y5)z5 +

y4(4y5z1 − 3y3z5 − 2y5z5)) + y2
2(y3(3z2

1(z4 − z5) + z4z
2
5 + z1z5(−3z4 + 2z5)) + y4(4z3

1 −
z4z

2
5 + z1z5(3z4 + z5) − z2

1(3z4 + 4z5))) + y2z1(−y2
4(−2z1 + z5)

2 + y4(y3z5(3z1 − 2z4 +
z5) + y5(−4z2

1 + 3z1z4 + 2z1z5 − 2z4z5)) + y3(y3(2z4 − 3z5)z5 + y5(−3z1z4 + 3z1z5 +
2z4z5)))))) +w2

5y2(x3x5y
4
2y4z1z4(x3(−y4 +y5)z5 +x5(y5z4 +y4z5 −2y5z5 +y3(−z4 +z5))) +

x3
2y4y5z1(2y4(−y3 + y4)y

2
5z2

1 + y2z1(y3(2y4y5z1 + 2y2
5(z1 − z4) − y2

4z5) + y4y5(2y5(−z1 +
z4) + y4(−2z1 + z5))) + y2

2(y4y5(z1 − z4)(2z1 − z5) + y2
3z4z5 − y3(y4(−z1 + z4)z5 + y5(2z2

1 −
2z1z4 + z4z5)))) + x2y

2
2(x2

3y4y
2
5z4(y4z1 + y2(−z1 + z4))z5 − x2

5y2z1(−2y2
4z1 + y2(2y4z1 +

y3z4 − y4z4))(y5(z4 − 2z5) + y4z5 + y3(−z4 + z5)) + x3x5(y4y
2
5z1z4(−y5z4 + 2y4(z1 −

z5)) + y2(2y3y4(y4 − y5)z
2
1z4 − y3

5z2
4(z1 + z4) − 2y3

4z2
1z5 + y2

4y5z1(−4z1z4 + 2z1z5 + z4z5) +
2y4y

2
5z4(−z4z5 + z1(z4 + z5))) +y2

2(y2
4z1(2z1 − z4)z5 +y5z4(y5z4(2z1 + z4) −y3z1(z4 + z5)) +

y4(y3z1z4(z4 + z5) + y5(−2z1z
2
4 + 2z2

1(z4 − z5) + z2
4z5))))) + x2

2y2(x3y4y5(y4y5z
2
1(2y5z4 +

y4z5) + y2
2(−y3z

2
4z5 + y5(z

2
4z5 + z2

1(2z4 + z5) − z1z4(2z4 + z5))) − y2z1(2y2
5(z1 − z4)z4 +

y4(y3z4z5 +2y5(−z4z5 +z1(z4 +z5))))) +x5z1(y4y
2
5z1(y4(3y4z1 −y5z4 −2y4z5) +y3(−3y4z1 −

2y5z4 + 2y4z5)) + y2(y4y5(y
2
5(z1 − z4)z4 + y2

4z1(−6z1 + z5) + y4y5(3z1z4 + 2z1z5 − 2z4z5)) +
y3(3y3

4z2
1 +y3

5z4(2z1 +z4) −y2
4y5z1z5 +y4y

2
5(3z2

1 −2z1z5 +2z4z5))) +y2
2(2y2

3(−y4 +y5)z1z4 −
y3(y

2
4z1(3z1 −2z4) +y2

5z4(4z1 +z4) +y4y5(z4z5 −z1(2z4 +z5))) +y4y5(y5(−3z2
1 +z1z4 +z2

4) +
y4(6z2

1 + z4z5 − z1(4z4 + z5))))))) +w5(−x3(x3 − x5)x
2
5y5

2y4z1z4(z4 − z5)z5 + x4
2y4y5z

2
1((y3 −

y4)y4y
2
5z2

1 + y2z1(y4y5(y5(z1 − z4) + y4(z1 − z5)) + y3(−y4y5z1 + y2
5(−z1 + z4) + y2

4z5)) +
y2

2(−y4y5(z1 − z4)(z1 − z5) − y2
3z4z5 + y3(y4(−z1 + z4)z5 + y5(z

2
1 − z1z4 + z4z5)))) +

x2x5y
3
2(−x2

5y2z1(−2y2
4z1 + y2(2y4z1 + y3z4 − y4z4))(z4 − z5)z5 + x2

3y5z4z5(y4z1(y5z4 +
y4(−2z1 +z5)) +y2(y5z4(z1 +z4) +y4(2z2

1 +z4z5 −z1(z4 +z5)))) +x3x5(y4y5z1z4(2y5z4(z1 −
z5) + y4(2z1 − z5)z5) + y2

2(y4z1(2z1 − z4)(z4 − z5)z5 + y5z
2
4(−2z1z4 + 2z1z5 + z4z5) +

y3z1z4(z
2
4 − z2

5)) + y2(2y3y4z
2
1z4(z4 − z5) + 2y2

4z2
1z5(−z4 + z5) + y2

5z2
4(z1(z4 − 2z5) −

2z4z5) + y4y5z4(−4z2
1z4 − z4z

2
5 + z1z5(2z4 + z5))))) + x2

2y2
2(−x2

3y4y5z4z5(y4y5z
2
1 + y2

2z4z5 +
y2z1(y5(−z1 +z4) +y4z5)) +x3x5y5(y4z

2
1(y

2
4z5(−3z1 +z5) +y5z4(2y5z4 −y3z5) +y4z4(−3y5z1

+ 2y3z5 + 3y5z5)) + y2z1(y5z4(2y5z4(z1 + z4) − y3(2z1 + 3z4)z5) + y2
4(2z4z

2
5 + 3z2

1(z4 +
2z5) − z1z5(5z4 + 2z5)) + y4z4(−2y3z1z5 + y5(3z2

1 − 4z1z4 + 4z4z5))) + y2
2(z2

4(−y5(z1 +
z4)(2z1 − z5) + y3(z1 − z4)z5) + y4(z

2
4z

2
5 − 3z3

1(z4 + z5) − z1z4z5(2z4 + z5) + z2
1(2z2

4 +
5z4z5 +z2

5)))) +x2
5z1(y4y5z1(−4y3y5z4z5 +y2

4(3z1 −z5)z5 +y4(y5z4(3z1 −2z5) +y3z5(−3z1 +
z5))) +y2

2(2y2
3z1z4(−z4 + z5) +y4y5(z

2
1(6z4 −3z5) + z2

4z5 + z1z4(−4z4 + z5)) −y3(y4z1(3z1 −
2z4)(z4 − z5) + y5z4(−4z1z4 + 4z1z5 + z4z5))) + y2(y3(3y2

4z2
1(z4 − z5) + y4y5z5(3z2

1 − z1z5 +
z4z5) +2y2

5z4(−z1z4 +2z1z5 +z4z5)) +y4y5(y5z4(−3z2
1 −2z4z5 +2z1(z4 +z5)) +y4(−6z2

1z4 −
z4z

2
5 + z1z5(3z4 + z5)))))) + x3

2y2y5z1(x3y4(−y4y5z
2
1(y5z4 + y4z5) + y2z1(y

2
5(z1 − z4)z4 −

y2
4z2

5 + y4(y5z1z4 + 2y5z1z5 + y3z4z5 − 2y5z4z5)) + y2
2(z5(y4(z1 − z4)z5 + y3z4(z4 + z5)) −

y5(z
2
4z5 +z2

1(z4 +z5) −z1z4(z4 +z5)))) +x5(y4z
2
1(2y4y5(−2y4z1 +y5z4 +y4z5) +y3(4y4y5z1 +

3y2
5z4 + 3y2

4z5 − 2y4y5z5)) + y2z1(y
2
3(y4 + 3y5)z4z5 − y3(y

2
5z4(3z1 + 2z4) + y2

4(4z2
1 + 2z1z5 −

z4z5) + y4y5(4z2
1 − 2z1z5 + 3z4z5)) + y4(2y2

5z4(−z1 + z4) + y2
4(−2z1 + z5)

2 + y4y5(4z2
1 −

5z1z4 − 2z1z5 + 3z4z5))) − y2
2(y2

3(z1 − z4)z4z5 + y3(y5z4(−3z2
1 − 2z1z4 + 2z1z5 + z4z5) +
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y4(−4z3
1 − 2z1z4z5 + z4z5(z4 + z5) + z2

1(3z4 + z5))) + y4(−y5(z1 − z4)z4(2z1 − z5) + y4(4z3
1 −

z4z
2
5 + z1z5(3z4 + z5) − z2

1(3z4 + 4z5)))))))).
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