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The search for continuous gravitational waves in a wide parameter space at fixed computing cost is
most efficiently done with semicoherent methods, e.g. StackSlide, due to the prohibitive computing
cost of the fully coherent search strategies. Prix&Shaltev [1] have developed a semi-analytic method
for finding optimal StackSlide parameters at fixed computing cost under ideal data conditions,
i.e. gap-less data and constant noise floor. In this work we consider more realistic conditions by
allowing for gaps in the data and changes in noise level. We show how the sensitivity optimization
can be decoupled from the data selection problem. To find optimal semicoherent search parameters
we apply a numerical optimization using as example the semicoherent StackSlide search. We also
describe three different data selection algorithms. Thus the outcome of the numerical optimization
consists of the optimal search parameters and the selected dataset. We first test the numerical
optimization procedure under ideal conditions and show that we can reproduce the results of the
analytical method. Then we gradually relax the conditions on the data and find that a compact
data selection algorithm yields higher sensitivity compared to a greedy data selection procedure.

I. INTRODUCTION

The enormous computational requirement of the wide
parameter-space searches for continuous gravitational
waves impose a cautious use of the available computing
resources, as we always aim at maximal sensitivity 1. In
this respect to maximize the sensitivity of a semicoherent
search, for example StackSlide [3, 4], means that we need
to choose the optimal search parameters, namely num-
ber of segments, segment duration and optimal maximal
mismatch on the coarse and fine grid. How to do this
at fixed computing cost for a single astrophysical target
and under the ideal conditions of constant noise floor and
data without gaps has been studied in [1], where analyt-
ical expressions have been derived to determine the opti-
mal search parameters. In Ref. [5], while still assuming
ideal conditions on the data, a framework to distribute
the total available computing cost between different pos-
sible targets based on astrophysical priors has been de-
veloped. However under realistic conditions the available
data, as collected for example from the Laser Interferom-
eter Gravitational-Wave Observatory (LIGO) [6, 7], can
be fragmented, e.g., due to down-time of the detectors,
and there might be variations in the noise floor. The frag-
mentation of the data can significantly affect the comput-
ing cost function and thus the optimal search parameters.
On the other hand, the noise fluctuations suggest the use
of a data selection procedure in order to spend the avail-
able computing cycles searching data of higher quality.

1 Given unlimited computing power and / or a targeted search, i.e.,
when the sky position and frequency evolution of the source are
known, we would prefer coherent matched-filtering technique, see
[2]. In all other cases however, semicoherent searches may yield
better results in terms of sensitivity, see [1, 3, 4].

In this work we extend Ref. [1] to these more real-
istic conditions by taking into account possible gaps in
the data and noise level changes. First we show, how
the real conditions manifest in the sensitivity function.
Then we reformulate the problem, such that a numeri-
cal optimization procedure can be applied to find opti-
mal semicoherent search parameters. We also describe
a suitable data selection algorithm. The outcome of the
proposed numerical optimization are the optimal search
parameters and the selected data, so that the search can
be performed in practice. We first test the numerical op-
timization procedure under ideal conditions and obtain
the results of the analytical method proposed in Ref. [1].
Then we give examples of practical application.

This paper is organized as follows. In Sec. II we intro-
duce the ingredients of the search-optimization method,
i.e., the threshold signal-to-noise ratio (SNR), the sen-
sitivity function, and the computing cost function. The
numerical optimization of the search parameters and in
particular the data selection method are described in Sec.
III. In Sec. IV we give examples of practical application
and discuss in Sec. V.

Notation

We use tilde when referring to fully coherent quantities,

Q̃, and overhat when referring to semicoherent quantities,

Q̂.

II. THRESHOLD SNR, SENSITIVITY
FUNCTION AND COMPUTING COST

In this section we introduce the main ingredients
needed to define the optimization problem, i.e., to find
the number of segments N with segment duration ∆T
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and coarse and fine grid mismatch, m̃ resp. m̂, which
maximize the sensitivity of the search at fixed comput-
ing cost C0. These ingredients are the threshold SNR
required for detection, the sensitivity function, which we
want to maximize, and the computing cost function.

A. Threshold SNR

A claim for detection when searching for a signal, in
particular a weak signal, in the presence of noise is sensi-
ble only in the context of two well defined quantities. The
first one, called false-alarm probability, is the probability
to falsely claim a detection when the signal is not present
in the data. The second quantity, called false-dismissal
probability, is the probability to miss the signal even if
the signal is indeed present in the data.

When a signal is present in the data the semicoherent
StackSlide statistic follows a non-central χ2 distribution
with 4N degrees of freedom. Using the definitions of
[1], we denote this by χ2

4N (F̂ , ρ̂2), where ρ̂2 is the non-
centrality parameter, i.e., the sum of the squared SNR of

the individual segments ρ̂2 ≡∑N
i=1 ρ̃

2
i . We can integrate

the false-alarm probability

pfA(F̂th) =

∫ ∞
F̂th

dF̂ χ2
4N (F̂ ; 0) , (1)

and by inversion for a given false-alarm p∗fA obtain the

threshold F̂th. For a pre-defined false-dismissal p∗fD prob-
ability

pfD(F̂th, ρ̂
2) =

∫ F̂th

−∞
dF̂ χ2

4N (F̂ ; ρ̂2) , (2)

using F̂th we aim to obtain the critical non-centrality

ρ̂∗2 = ρ̂2(p∗fA, p
∗
fD, N) , (3)

and thus the threshold SNR.
The computation of the critical non-centrality ρ̂∗2 is

complicated by the fact that for wide parameter-space
searches the right-hand side of Eq. (2) requires averag-
ing over sky position and polarization parameters of the
signal carried out at fixed intrinsic amplitude h0. In Ref.
[1] for example, a signal population of constant SNR has
been assumed. Therefore by application of the central
limit theorem and approximation of the χ2 distribution
by a Gaussian distribution, Eq. (2) has been analytically
integrated and inverted to obtain (3). For weak signals
and large number of segments (see Fig. 2 in Ref. [1]) this
results in the “weak-signal Gauss (WSG) approximation”
for the critical non-centrality parameter

ρ̂∗2(p∗fA, p
∗
fD, N) ≈ 2

√
4N(erfc−1(2p∗fA) + erfc−1(2p∗fD)) .

(4)
With this we define the per-segment threshold SNR

ρ∗ ≡
√
ρ̂∗2(p∗fA, p

∗
fD, N)

N
. (5)

Recently a new semi-analytical method has been de-
veloped to estimate the sensitivity of a search [8]. In this
method the assumption of signal distribution of constant
SNR has been relaxed, where a semi-analytical approx-
imation for the computation of an isotropic threshold
SNR has been introduced. We refer to this method as
the KWS approximation. In the KWS approximation
the averaged over segments threshold ρ∗ is obtained re-
cursively. At iteration i the value of ρ∗ is

ρ = F
(
ρ
)
, (6)

where

ρi+1 = F

(
ρi + ρi−1

2

)
. (7)

For the details required to implement the method in prac-
tice see [8]. The accuracy of this technique is within the
calibration error of the gravitational-wave detector with
results similar to the sensitivity estimates performed with
Monte-Carlo methods, thus we adopt it in the following
numerical optimization scheme [8, 9].

B. Sensitivity function

The signal strength hrms in the detector, depends on
the intrinsic amplitude h0, the sky-position of the source,
the polarization angles and the detector orientation. Av-
eraging isotropically over the sky-position and polariza-
tion yields 〈

h2rms

〉
sky,pol

=
2

25
h20 . (8)

Under ideal conditions of data without gaps with du-
ration T and constant noise floor Sn the accumulated
squared SNR in a semicoherent search is [1]:

ρ̂2 = 2[1− ξ(m̃+ m̂)]
2Ndet

Sn
h2rmsT , (9)

where ξ ∈ (0, 1) is the geometrical factor used to estimate
the average mismatch of the template bank, m̃ is the
mismatch on the coarse grid, m̂ is the mismatch on the
fine grid and Ndet is the number of detectors. Typically,
the data is made available in the form of NSFT number of
Short Fourier Transforms (SFTs) of duration TSFT. To
take into account possible noise floor fluctuations, the
noise floor can be written as [10]

S−1(f0) ≡ N−1SFT

NSFT∑
n=1

S−1n (f0) , (10)

where Sn is the per SFT noise Power Spectral Density
(PSD) estimated at frequency f0. To account for the
possible gaps in the data we define the actual amount of
available data

Tdata ≡ NSFTTSFT . (11)
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Using Eqs. (8), (10) and (11) we can rewrite Eq. (9) to
obtain the accumulated squared SNR in a semicoherent
search under realistic conditions, namely〈

ρ̂2
〉
sky,pol

=
4

25
[1− ξ(m̃+ m̂)]h20TdataS−1 . (12)

To estimate the minimal detectable intrinsic amplitude
h0 at fixed false-alarm p∗fA and false-dismissal p∗fD prob-
ability we use the per-segment threshold SNR ρ∗. With〈
ρ̂2
〉
sky,pol

≡ Nρ∗2 substitution in Eq. (12) and rear-

rangement yields

h0 =
5

2
[1− ξ(m̃+ m̂)]−1/2ρ∗

√
N

√
1

G , (13)

where

G ≡ TdataS−1 (14)

is the goodness of the data. Eq. (13) is the function
that we need to minimize under the constraint of fixed
computing cost C0 in order to maximize the sensitivity
of the search.

C. Computing cost

The total computing cost Ctot(m̃, m̂,N,∆T,NSFT)
of the StackSlide method is composed by the cost

C̃(m̃,∆T,NSFT) to compute the F-statistic [11, 12] on

the coarse grid and the cost Ĉ(m̂,N,∆T ) to sum these
F-statistic values across all segments on the fine grid,
thus

Ctot(m̃, m̂,N,∆T,NSFT) = C̃(m̃,∆T,NSFT)

+ Ĉ(m̂,N,∆T ) . (15)

The computing cost of the coherent step using the SFT
method is

C̃(m̃,∆T,NSFT) = NSFTÑ (m̃,∆T )c̃SFT
0 , (16)

where Ñ (m̃,∆T ) is the number of coarse-grid templates
and c̃SFT

0 is an implementation- and hardware-dependent
fundamental computing cost. Similarly, the incoherent
computing cost is

Ĉ(m̂,N,∆T ) = NN̂ (m̂,∆T,N)ĉ0 , (17)

where N̂ (m̂,∆T,N) is the number of fine-grid templates
and ĉ0 is the fundamental cost of adding F-statistic val-
ues.

D. Templates counting

The general expression for the number of templates
required to cover some parameter space P is

N = θnm
−n/2 Vn , with Vn ≡

∫
Tn

dnλ
√

det g , (18)

where θn is the normalized thickness of the search grid,
m is the maximal-mismatch, det g is the determinant
of the parameter-space metric gij and Vn is the met-
ric volume of the n-dimensional space of the template
bank. For hyper-cubic lattice the normalized thick-
ness is θZn = nn/2 2−n, while for an A∗ lattice it is

θA∗
n

=
√
n+ 1

{
n(n+2)
12(n+1)

}n/2

[13]. The choice of the di-

mensionality of the template bank is subject to the max-
imization of the number of templates, namely

Ññ = max
n
Ñn , and N̂n̂ = max

n
N̂n . (19)

In Ref. [1] we used the factorization of the semicoherent
metric volume

V̂n̂(N,∆T ) = γn̂(N) Ṽn̂(∆T ) , (20)

to derive the general power-law computing-cost model,
as in the gap-less data case, the refinement factor γn̂(N)
is only a function of the number of segments N . However
using real data introduces an additional dependency on
the time span of the search through the actual position of
the segments in time. For details see, e.g., [14]. We aim to
model the real conditions as closely as possible, therefore
in the numerical optimization we directly compute the
semicoherent metric

ĝ(tref) =
1

N

N∑
i=1

g̃i(ti,∆T, tref) , (21)

where g̃i(ti,∆T, tref) is the coherent metric of segment
i at fixed reference time tref . To compute the coherent
metric g̃i(ti,∆T, tref) in this work we use the analytical
expressions found in Ref. [14].

E. The choice of spindown parameter space

The choice of the dimensionality of the template bank
through Eqs. (19) is possible only for a simple rectangu-
lar geometry of the parameter space.

Using the spindown age of a potential source [3]:

τ = f/|ḟ | . (22)

the spindown search band in dimension k is

|f (k)| ≤ k!
f

τk
. (23)

This however means that the spindown band is frequency
dependent, which may be impractical. Therefore if we
keep the number of templates in the spindown space con-
stant by fixing a minimal detectable spindown age τ0 at
some frequency f0, the detectable spindown age at fre-
quency f yields

τ(f) = τ0f/f0 . (24)



4

This would define the simplest possible parameter-space
volume for optimization, namely a “box”.

A more complicated triangular parameter-space shape
has been discussed in Ref. [15] and used in the search
for gravitational waves from the supernova remnant
Cassiopeia-A [16]. The parameters of a search over such
space are difficult to optimize as the spindown order may
vary even in infinitesimally small slices of a frequency
band. In the present work we neglect this fact in order
to compare the outcome of the optimization with previ-
ously obtained results.

III. NUMERICAL OPTIMIZATION
PROCEDURE FOR A SEMICOHERENT
STACKSLIDE SEARCH WITH A FIXED

FREQUENCY BAND

In this section we consider the practical implementa-
tion of a numerical optimization procedure to find op-
timal search parameters for a semicoherent StackSlide
search.

A. Definition of the optimization problem

To maximize the sensitivity of the search, i.e., to mini-
mize the measurable intrinsic amplitude, we need to min-
imize the function given in Eq. (13), namely:

h0(m̃, m̂,N,G) =
5

2
[1− ξ(m̃+ m̂)]−1/2ρ∗

√
N

√
1

G (25)

under the constraints

Ctot ≤ C0 ,

0 < m̃ < 1 ,

0 < m̂ < 1 ,

Ñ ≤ N̂ , (26)

where C0 is a given maximal available computing cost.
Note that in practice the cost constraint is difficult to be
fulfilled as an equality, however a reasonable algorithm
should find a solution for which Ctot becomes approxi-
mately C0. In order to minimize h0 we need a data selec-
tion procedure which maximizes the goodness of the data
G. Through the data selection procedure we can trans-
form the implicit dependency of Eq. (25) on the segment
duration ∆T into an explicit dependency and minimize
the 4D optimization problem h0(m̃, m̂,N,∆T ).

B. Data selection

For a given amount of data and requested number of
segments of some duration, we need an algorithm to se-
lect the data which maximizes the goodness G, i.e., pick
as much data Tdata as possible of lowest noise level S as

possible 2. This would require computation of all possi-
ble segment combinations, their ranking by the goodness
G and selection of the first segment realization which sat-
isfies the computing cost constraint. For the simple case
of picking k non-overlapping segments out of n possible,
without replacement and ordering, the number of com-
binations is given by the well known binomial coefficient
formula (

n
k

)
=

n!

k!(n− k)!
. (27)

For example, having 200 days of available data, choosing
100 segments of 1 day duration, yields roughly 9 × 1058

possible combinations. Clearly such data selection pro-
cedure is not well suited for practical implementation
3. Therefore we consider three different suboptimal, but
computationally feasible, alternative methods for data
selection. Namely the two extremes, a greedy method
and a compact method, and a third procedure greedy-
compact, which is placed somewhere in between, in terms
of the total observation time.

1. A greedy method

For requested N number of segments with duration
∆T and given set of SFTs with duration TSFT, which
are ordered in time by increasing timestamps tj , within
a greedy data selection we always pick the segments with
the maximal goodness. The steps of the algorithm are
(pseudo code is given in Alg. 1)

1. For each timestamp tj find all SFTs in the time
interval [tj , tj + ∆T ] and compute Gj .

2. Select the segment starting from tj such that Gj is
maximal and remove the timestamps of the SFTs,
which belong to the selected segment.

3. Repeat steps 1. and 2. until N segments are se-
lected or there is no more data left.

An example of data selection is schematically presented
in Fig. 1(a), where we select N = 10 segments of duration
∆T = 3 time units out of data set with NSFT = 33 SFTs
of unit time distributed in T = 37 time units. Three of
the selected segments overlap in time with their neigh-
bors, however these overlapping segments do not share
data. Such partial segments suggest grid construction
based on the actual length of the segments instead of the
maximal length ∆T , which would reduce the coherent
part of the total computing cost in these cases. However

2 For a summary of data selection methods used in past searches
for continuous gravitational waves see [17].

3 Similarly we can argue that per SFT data optimization procedure
is completely computationally unfeasible.
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(a)Greedy data selection for requested N = 10 segments with duration ∆T = 3 time units. Note how segments 8, 9 and 10
overlap in time with their neighboring segments, however they do not share data. This is depicted by the black fill of the

segments.

(b)Compact data selection for requested N = 2 segments with duration ∆T = 3 time units. We show only the best segment
combination. For comparison with the greedy data selection method we denoted the selected segments of the greedy

procedure with G. The PSD of the SFTs has been chosen such that the best segment combination of the compact method
has much shorter time span.

FIG. 1: Schematic representation of (a) greedy and (b) compact data selection. The middle line of squares in gray are the
available SFTs of unit time, where the number inside the square denotes the PSD. The white squares without a number are

gaps in the data. The selected segments are the white rectangles, where the number inside is the number of the segment.

this would complicate the combination of the F-statistic
values in the semicoherent step of the StackSlide search,
thus the overall effect remains unclear. Therefore we stick
to a constant grid for every segment. While the above
criticism also holds for the other two data selection meth-
ods proposed in this subsection, we should note a specific
weak point of the greedy algorithm. Namely, depending
on the quality of the data this method tends to maximize
the total observation time of the generated segment list,
for example when the data is of low noise level at the
beginning and at the end, but contains disturbences or
gaps in the middle. In such cases an alternative method
yielding more compact segment list may lead to higher
search sensitivity.

Before proceeding with the explanation of the com-
pact data selection, we note, that an equivalent proce-
dure of the greedy method has been used to select data
for the recent all-sky Einstein@Home searches for contin-
uous gravitational waves in LIGO S6 data [18].

2. A compact method

For requested N number of segments with duration
∆T and given set of SFTs with duration TSFT, which are
ordered in time by increasing timestamps tj , the com-
pact data selection aims to maximize the goodness while
keeping the total timespan of the data close to the mini-
mum N∆T . The algorithm consist in the following steps
(pseudo code is given in Alg. 2)

1. Set the start time of the first segment to ts = tj .

2. Find all SFTs in the time interval [ts, ts + ∆T ].

3. Update ts with the first tj ≥ ts + ∆T .

4. Repeat steps 2. and 3. until N segments are se-
lected or there is no more data left.

5. Compute Gj .

6. Repeat steps 1. to 5. for all timestamps tj .

7. Sort all found combinations by decreasing G.

Using the compact method of data selection, we ob-
tain a list of possible segment combinations. Then we
use the first combination, which satisfies the computing
cost constraint. An example of compact data selection
is schematically presented in Fig. 1(b), where we select
N = 2 segments of duration ∆T = 3 time units out of
data set with NSFT = 33 SFTs of unit time distributed
in T = 37 time units. For comparison with the greedy
method we also show the outcome of the greedy proce-
dure. This example is specially constructed to stress the
difference between the compact and the greedy method
in terms of the time spanned by the data.

Due to the complexity of the compact method, but also
to fill the gap to the greedy data selection algorithm, we
also consider a third method, namely a greedy-compact
algorithm.

3. A greedy-compact method

This method lies between the greedy and the compact
methods in terms of the total span of the selected data.
We achieve that by maximization of the sensitivity per
cost ratio h−10 /C. Using Eq. (25) this is equivalent to
maximization of the ratio G/C2. The steps of the algo-
rithm are (see Alg. 3 for pseudo code)

1. For each timestamp tj find all SFTs in the time
interval [tj , tj + ∆T ] and compute Gj/C2

j , where
Cj is the computing cost resulting from using this
particular segment list and C1 = 1.

2. Select the segment starting from tj such that Gj/C2
j

is maximal and remove the timestamps of the SFTs,
which belong to the selected segment.
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3. Repeat steps 1. and 2. until N segments are se-
lected or there is no more data left.

In the next section we compare the results of the opti-
mization procedure using the three different data selec-
tion methods.

IV. EXAMPLES OF PRACTICAL
APPLICATION

In the absence of direct detection limits on the intrinsic
gravitational-wave amplitude have been set for example,
in Refs. [19–24] The intrinsic gravitational-wave ampli-
tude and with this the probability of detection depends
on unknown priors, in particular on the population and
ellipticity of the continuous waves emitters. Thorough
population studies and prospects for detection with the
initial and Advanced LIGO [25] detectors can be found
in Refs. [26–28]. In this work it is convenient to use as a
figure of merit the sensitivity depth

D =

√
S
h0

, (28)

a quantity introduced in Ref. [17]. With this we use for
comparison the analytical solution found in the “Directed
search for Cassiopeia-A“ example in Ref. [1], therefore
we use the same search volume enclosed in the frequency
band f ∈ [100, 300] Hz with spindown ranges correspond-
ing to a spindown age τmin = 300 y. The computing cost
constraint is C0 ≈ 472 days on a single computing core,
where the fundamental computing constants are

c̃SFT0 = 7× 10−8 s, ĉ0 = 6× 10−9 s . (29)

In the following we assume an A∗ search grid, for which
ξ ≈ 0.5. We fix the false-alarm pfA = 1×10−10 and false-
dismissal probability pfD = 0.1. The weakest detectable
signal, as estimated for Tdata = 0.7× 2× 12 days, ξ = 0.5
and m̃ = 0.2 yields sensitivity depth of

D|opt ≈ 54.4 Hz−1/2 , (30)

which in the KWS approximation yields

DKWS
∣∣
opt
≈ 36.9 Hz−1/2 . (31)

We perform the numerical optimization with the NO-
MAD [29] implementation of a Mesh Adaptive Di-
rect Search (MADS) [30–32] algorithm for constrained
derivative-free optimization. For each of the following
examples we run the procedure 50 times from a common
initial starting point:

N0 = 200 , ∆T0 = 1 days

m̃0 = 0.5 , m̂0 = 0.5,

while we use different mesh coarsening and mesh update
basis parameters 4. We use these multiple runs of the
optimization effectively to escape local extremes. Note
that in Figures 2 to 6 we plot the best solution from
each of these 50 runs, however on average approximately
17 × 103 points have been evaluated per data selection
algorithm for each of the studied cases.

In all cases we use the three different data selection
algorithms.

A. Directed search using simulated data

Gapless data with constant noise floor

We first consider optimization using simulated data
from 2 detectors spanning 365 days, without gaps, and

with a constant noise floor
√
Sn = 1 Hz−1/2. Using the

analytical optimization method discussed in [1] and the
WSG approximation to obtain optimal parameters, the
sensitivity depth of the search expressed in the KWS ap-
proximation is

DKWS
∣∣
opt
≈ 78.6 Hz−1/2 . (32)

The optimal maximal mismatch on the coarse and fine
grid is

m̃opt = 0.16 , m̂opt = 0.24 , (33)

and the optimal number of segments Nopt, segment du-
ration ∆T opt and total observation time Topt are

Nopt = 76.5 , ∆T opt ≈ 2.0 days ,

Topt ≈ 155.5 days .
(34)

The results of the numerical optimization performed
with the three different data selection algorithms are
plotted in Fig. 2. In Table I we summarize the found op-
timal solutions. The three data selection methods in this
case lead to equal sensitivity, which is expected, given
that the data is ideal, i.e., of constant noise floor and
without gaps. The small deviation in the optimal found
parameters is due to the usage of the numerical optimiza-
tion method.

Using the more accurate KWS method, the gain in
sensitivity of this toy semicoherent search compared to
the original fully coherent search is approximately 2.2 .

Data with gaps and constant noise floor

We consider now data with gaps allowing a duty cycle
(fraction of actually available data Tdata in a given time

4 These are internal parameters for the MADS algorithm control-
ling the evolution of the mesh, if a better solution than the cur-
rent one is found.
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FIG. 2: Semicoherent search optimization for data from 2 detectors, without gaps and of constant noise floor√
Sn = 1 Hz−1/2. The cost constraint is C0 = 472.0 d. The best numerical solution is denoted with × and the optimal

analytical solution with +. The panels on the left side show optimal segment duration ∆T and number of segments N , and
the panels on the right side show optimal coherent m̃ and semicoherent m̂ mismatch. Panels (a) and (b) are obtained using

greedy data selection, the most sensitive optimal solution is m̃opt ≈ 0.08, m̂opt ≈ 0.29, ∆T opt ≈ 1.1 d, Nopt ≈ 210.0,
Topt ≈ 245.0 d, ñ = 2, n̂ = 3, D ≈ 80.2 Hz−1/2 . Panels (c) and (d) are obtained using compact data selection, the most

sensitive optimal solution is m̃opt ≈ 0.09, m̂opt ≈ 0.37, ∆T opt ≈ 1.2 d, Nopt ≈ 203.0, Topt ≈ 253.8 d, ñ = 2, n̂ = 3,
D ≈ 80.1 Hz−1/2 . Panels (e) and (f) are obtained using greedy-compact data selection, the most sensitive optimal solution is

m̃opt ≈ 0.10, m̂opt ≈ 0.32, ∆T opt ≈ 1.3 d, Nopt ≈ 184.1, Topt ≈ 239.3 d, ñ = 2, n̂ = 3, D ≈ 80.1 Hz−1/2



8

greedy compact greedy-compact

D [Hz−1/2] 80.2 80.1 80.1
T [d] 245 253.8 239.3
N 210 203 184.1

∆T [d] 1.1 1.2 1.3
m̃ 0.08 0.09 0.10
m̂ 0.29 0.37 0.32

TABLE I: Optimal solution using greedy, compact and
greedy-compact data selection applied to data from 2

detectors, without gaps and of constant noise floor√
Sn = 1 Hz−1/2.

span Tspan, ε ≡ Tdata/Tspan) of 70 % per detector, while

the noise floor is still constant
√
Sn = 1 Hz−1/2. The

results of the numerical optimization are plotted in Fig. 3,
whereas the optimal solutions are summarized in Table
II.

greedy compact greedy-compact

D [Hz−1/2] 64.8 68.0 65.0
T [d] 364.3 220.5 364.7
N 326 165.8 434.1

∆T [d] 0.9 1.3 0.7
m̃ 0.07 0.08 0.04
m̂ 0.46 0.27 0.35

TABLE II: Optimal solution using greedy, compact and
greedy-compact data selection applied to data from 2

detectors, with 70 % duty cycle and of constant noise floor√
Sn = 1 Hz−1/2.

Data with gaps and noise floor fluctuations

In this example we further relax the requirements on
the data by allowing noise floor fluctuations, while keep-
ing the duty cycle of 70 % per detector. For each SFT
the PSD has been drawn from a Gaussian distribution
with mean E[

√
Sn] = 1 Hz−1/2 and standard deviation

σ[
√
Sn] = 15 × 10−2 Hz−1/2. The outcome of the opti-

mization is plotted in Fig. 4. The optimal parameters
are summarized in Table III.

greedy compact greedy-compact

D [Hz−1/2] 64.8 68.0 64.8
T [d] 364.9 215.3 364.8
N 454.1 154.6 423

∆T [d] 0.7 1.4 0.7
m̃ 0.03 0.08 0.04
m̂ 0.32 0.27 0.35

TABLE III: Optimal solution using greedy, compact and
greedy-compact data selection applied to data from 2
detectors, with 70 % duty cycle and noise floor with

fluctuations.

B. Directed search using real data

In this subsection we apply the optimization proce-
dure to real data collected by the Hanford (H1) and Liv-
ingston (L1) LIGO detectors during the S5 run [6]. The
most sensitive data is found around 169.875 Hz, thus the
optimization will be done at this frequency. The details
about the data are summarized in Table IV. It spans 653
days in 17797 SFTs of duration TSFT = 1800 s. With
this the average duty cycle is approximately 0.28 in each
detector.

run detector f [Hz] first SFT last SFT NSFT Tspan [d]

S5 H1 169.875 818845553 875277921 9331 653
S5 L1 169.875 818845553 875278812 8466 653

TABLE IV: Detector data used to test the numerical
optimization under real conditions.

Keeping the cost constraint

We first keep the cost constraint equal to the com-
puting cost used in the examples with simulated data,
namely C0 ≈ 472 days. The result of the optimization
procedure is plotted in Fig. 5. We summarize the op-
timal parameters in Table V. In this case usage of the
compact data selection algorithm yields approximately
10% increase of the search depth compared to the other
two methods. The gain of search depth compared to the
fully-coherent solution is approximately 1.5 .

greedy compact greedy-compact

D [Hz−1/2] 56.9 63.4 56.5
T [d] 554.4 329.0 653.0
N 182.2 134.3 183.1

∆T [d] 0.9 1.0 0.8
m̃ 0.06 0.05 0.04
m̂ 0.61 0.27 0.55

TABLE V: Optimal solution using greedy, compact and
greedy-compact data selection applied to data from the H1

and L1 LIGO detectors during the S5 run.

Using Einstein@Home

Finally we consider using the Einstein@Home dis-
tributed computing environment to increase the comput-
ing cost constraint to C0 = 360 × 103 days on a single
computing core. Such computing power corresponds to
approximately 30 days on 12000 24x7 single core CPUs.

The results of the numerical optimization procedure
approximation are plotted in Fig. 6. The optimal pa-
rameters are given in Table VI.

Note, that by the enormous increase of the computing
power, the three different data selection methods yield
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FIG. 3: Semicoherent search optimization using data from 2 detectors with duty cycle of 70 % and of constant noise floor√
Sn = 1 Hz−1/2. The cost constraint is C0 = 472.0 d. The best numerical solution is denoted with ×. The panels on the left

side show optimal segment duration ∆T and number of segments N , and the panels on the right side show optimal coherent
m̃ and semicoherent m̂ mismatch. Panels (a) and (b) are obtained using greedy data selection, the most sensitive optimal

solution is m̃opt ≈ 0.07, m̂opt ≈ 0.46, ∆T opt ≈ 0.9 d, Nopt ≈ 326.0, Topt ≈ 364.3 d, ñ = 2, n̂ = 3, D ≈ 64.8 Hz−1/2 . Panels (c)
and (d) are obtained using compact data selection, the most sensitive optimal solution is m̃opt ≈ 0.08, m̂opt ≈ 0.27,

∆T opt ≈ 1.3 d, Nopt ≈ 165.8, Topt ≈ 220.5 d, ñ = 2, n̂ = 3, D ≈ 68.0 Hz−1/2 . Panels (e) and (f) are obtained using
greedy-compact data selection, the most sensitive optimal solution is m̃opt ≈ 0.04, m̂opt ≈ 0.35, ∆T opt ≈ 0.7 d, Nopt ≈ 434.1,

Topt ≈ 364.7 d, ñ = 2, n̂ = 3, D ≈ 65.0 Hz−1/2
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FIG. 4: Semicoherent search optimization for data from 2 detectors with duty cycle 70% and noise floor with fluctuations.
The cost constraint is C0 = 472.0 d. The best numerical solution is denoted with ×. The panels on the left side show optimal

segment duration ∆T and number of segments N , and the panels on the right side show optimal coherent m̃ and
semicoherent m̂ mismatch. Panels (a) and (b) are obtained using greedy data selection, the most sensitive optimal solution is

m̃opt ≈ 0.03, m̂opt ≈ 0.32, ∆T opt ≈ 0.7 d, Nopt ≈ 454.1, Topt ≈ 364.9 d, ñ = 2, n̂ = 3, D ≈ 64.6 Hz−1/2 . Panels (c) and (d)
are obtained using compact data selection, the most sensitive optimal solution is m̃opt ≈ 0.08, m̂opt ≈ 0.27, ∆T opt ≈ 1.4 d,
Nopt ≈ 154.6, Topt ≈ 215.3 d, ñ = 2, n̂ = 3, D ≈ 68.0 Hz−1/2 . Panels (e) and (f) are obtained using greedy-compact data

selection, the most sensitive optimal solution is m̃opt ≈ 0.04, m̂opt ≈ 0.35, ∆T opt ≈ 0.7 d, Nopt ≈ 423.0, Topt ≈ 364.8 d, ñ = 2,
n̂ = 3, D ≈ 64.8 Hz−1/2
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FIG. 5: Semicoherent search optimization for data from the H1 and L1 LIGO detectors during the S5 run at 169.875 Hz. The
cost constraint is C0 = 472.0 d. The best numerical solution is denoted with ×. The panels on the left side show optimal

segment duration ∆T and number of segments N , and the panels on the right side show optimal coherent m̃ and
semicoherent m̂ mismatch. Panels (a) and (b) are obtained using greedy data selection, the most sensitive optimal solution is

m̃opt ≈ 0.06, m̂opt ≈ 0.61, ∆T opt ≈ 0.9 d, Nopt ≈ 182.2, Topt ≈ 554.4 d, ñ = 2, n̂ = 3, D ≈ 56.9 Hz−1/2 . Panels (c) and (d)
are obtained using compact data selection, the most sensitive optimal solution is m̃opt ≈ 0.05, m̂opt ≈ 0.27, ∆T opt ≈ 1.0 d,
Nopt ≈ 134.3, Topt ≈ 329.0 d, ñ = 2, n̂ = 3, D ≈ 63.4 Hz−1/2 . Panels (e) and (f) are obtained using greedy-compact data

selection, the most sensitive optimal solution is m̃opt ≈ 0.04, m̂opt ≈ 0.55, ∆T opt ≈ 0.8 d, Nopt ≈ 183.1, Topt ≈ 653.0 d, ñ = 2,
n̂ = 3, D ≈ 56.5 Hz−1/2
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FIG. 6: Semicoherent search optimization with data from the H1 and L1 LIGO detectors during the S5 run at 169.875 Hz.
The cost constraint is C0 = 360× 103 d. The best numerical solution is denoted with ×. The panels on the left side show
optimal segment duration ∆T and number of segments N , and the panels on the right side show optimal coherent m̃ and

semicoherent m̂ mismatch. Panels (a) and (b) are obtained using greedy data selection, the most sensitive optimal solution is

m̃opt ≈ 0.10, m̂opt ≈ 0.28, ∆T opt ≈ 15.4 d, Nopt ≈ 20.0, Topt ≈ 464.8 d, ñ = 2, n̂ = 3, D ≈ 98.6 Hz−1/2 . Panels (c) and (d)
are obtained using compact data selection, the most sensitive optimal solution is m̃opt ≈ 0.11, m̂opt ≈ 0.29, ∆T opt ≈ 17.9 d,
Nopt ≈ 20.0, Topt ≈ 387.7 d, ñ = 3, n̂ = 3, D ≈ 97.9 Hz−1/2 . Panels (e) and (f) are obtained using greedy-compact data

selection, the most sensitive optimal solution is m̃opt ≈ 0.04, m̂opt ≈ 0.26, ∆T opt ≈ 9.8 d, Nopt ≈ 35.2, Topt ≈ 653.2 d, ñ = 2,
n̂ = 3, D ≈ 95.6 Hz−1/2
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greedy compact greedy-compact

D [Hz−1/2] 98.6 97.9 95.6
T [d] 464.8 387.7 653.2
N 20 20 35.2

∆T [d] 15.4 17.9 9.8
m̃ 0.10 0.11 0.04
m̂ 0.28 0.29 0.26

TABLE VI: Optimal solution using greedy, compact and
greedy-compact data selection applied to data from the H1

and L1 LIGO detectors during the S5 run. The cost
constraint is suitable with Einstein@Home.

practically equal sensitivity and the gain in sensitivity
compared to the fully coherent solution is approximately
2.65 .

V. DISCUSSION

In this paper we studied the optimization of semicoher-
ent searches for continuous gravitational waves, in par-
ticular the StackSlide search, at constrained computing
cost under more realistic conditions by taking into ac-
count possible gaps in the data and noise level changes.
The presented method to obtain optimal search parame-
ters is based on numerical optimization combined with a
data selection algorithm. The outcome of the optimiza-
tion procedure is the set of the optimal search parameters
{m̃ , m̂,N, ∆T} as well as the selected data and an esti-
mate of the expected sensitivity depth.

We showed that under ideal conditions, our numeri-
cal optimization method recovers, in terms of sensitiv-
ity, the optimal solution found by using the analytical
method discussed in Ref. [1]. Based on the examples
of practical application, we conclude that the compact
data selection yields higher sensitivity depth compared
to the greedy data selection. However the superiority of
the compact method over the greedy method depends on
the data quality and on the computing cost constraint.
It diminishes namely for data without large differences
in the noise level from epoch to epoch and equally dis-
tributed gaps or for large allowed computing cost, where
we can use nearly all the data.

The optimization procedure is immediately applicable
to searches over simple (nearly) ”box“ parameter-space
shape. While the proposed optimization method can be
easily adapted to other types of searches, by modification
of the computing cost function, further work is required
to extend the applicability of the optimization procedure
to an arbitrary parameter-space shape. The proposed
optimization method assumed a fixed frequency band.
Further work is required to relax this condition, in order
to answer the question, what is the optimal trade-off be-
tween the size of the searched parameter space (width of
the search) and its coverage (depth of the search). For a
promising approach see [5]. In the example section of this
paper we considered directed searches. For further work

on all-sky searches one should take into account recent
research on the semicoherent metric [33], as it suggests
increase of the semicoherent number of templates with
yet unknown implications.
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Appendix A: Pseudo code of the proposed data
selection algorithms

In the following we describe the data selection algo-
rithms proposed in Sec. III in pseudo code.

ALG. 1: Greedy data selection.

Input D - list of SFTs sorted by increasing timestamp tj ,
N - requested number of segments with duration ∆T

Output L - list of segments and corresponding SFTs

while Length(L)< N && Length(D) > 0 do
G ← 0 . List of goodness per segment
for all tj do

d←FindAllSFTsInRange(tj , tj + ∆T )
Gj ←ComputeGoodness(d)

end for
g ←Max(G)5

Lj ←AddSegment(g)
RemoveUsedSFTs(Lj)

end while



14

ALG. 2: Compact data selection.

Input D - list of SFTs sorted by increasing timestamp tj ,
N - requested number of segments with duration ∆T

Output L - list of segments and corresponding SFTs

G ← 0 . List of goodness
L← 0 . List of segmentlists
for all tj do

ts ← tj
l← 0
while Length(l)< N && ts <Max(tj) do

d←FindAllSFTsInRange(ts, ts + ∆T )
lj ←AddSegment(d)
ts ←FirstTimestampAfter(ts + ∆T )

end while
Lj ← l
Gj ←ComputeGoodness(Lj)

end for
L ←Max(G) . such that the computing cost constraint is
satisfied

ALG. 3: Greedy-compact data selection.

Input D - list of SFTs sorted by increasing timestamp tj ,
N - requested number of segments with duration ∆T

Output L - list of segments and corresponding SFTs

while Length(L)< N && Length(D) > 0 do
X ← 0 . List of goodness / cost ratio
for all tj do

d←FindAllSFTsInRange(tj , tj + ∆T )
Xj ←ComputeGoodnessCostRatio(d)a

end for
x←Max(X )
Lj ←AddSegment(x)
RemoveUsedSFTs(Lj)

end while

aWe compute Gj/C
2
j , where Cj is the computing cost resulting

from using this particular segment list, C1 = 1.
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