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1 Introduction

In the past decades, many perturbative and non-perturbative results have been achieved

in the planar limit of N = 4 super Yang-Mills theory (SYM). See [1] for reviews about

the aspects of spectrum, scattering amplitude and Wilson loop. One of the significant

achievements about scattering amplitude and Wilson loop is made in [2]. It has been shown

that n-gluon scattering amplitude at strong coupling in N = 4 SYM can be calculated

from the minimal area of the surface ending on a null n-polygonal Wilson loop at the

boundary of AdS space. This is based on the self-duality of IIB string theory under a certain

combination of bosonic and fermionic T-duality transformations in AdS5×S5 spacetime [3,

4], which also explains that the existence of the dual superconformal symmetry [4]. There

are many ways to deform N = 4 SYM. Deformed field theories arising from a new definition

of the product of fields in the Lagrangian, provide an interesting generalization of the

gauge/gravity correspondence [5–7]. This is also due to the fact that, on the string theory

side, there is a systematic procedure called the “TsT transformation” (T-duality, shift,

T-duality) [8, 9]. The most well-known examples are non-commutative deformation [10–

12], β-deformation [13] and “dipole deformation” [14–17] of AdS5 × S5 spacetime. A good

summary can be found in [18], see also the reference therein.
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We mainly focus on the holography dual of scattering amplitudes and Wilson loop

operators in N = 4 non-commutative super Yang-Mills theory (NCSYM). In [19], the

author has holographically studied the planar gluon scattering amplitudes in terms of

scattering amplitude/Wilson loop duality.1 However, the fermionic T-duality has not been

considered, which leads to non-constant dilaton and complex field strength.

On the other hand, many works about the fermionic T-duality transform and the

scattering amplitude/Wilson loop duality have been done in the past years [21–35].2 One

of the purposes of the present work is to present the construction of fermionic T-duality

transformation of the NCAdS background to cancel the non-constant dilaton and the com-

plex field strength, and corresponding string solutions in the final dual background in more

details which are expected to dual to scattering amplitude. Following the notaton in [19],

we have called the gravity background corresponding to NCSYM as NCAdS spacetime,

whose definition will be shown in (2.1). More precisely we first perform bosonic T-duality

transformation on the NCAdS background, and construct the solution to Killing spinor

equations of the resulting background. We then perform the fermionic T-duality trans-

formation, and find the final dual background which is expected to be equivalent with

the NCAdS background. In the final dual background, we construct the solution with

proper boundary conditions which is expected to be holographic dual of gluon amplitude

in NCSYM. Further, a motivation [36] to explore the relation between closed and open

strings in AdS leads us to construct the open string solution (Wilson loop) ending at the

boundary of NCAdS, which dual to closed string in the final dual background. This would

be important in the study of the closed and open strings relation and the corresponding

observables in NCSYM.

The layout of this paper is as follows. In section 2, we first review the TsT transforma-

tion of AdS5×S5 spacetime (NCAdS spacetime) which corresponds to the non-commutative

N = 4 Super Yang-Mills theory. We then perform certain bosonic and fermionic T-dual

transformations on the NCAdS background, and obtain a simplified gravity background.

In section 3, we study the scattering amplitudes in NCSYM by using the solutions in the

simplified gravity background. In section 4, we construct the open string solution in the

NCAdS background, which is dual to the folded string solution in the simplified gravity

background. Finally, we devote to the conclusions and discussions and also mention the

future problems. In appendices, we would like to list some techniques and Elliptic functions

which are very useful in our analysis.

2 TsT deformed AdS5 × S5 spacetime and their T-duality transforma-

tions

The gravity dual of non-commutative gauge theory in [10, 11] can be generated from the

AdS5 × S5 spacetime by using TsT deformation (x1, x2)γ , which stands the T-dualizing

1See [20] for a special scattering amplitudes amplitude in the finite temperature regime of non-

commutative Tang-mills theory.
2These works [21–29] are focus on the ABJM theory and the other works [30–35] study the N = 4

SYM theory.
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x1 → x1
t , shift x2 by x2 + γx1

t , then T-dualizing back x1
t → x1 [8], where xµt (µ = 0, 1, 2, 3)

is the coordinate T-dual to xµ and γ is the constant deformation parameter.

By applying the (x1, x2)γ TsT-deformation to AdS5 × S5 spacetime, one obtains the

following background:

ds2 =
R2

r2

(
−dx2

0 + dx2
3 + dr2

)
+
R2

r2

1

1 + γ2R4

r4

(
dx2

1 + dx2
2

)
+R2ds2

S5

B =
γR4

r4

1

1 + γ2R4

r4

dx1 ∧ dx2, φ = −1

2
log

(
1 + γ2R

4

r4

)
, (2.1)

F1 = 0, F3 = −4γ
R4

r5
dx0 ∧ dx3 ∧ dr,

F5 = −4R4

(
1

1 + γ2R4

r4

1

r5
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr + ωS5

)
,

where ds2 is the metric of the NCAdS background, B is the NS-NS B-field, φ is dilaton

and F1, F3, F5 are the R-R field strengths.

The dual gauge theory of this background (2.1) is defined on the noncommutative

spacetime with noncommutativity parameter [x1, x2] = iθ12. The constant noncommuta-

tivity parameter θ12 [37] is associated with the TsT-deformation parameter γ as [10]

θ12 = 2πα′ (B12|r→0)−1 = 2πα′γ. (2.2)

Then the so called Seiberg-Witten α′ → 0 limit has to be taken with α′γ fixed.

For large r, background (2.1) reduces to the original AdS5 × S5 spacetime. Since the

large r region corresponds to the IR regime of the gauge theory, one expects that the

non-commutative super Yang-Mills theory reduces to the original N = 4 super Yang-Mills

theory at IR regime (long distance). We will study the gluon scattering amplitude at IR

regime in section 3. The background (2.1) has boundary at r = 0. Since G11, G22 ∝ r2

R2 in

the boundary of background (2.1), the physical size of x1 and x2 directions shrink [11].

2.1 Bosonic T-duality transform along non-radial directions

The background (2.1) is invariant under the shift isometry xµ → xµ + c, where µ =

0, 1, 2, 3, c is a constant. We then perform T-duality transform along x1, x2, x3, x0 in turn

by following the Buscher rule in appendix A. The resulting background becomes

ds′2 =
r2

R2

(
−(dx′0)2 + (dx′1)2 + (dx′2)2 + (dx′3)2

)
+
R2

r2
dr2 +R2ds2

S5 ,

B′ = −γdx′1 ∧ dx′2, φ′ = log

(
r4

R4

)
,

F ′1 = −4i
R4

r5
dr, F ′3 = F ′5 = 0, (2.3)

This background is same as the one obtained from the T-dual transformation of original

AdS5 along x1, x2, x3, x0 directions but with a constant B-field. We note that the factor

i has appeared in F ′1 due to T-dualizing along the time direction x0 [38]. To cancel the

dilaton and the complex field strength, we perform fermionic T-dual transformation on the

background (2.3).
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2.2 Fermionic T-duality transform

In this subsection, we perform the fermionic T-duality on the background (2.3).3 Given

Killing spinors (εI , ε̂I), the fermionic T-duality transform is generated as [39]

0 = εIγ
M εJ + ε̂Iγ

M ε̂J (2.4)

∂MCIJ = 2iεIγM εJ (2.5)

φ̃ = φ′ +
1

2
Tr(logC) (2.6)

i

16
eφ̃F̃αβ̂ =

i

16
eφ
′
F ′αβ̂ − εαI ε̂

β̂
J(C−1)IJ , (2.7)

where the indices I, J are the labels of the different Killing spinors, and Fαβ̂ are the R-R

fields in bispinor form

Fαβ̂ = (γM )αβ̂FM +
1

3!
(γMNP )αβ̂FMNP +

1

2

1

5!
(γMNPQR)αβ̂FMNPQR, M = 0, 1, · · · , 9.

(2.8)

F̃αβ̂ and F ′αβ̂ are also defined in a similar way. Note that the metric and the B-field do not

transform under the above fermionic T-duality. The Killing spinors are not arbitrary. More

precisely, (2.4) is imposed to ensure the fermionic isometries, i.e. {εIQI , ε̂ÎQÎ} = 0 where

Q and Q̂ are the supercharges in the supersymmetry algebra. Relaxing (2.4), fermionic

T-duality will lead to field configurations that are not supergravity solutions. The second

equation determines the matrix C. In order to do that, we have to find the unbroken

supersymmetry in 10D IIB supergravity, which is generated by the spinor parameters

(εα, ε̂α̂) (α, α̂ = 1, . . . , 16). Then the parameters must satisfy the following equations

from the supersymmetry transformation of two gravitini ψM , ψ̂M (M = 0, . . . , 9) and two

dilatini λ, λ̂:

δψM̂ = eM̂
M∇M ε−

eφ
′

8
γN̂F ′

N̂
γM̂ ε̂ = 0, (2.9)

δψ̂M̂ = eM̂
M∇M ε̂+

eφ
′

8
γN̂F ′

N̂
γM̂ ε = 0, (2.10)

δλ = eM̂
MγM̂∂Mφ

′ε+ eφ
′
γM̂F ′M̂ ε̂ = 0, (2.11)

δλ̂ = eM̂
MγM̂∂Mφ

′ε̂− eφ′γM̂F ′
M̂
ε = 0, (2.12)

where δ is the supersymmetry variation, ∇M is the covariant derivative and γM̂ is the 10D

gamma matrices. M̂ is the coordinate of the flat space, and eM̂
N is the vielbein. From the

dilatino equations (2.11) and (2.12), ε and ε̂ are related with

ε̂ = −iε. (2.13)

Although the supersymmetric parameters in type IIB supergravity are real Majorana-

Weyl spinors, an imaginary unit appears because of the complexified RR one form (2.3).

3We follow the notation summarized in [39].
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Therefore, (2.4) is satisfied automatically. Substituting (2.13) the gravitino equations are

simplified as

eM̂
M∇M ε+ i

eφ
′

8
γ4̂F ′

4̂
γM̂ ε = 0. (2.14)

We can find that the M = x0,1,2,3 part of (2.14) is trivial. To solve the remaining 6D part

(R × S5), it is convenient to rewrite the coordinate as ys (s = 1, 2, · · · , 6) with |y| = r.

We decompose SO(9,1) spinor index α into (a′j′, ȧ′j′) as in [4], where a′, ȧ′ = 1, 2 are the

SO(3,1) spinor indices and j′ = 1, . . . , 4 is the SO(5) spinor index. (σr)j′k′ (r = 1, . . . , 6)

are the 6D Pauli matrices. Then (2.14) is solved as

εb
′l′
aj =

√
r

R
δb
′
aM

l′
j (y), εḃ

′l′
aj = 0, ε̂b

′l′
aj = −iεb′l′aj (2.15)

where M l′
j (y) is the SU(4)/SO(5) matrix rotating the point (0, 0, 0, 0, 0, 1) on S5 to the point

(y1, y2, y3, y4, y5, y6)/r. The unprimed indices a, j are regarded as the label of different

Killing spinors corresponding to the label I in (2.5). The main difference between our

Killing spinor and the chosen one in [4] is (2.13). We will show the details of the Killing

spinors of original AdS5 × S5 spacetime used in [4] in appendix B. Then one finds

Caj bk = 2iεabσ
r
jkyr, (C−1)aj bk = − i

2
εab(σr)jk

yr
r2
. (2.16)

To determine the transformation of field strength, we use

εa
′j′

aj (C−1)aj bk ε̂b
′k′
bk = − 1

2R
εa
′b′(σ6)j

′k′ =
i

2R
(γ0̂1̂2̂3̂4̂)a

′j′ b′k′ . (2.17)

Writing it in the terms of projection operator 1
2

(
(γ0̂1̂2̂3̂ − i)γ4̂

)αβ̂
, one finds

eφ̃F̃αβ̂ = −γ4̂i
4

R
− 4

R
(γ0̂1̂2̂3̂4̂ − iγ4̂)αβ̂ = − 4

R
(γ0̂1̂2̂3̂4̂)αβ̂ . (2.18)

Furthermore, using (2.6) one finds the dilaton vanishes φ̃ = 0. Introducing z = R2

r and

x̃µ = x′µ, we then obtain the dual background as

ds̃2 =
R2

z2

(
−(dx̃0)2 + (dx̃1)2 + (dx̃2)2 + (dx̃3)2 + dz2

)
+R2ds2

S5 ,

B̃ = −γdx̃1 ∧ dx̃2, φ̃ = 0

F̃1 = F̃3 = 0, F̃5 = −4R4

(
1

z5
dx̃0 ∧ dx̃1 ∧ dx̃2 ∧ dx̃3 ∧ dz + ωS5

)
. (2.19)

This is the usual AdS5×S5 background but with the constant B-field. One may suspect the

above fermionic T-duality transform because we have performed it in complex background.

In order to resolve this issue, we consider the whole duality transform in reversed order.

First, starting from the background (2.19), we perform the fermionic T-duality transfor-

mation. Since the background is real and the constant B-field does not contribute to the

Killing spinor equations, we can use the same spinors (ε, ε̂) as the ones in [4]

εb
′l′
aj =

√
r

R
δb
′
aM

l′
j (y), εḃ

′l′
aj = 0, ε̂b

′l′
aj = iεb

′l′
aj . (2.20)
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Then using transformation rules (2.5), (2.6) and (2.7), we find the field strength and dilaton

change to

eφ̃
′
F̃ ′ = − 4

R
γ0̂1̂2̂3̂4̂ +

4

R
(γ0̂1̂2̂3̂4̂ − iγ4̂) = −i 4

R
γ4̂, φ̃′ = −4 log(

z

R
), (2.21)

where we have rewritten the equations in [4] in our notations. The NS-NS metric and

B-field do not change under this transformation. Writing by using the coordinate r = R2

z ,

we can find that the resulting background coincides with (2.3). Then performing the

bosonic T-duality tranform along the non-radial directions, we can obtain the NCAdS

background (2.1).

We give comment on this result as following: note that the final dual background

depends on the choice of Killing spinor in (2.5). However, no matter which set of Killing

spinors we choose, the metric and B-field will not change under the fermionic T-duality

transformation. Our transformation can be regarded as a simplification of the NCAdS

background (or NCSYM). If the detail map from the observables in the NCAdS back-

ground (2.1) to the observables in (2.19) background is known, one can calculate the

observables in (2.19) background easily. In the following sections, we show two examples

of these observables to show the powerfulness of our result.

3 The scattering amplitude in the NCAdS spacetime

We study the IR regime of the gluon scattering amplitude at strong coupling in Non-

commutative super Yang-Mills theory. We follow the procedure in the original AdS5 × S5

spacetime case [2], and study the open string scattering amplitude on D3-brane near horizon

in NCAdS background (2.1). We simplify this problem by studying the object in the final

dual background (2.19).

3.1 Open string boundary condition before and after T-dual transformation

Just as in the study of gluon scattering amplitude in [2], we consider the Euclidean world-

sheet. The bosonic part of the worldsheet action on background (2.1) is

1

4πα′

∫
d2σ
√
g(gabGµν + iεabBµν)∂ax

µ∂bx
ν . (3.1)

The open strings on the D3-brane near horizon satisfy the boundary condition(
Gµν∂σx

ν + iBµν∂τx
ν
)
|∂Σ = 0, (3.2)

where ∂Σ is the boundary of the worldsheet. This is mixed Neumann-dirichlet boundary

conditions in the directions x0, · · · , x3. In components this boundary condition can be

written as

0 = G0ν∂σx
ν |∂Σ (3.3)

0 = G3ν∂σx
ν |∂Σ (3.4)

0 = G1ν∂σx
ν + iB12∂τx

2|∂Σ (3.5)

0 = G2ν∂σx
ν + iB21∂τx

1|∂Σ. (3.6)

– 6 –
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We then consider the bosonic T-duality transform along x1, x2, x3, x0 step by step. We

will use (A.4) to study the transformation of the boundary conditions. We label the field f

after the T-duality transformation along direction xa as f(a), where a = 1, 2, 3, 0, f(0) = f̃

is the field in background (2.19).4

We show the first step of T-duality transformation along direction x1 for instance. We

start with the boundary condition:

Gµν∂σx
ν |∂Σ = −iεστBµν∂τxν |∂Σ. (3.7)

Taking T-dual transformation along x1 direction, (A.4) leads to get

∂αx
1
(1) = −iεαβ

(
G11∂βx

1 +G1m∂βx
m
)
−B1m∂αx

m (3.8)

∂αx
2
(1) = ∂αx

2, ∂αx
3
(1) = ∂αx

3, ∂αx
0
(1) = ∂αx

0

Resolving these equations, one obtains

∂ax
1 = iεbaG12(1)∂bx

2
(1) + iεbaG11(1)∂bx

1
(1) (3.9)

∂αx
2 = ∂αx

2
(1), ∂αx

3 = ∂αx
3
(1), ∂αx

0 = ∂αx
0
(1)

Then the boundary condition becomes

∂τx
1
(1)|∂Σ = 0, ∂σx

3
(1)|∂Σ = 0, ∂σx

0
(1)|∂Σ = 0, (3.10)

∂σx
2
(1)|∂Σ = −γR

2

r2

(
G12(1)∂σx

2
(1) +G11(1)∂σx

1
(1)

)
∂Σ
. (3.11)

In the same way, we study the boundary condition after the T-duality transformation along

x2, x3, x0 in turn and find the boundary condition in the final dual coordinates becomes

the simple Dirichlet condition

∂τ x̃
µ|∂Σ = 0, µ = 0, 1, 2, 3. (3.12)

Since we started with the D3-brane near horizon (r → ∞) in background (2.1), the open

strings are then fixed at the AdS boundary (z = R2

r → 0) in background (2.19).

Note that the boundary condition of open strings does not change under the fermionic

T-duality transformation. Therefore the scattering amplitude on the D-brane in NCAdS

spacetime is mapped to a T-dual open strings with Dirichlet boundary condition in

the background (2.19). Furthermore since the T-duality transform does not change the

boundary condition of radial direction, the open string has the Dirichlet condition along

z direction.

4In this section, we only consider the field f which is invariant under ferimionic T-dual transformation.

This means the field in (2.3) and (2.19) are same.

– 7 –
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3.2 Null polygon Wilson loop

We then study which object in background (2.19) dual to the scattering amplitude in

background (2.1). Following the process in [2], we consider the scattering of the open

strings ending on the IR D3-brane in background (2.1). We insert the vertex operator with

a momentum kµ on the boundary of the worldsheet. At this boundary, xµ thus carries a

momentum kµ, i.e. the zero mode of field xµ. In background (2.19), this translates to the

condition about the “winding” ∆xµ = xµ(σ = 2π)−xµ(σ = 0) =
∫ 2π

0 dσ∂σx̃
µ. From (A.4),

we find that ∂σx̃
µ and ∂σx

µ are related with

∂σx̃
1 = −iεστG11∂τx

1 −B12∂σx
2 (3.13)

∂σx̃
2 = −iεστG22∂τx

2 +B12∂σx
1 (3.14)

∂σx̃
3 = −iεστG33(2)∂τx

3 (3.15)

∂σx̃
0 = −iεστG00(2)∂τx

0. (3.16)

Then ∆x̃µ =
∫ 2π

0 dσ∂σx̃
µ can be written as

∆x̃1 = k1 −B12x
2|2πσ=0 (3.17)

∆x̃2 = k2 +B12x
1|2πσ=0 (3.18)

∆x̃3 = k3 (3.19)

∆x̃0 = k0, (3.20)

where kµ = kµprop
R2

r2
and kµprop are the momentum carried by vertex operator and the proper

momentum of string in (2.1) respectively. We then use the boundary condition (3.7) to

rewrite ∂σx
µ into kµ

∆x̃1
i = k1

i −
B12B21

G11G22
k1
i (3.21)

∆x̃2
i = k2

i −
B12B21

G11G22
k2
i (3.22)

∆x̃3
i = k3

i (3.23)

∆x̃0
i = k0

i , (3.24)

where i is the label of the open strings. Since momentum conservation (
∑

i k
µ
i = 0) of

the scattering, the segments constructed by ∆x̃µi should be always closed. Since we should

take r to ∞ (horizon), B12(∼ R4

r4
) is negligible comparing to G11 ∼ R2

r2
. We thus obtain

∆x̃µi = kµi , (3.25)

which shows that the segments are lightlike (null), because all the gluons are massless. We

thus obtain a null polygon Wilson loop at the boundary in (2.19).

We then consider the background (2.19), which is an AdS5×S5 spacetime with constant

B-field. The sigma action becomes

S =
1

4πα′

∫
d2σ

(
∂ax̃µ∂ax̃

νG̃µν + iB̃µνε
ab∂ax̃

µ∂bx̃
ν
)

(3.26)

=
1

4πα′

(∫
d2σ

(
∂ax̃µ∂ax̃

νG̃µν

)
+ i

∫
∂Σ
B̃µν x̃

µ∂tx̃
ν

)
. (3.27)

– 8 –
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where ∂t is a derivative along the worldsheet boundary ∂Σ. Since the B̃-field is constant, it

does not contribute to the e.o.m. The second term of (3.27) depends only on the boundary

and just gives the an overall dressing phase

Φ =
i

4πα′

∫
∂Σ
dσγ

(
x̃1∂σx̃

2 − x̃2∂σx̃
1
)
, (3.28)

where the boundary condition (3.12) is used. Since the worldsheet ends on the null polygon

Wilson loop with segments ∆x̃µi = kµi at boundary, we can parametrize the boundary as

x̃µ =
∑
m

kµmθ(σ − σm), (3.29)

where m is the label of the segments of Wilson loop, σm is the location of the cusp. We

thus obtain

Φ =
iγ

4πα′

∑
m<n

(
k1
mk

2
n − k2

mk
1
n

)
. (3.30)

This result matches with the discussion from the viewpoint of NCSYM in [19]. One could

study the α′ correction (or
√
λ) of (3.27) by considering the fluctuation around the classical

solution x̃µ [40]. Since the boundary of (3.27) should be fixed, the effect of the constant

B-field does not change. This means at any order of α′ (or
√
λ), the B-field only contributes

a phase factor Φ. This is consistent with our expectation that the non-commutative super

Yang-Mills theory reduce to the original N = 4 super Yang-Mills theory at IR regime (long

distance) [2].

To close this section, let us show the similarities and differences to the discussion

in [19]. The author in [19] studied the gluon scattering amplitude from gravity side by

using a slight different background,5 and argued that the scattering amplitude dual to the

null polygon Wilson loop in the T-dual background. In the present paper, basing on the

Buscher rules in appendix A, we studied how the boundary condition and the momentum of

strings transform under the T-duality. This provides solid proof to show that the scattering

amplitude in background (2.1) corresponds to the null polygon Wilson loop in (2.19). We

also used the fermionic T-dual transformation to justify the complex background, which

has not been discussed in [19]. Furthermore, we have also considered the fluctuation around

the classical solution, and found the B-field contribute the same phase factor Φ at any order

of α′ (or
√
λ) in the planar limit, which is consistent with the expectation in [19] from the

viewpoint of field theory side.

4 Open string solution in NCAdS background

The AdS/CFT correspondence enables us to study the strong coupling gauge theory by

using the classical solution in gravity side. In this section we study the classical open

solution in NCAdS background (2.1), which is dual to the folded string [41] solution in

background (2.19).

5In [19], the background corresponds to a (2, 2) signature NCSYM.

– 9 –



J
H
E
P
0
8
(
2
0
1
8
)
1
7
2

If the string configuration does not depend on directions x1 and x2, the classical

solution of this type string configuration should be described by the same classical solution6

as in the original AdS5 × S5 spacetime. We will study non-trivial classical solution which

depends on x1 and x2 directions. However due to the appearance of B-field and the

complicated metric in (2.1), it is not an easy work to construct this kind classical solution.

Indeed in [11], the authors studied the Wilson line in (2.1), and suggest that the open

strings cannot be localized near the boundary in background (2.1). This is one of the

difficulties to study the non-commutative super Yang-Mills theory from gravity side. In

this section, we show one procedure to solve this problem.

We start with the classical solution in background (2.19), and use the Buscher rule to

find the dual classical solution in NCAdS spacetime (2.1). More precisely, we start with

the folded string [41] in original AdS5 × S5 spacetime, which plays an important role in

the study of AdS/CFT correspondence. Our calculation in this section can be regarded as

the NCAdS spacetime version of the folded string studied in [36].

Following the usual notation for folded string in literature, we use the Lorentizian

signature worldsheet action

S = − 1

4πα′

∫
dτdσ

(
ηαβ∂αx

µ∂βx
νGµν − εαβBµν∂αxµ∂βxν

)
, (4.1)

where ετσ = 1, and ηαβ is the metric of worldsheet in Lorentization signature. Note that

the background (2.19) does not change by varying the signature of worldsheet. However,

the transformation of coordinate becomes (A.10). For the Euclidean signature worldsheet,

the T-duality transformation will map the real solutions to the complex ones (see [42] for

recent developments). Here we are considering the Lorentizian signature, such that the

T-duality will map the real solutions to the real ones.

4.1 Coordinates and folded string solutions in original AdS spacetime

We first consider the folded string solution in the global coordinate of original AdS5 × S5

spacetime. To fix the notation, we should describe the coordinates that was used from

now. The embedding coordinates of original AdS5 × S5 spacetime are defined by

ds2
AdS5

= dXMdX
M , −XMX

M = X2
−1 +X2

0 −X2
1 −X2

2 −X2
3 −X2

4 = 1, (4.2)

where we have set R = 1 for simplicity. The global coordinates(t, ρ,Ω3) is given by

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρ(dφ2 + cos2 φdθ2
1 + sin2 φdθ2

2). (4.3)

with

X0 + iX−1 = cosh ρeit, X1 + iX2 = sinh ρ cosφeiθ1 , X3 + iX4 = sinh ρ sinφeiθ2 . (4.4)

The Poincare coordinates are defined by

z =
1

X−1 −X4
, x0 =

X0

X−1 −X4
, xi =

Xi

X−1 −X4
, i = 1, 2, 3, (4.5)

6Some of those string configurations have been given by [36].
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whose metric is given by

ds2 =
dz2 + dxµdx

µ

z2
. (4.6)

The folded string is solved under the ansatz in global coordinate of AdS5 space

t = κτ, θ1 = κωτ, φ = θ2 = 0.

In the conformal gauge, the e.o.m. and Virasoro constrains become

ρ′′ + κ2(ω2 − 1) sinh ρ cosh ρ = 0

ρ′2 − κ2(cosh2 ρ− ω2 sinh2 ρ) = 0.

This is solved by7

sinh(ρ) =
1

ω

sn(κωσ| 1
ω2 )

dn(κωσ| 1
ω2 )

, cosh(ρ) =
1

dn(κωσ| 1
ω2 )

, (4.7)

where sn and dn are the Jacobi Elliptic functions. See appendix C for the definition. Here

we have focused on the case ω2 > 1. The folded string rotates with the angular velocity
dθ1
dt = ω. The radial coordinate ρ(σ) varies in the range (0, arctanh( 1

ω )),which is fixed

by the condition dρ
dσ |ρ→ρ0 = 0. Since the constant B-field does not effect the e.o.m. and

Virasoro constraints, the classical folded string solution in original AdS5×S5 spacetime is

also a solution in background (2.19). Writing the solution (4.7) in the background (2.19),

we obtain the classical folded string solution

z =
dn(κωσ| 1

ω2 )

sin(κτ)
, x̃0 =

cos(κτ)

sin(κτ)
(4.8)

x̃1 =
1

ω
sn

(
κωσ

∣∣∣∣ 1

ω2

)
cos(κωτ)

sin(κτ)
, x̃2 =

1

ω
sn

(
κωσ

∣∣∣∣ 1

ω2

)
sin(κωτ)

sin(κτ)
.

4.2 Classical solution in NCAdS spacetime dual to folded string

Our task is to find the corresponding T-dual(back) solution in background (2.1), which is

the background before the T-dual transformation. By definition, r can be obtained by

r =
1

z̃
=

sin(κτ)

dn(κωσ| 1
ω2 )

. (4.9)

The Buscher rule for coordinates (A.10) leads to

∂βx̃
1 = εβα∂

αx1M
r2
− ∂βx2Mγ

r4

∂βx̃
2 = εβα∂

αx2 1

r2
+ εβαη

αγ

(
εγδ∂

δx1Mγ

r4
− ∂γx2Mγ2

r6

)
∂βx̃

3 = εβα∂
αx3 1

r2
(4.10)

∂βx̃
0 = −εβα∂αx0 1

r2
.

7Our notation for is different with the one used in [36].

– 11 –



J
H
E
P
0
8
(
2
0
1
8
)
1
7
2

where xµ means the coordinate in background (2.1). Resolving ∂αx
µ by using ∂βx̃

µ, we find

∂σx
0 = r2∂τ x̃

0, ∂τx
0 = r2∂σx̃

0,

∂σ
(
x1 + ix2

)
= −iγ∂σ

(
x̃1 + ix̃2

)
− r2∂τ

(
x̃1 + ix̃2

)
, (4.11)

∂τ
(
x1 + ix2

)
= −iγ∂τ

(
x̃1 + ix̃2

)
− r2∂σ

(
x̃1 + ix̃2

)
.

Substituting (4.8) to (4.11), we obtain

r =
sin(κτ)

dn(κωσ| 1
ω2 )

,

x0 = −

cn
(
ωκσ

∣∣∣ 1
ω2

)
sn

(
ωκσ

∣∣∣ 1
ω2

)
ω2dn

(
ωκσ

∣∣∣ 1
ω2

) − E
(
am
(
ωκσ

∣∣ 1
ω2

)
| 1
ω2

)
(

1
ω2 − 1

)
ω

, (4.12)

x1 + ix2 = −iγ eiκωτ

sin(κτ)
sn

(
κωσ

∣∣∣∣ 1

ω2

)
−
eiκωτcn

(
ωκσ

∣∣ 1
ω2

)
(cos(κτ)− iω sin(κτ))

(ω2 − 1)dn
(
ωκσ

∣∣ 1
ω2

) .

Using Mathematica, one can check that the solution (4.12) satisfy the e.o.m. in the

background (2.1)

r(x0)′′ − rẍ0 + 2ṙẋ0 − 2r′(x0)′ = 0 (4.13)(
(x2)′′ − ẍ2

) (
γ2r + r5

)
+ (x2)′

(
2γ2r′ − 2r4r′

)
+ ẋ2

(
2r4ṙ − 2γ2ṙ)

)
+4γr2r′ẋ1 − 4γr2ṙ(x1)′ = 0(

(x1)′′ − ẍ1
) (
γ2r + r5

)
+ (x1)′

(
2γ2r′ − 2r4r′

)
+ ẋ1

(
2r4ṙ − 2γ2ṙ

)
+4γr2ṙ(x2)′ − 4γr′r2ẋ2 = 0(

r′′ − r̈
) (
γ4r + 2γ2r5 + r9

)
+
(
ṙ2 − (r′)2

) (
2γ2r4 + r8 + γ4

)
+
(
(ẋ0)2 − ((x0)′)2

) (
2γ2r4 + r8 + γ4

)
+
(
((x1)′)2 − (ẋ1)2

) (
r8 − γ2r4

)
+4γr6

(
(x1)′ẋ2 − ẋ1(x2)′

)
+
(
(ẋ2)2 − ((x2)′)2

) (
γ2r4 − r8

)
= 0.

and the Virasoro constraints

Tττ = Tσσ =
1

2

(
ẋµẋµ + (xµ)′(xµ)′

)
= 0 (4.14)

Tτσ = Tστ = ẋµ(xµ)′ = 0, (4.15)

where ˙ and ′ mean the derivative about τ and σ respectively.8 Therefore, (4.12) is a

classical solution in NCAdS background (2.1). One could also follow the procedure in [36],

8In background (2.19), the e.o.m. are

r′′ +
−(r′)2 + ṙ2 − (x0′)2 + (ẋ0)2 + (x1′)2 − (ẋ1)2 + (x2′)2 − (ẋ2)2

r
= r̈,

(x0)′′ +
2ṙẋ0 − 2r′x0′

r
= ẍ0,

(x1)′′ +
2ṙẋ1 − 2r′x1′

r
= ẍ1. (4.16)
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and interchange τ and σ to have an open string interpretation for this classical solution

r =
sin(κσ)

dn(κωτ | 1
ω2 )

,

x0 = −

cn
(
ωκτ

∣∣∣ 1
ω2

)
sn

(
ωκτ

∣∣∣ 1
ω2

)
ω2dn

(
ωκτ

∣∣∣ 1
ω2

) − E
(
am
(
ωκτ

∣∣ 1
ω2

)
| 1
ω2

)
(

1
ω2 − 1

)
w

, (4.17)

x1 + ix2 = −iγ eiκωσ

sin(κσ)
sn

(
κωτ

∣∣∣∣ 1

ω2

)
−
eiκωσcn

(
ωκτ

∣∣ 1
ω2

)
(cos(κσ)− iω sin(κσ))

(ω2 − 1)dn
(
ωκτ

∣∣ 1
ω2

) .

At the boundary of NCAdS background, i.e. r = 0, σ = 0, πκ . The worldsheet (4.12) ends

on two curves corresponding to σ = 0, πκ respectively

x0 = −

cn
(
ωκτ

∣∣∣ 1
ω2

)
sn

(
ωκτ

∣∣∣ 1
ω2

)
ω2dn

(
ωκτ

∣∣∣ 1
ω2

) − E
(
am
(
ωκτ

∣∣ 1
ω2

)
| 1
ω2

)
(

1
ω2 − 1

)
w

x1 + ix2 = −iγ 1

sin(κσ = 0)
sn

(
κωτ

∣∣∣∣ 1

ω2

)
−

cn
(
ωκτ

∣∣ 1
ω2

)
(w2 − 1)dn

(
ωκτ

∣∣ 1
ω2

) . (4.18)

and

x0 = −

cn
(
ωκτ

∣∣∣ 1
ω2

)
sn

(
ωκτ

∣∣∣ 1
ω2

)
ω2dn

(
ωκτ

∣∣∣ 1
ω2

) − E
(
am
(
ωκτ

∣∣ 1
ω2

)
| 1
ω2

)
(

1
ω2 − 1

)
w

,

x1 + ix2 = −iγ eiπω

sin(κσ = π)
sn

(
κωτ

∣∣∣∣ 1

ω2

)
+

eiπωcn
(
ωκτ

∣∣ 1
ω2

)
(ω2 − 1)dn

(
ωκτ

∣∣ 1
ω2

) . (4.19)

The two curves (4.18) and (4.19) at the boundary are related by the spatial rotation

−eiκωσ|σ=π
κ

. One may wonder weather it makes sense or not as x1 + ix2 →∞. It is easy to

show that x1 + ix2 gives a finite value as it couple to the metric in (2.1). Note that (4.12)

can be regarded as a periodic open string τ ∈ (0, 2π) and σ ∈ (0, πκ ).

It is interesting to calculate the on-shell action which is equal to the minimal area of

the surface ending on the Wilson loop. Substituting (4.17) to (4.1), we find

−4πα′S =

∫ 2π

0
dτ

∫ π/κ

0
dσ2κ2

(
γ csc2(κσ)cn

(
κωτ

∣∣∣∣ 1

ω2

)
dn

(
κωτ

∣∣∣∣ 1

ω2

)
sn

(
κωτ

∣∣∣∣ 1

ω2

)
− csc2(κσ) + sn

(
κωτ

∣∣∣∣ 1

ω2

)2)
= 4π2κω2 − 2πωE

(
am

(
2πωκ

∣∣∣∣ 1

ω2

) ∣∣∣∣ 1

ω2

)
+ Sdiv, (4.20)

where Sdiv is the divergent pieces given by

Sdiv =

4πκ cot(κσ) +
γ cot(κσ)

(
cn
(
2πωκ

∣∣ 1
ω2

)2 − 1
)

ω

∣∣∣∣∣∣
σ=π/κ

σ=0

. (4.21)
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The source of the divergence in the integration comes from the singular behavior of the

integrand near the boundary. We perform the regularization by shifting the boundary

from r = 0 to r = ε with a small ε. For a given τ , the range of σ change from (0, πκ ) to

(
arcsin

(
εdn

(
ωκτ

∣∣∣ 1
ω2

))
κ ,

π−arcsin
(
εdn

(
ωκτ

∣∣∣ 1
ω2

))
κ ). We first integrate over σ with a fixed τ and find

−4πα′S =

∫ 2π

0
dτ2κ

2γcn
(
κωτ

∣∣ 1
ω2

)
sn
(
κωτ

∣∣ 1
ω2

)√
1− ε2dn

(
κωτ

∣∣ 1
ω2

)2
ε

(4.22)

+ sn

(
κωτ

∣∣∣∣ 1

ω2

)2(
π − 2 sin−1

(
εdn

(
κωτ

∣∣∣∣ 1

ω2

)))

−
2
√

1− ε2dn
(
κωτ

∣∣ 1
ω2

)2
εdn

(
κωτ

∣∣ 1
ω2

)


Expanding the integrand by using ε, one finds

−4πα′S =

∫ 2π

0
dτ

4γκcn
(
τωκ

∣∣ 1
ω2

)
sn
(
τωκ

∣∣ 1
ω2

)
− 4κ

dn
(
κωτ

∣∣∣ 1
ω2

)
ε

+ 2πκsn

(
κωτ

∣∣∣∣ 1

ω2

)2

− 2ε

(
κdn

(
κωτ

∣∣∣∣ 1

ω2

)(
γcn

(
κωτ

∣∣∣∣ 1

ω2

)
dn

(
κωτ

∣∣∣∣ 1

ω2

)
sn

(
κωτ

∣∣∣∣ 1

ω2

)
+ 2sn

(
κωτ

∣∣∣∣ 1

ω2

)2

− 1

))
+O

(
ε3
)
. (4.23)

Then integrating over τ , one obtains

−4πα′S =

4γω
[
1− dn

(
2πκω

∣∣ 1
ω2

)]
− 4√

ω2−1
arccos

(
cn

(
2πκω

∣∣∣ 1
ω2

)
dn

(
2πκω

∣∣∣ 1
ω2

)
)

ε

+ 4π2κω2 − 2πωE

(
am

(
2πκω

∣∣∣∣ 1

ω2

) ∣∣∣∣ 1

ω2

)
+ ε

(
2cn

(
2πκω

∣∣ 1
ω2

)
sn
(
2πκω

∣∣ 1
ω2

)
ω

+
2

3
γωdn

(
2πκω

∣∣∣∣ 1

ω2

)3

− 2γω

3

)
. (4.24)

Note that the parameter γ appears in the divergence term, but does not appear in the ε0

term. The divergence in (4.24) has the form of 1
ε , which is the same form as the one of

quark-antiquark Wilson loop case but different from the divergent behavior (log 1
ε ) in cusp

Wilson loop case [43]. The divergence in (4.24) can be interpreted as a self energy of heavy

quark pairs in NCSYM.

The subtracted on-shell action is

(−4πα′S)reg =

(
1 + ε

∂

∂ε

)
(−4πα′S) = 4π2κω2 − 2πωE

(
am

(
2πκω

∣∣∣∣ 1

ω2

) ∣∣∣∣ 1

ω2

)
,

where we have dropped the ε term. Here we just make use of minimal substraction to

regular the action. We notice that the subtracted on-shell action does not depend on the

parameter γ.
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5 Conclusions and discussions

In this paper, we have performed certain bosonic T-duality and fermionic T-duality

transformations on the NCAdS background, and found the final dual background is the

usual AdS5 × S5 background but with a constant NS-NS B-field depending on the non-

commutative parameter. Our transformation can be regarded as the simplification of the

NCAdS background, which is very useful to study the physics in non-commutative su-

per Yang-Mills theory. As application, we have studied the gluon scattering amplitudes

and Wilson loop in the NCSYM holographically by using the simplified final dual back-

ground. In the final dual background, we found the worldsheet ending on the null polygon

Wilson loop dual to the gluon scattering amplitudes in the NCSYM theory, which ex-

tends the scattering amplitude/Wilson loop duality for the NCSYM. We found that the

non-commutative deformation will contribute to the gluon scattering amplitude as overall

dressing phase factor shown in section 3, which is valid even for the finite λ. Furthermore,

motivated by the relation between closed and open strings [36], we started with the folded

string in the final dual background, and constructed the periodic open string (Wilson loop)

solution in the NCAdS background. We have also calculated the on-shell action of the open

string solution, which describes the minimal area of the ending on the Wilson loop. The

divergence of the on-shell action appears in the form of 1
ε , where ε is the small regulariza-

tion parameter. We also noticed that the subtracted on-shell action does not depend on

the non-commutative parameter.

On the other hand, an open-closed string map for the TsT deformation has been argued

in a series of papers [44–51]. Using the open-closed string map on the TsT deformation

background, one finds the open string metric and coupling go back to the original back-

ground. The information about TsT deformation only appear in the non-commutative

parameter. The series T-duality transformation in our present work also map the TsT

deformation background to the original background but with a inverse radial coordinate

in the metric. It is an interesting problem to explore the relations between our works and

the open-closed string map.

It would be interesting to study the bosonic and fermionic T-duality transformations

on other type of TsT deformation of the AdS5 × S5 background, which may lead to a

simplification in the same way. We also would like to construct the fermionic T duality of

deformed ABJM theory [18]. Unlike AdS5 × S5, the holographic background of ABJM is

not self-dual background by fermionic T-dual, it will be very interesting and highly non-

trivial to holographically investigate the corresponding string solutions which correspond

to gluon scattering amplitude, Wilson Loop operator and integrability structures [52] of

anomalous dimension of local operators in various deformed ABJM theories in the future.
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A Bosonic T-dual transformation

We summarize the Buscher rule that is used in this paper. One can also see [18, 53] for

review. We start with the Euclidean worldsheet action as following

S =
1

4πα′

∫
d2σ(
√
hhabgmn + iεabbmn)∂ax

m∂bx
n. (A.1)

and assume that the background field gmn and bmn are invariant under the shift isometry:

x1 → x1 + c, xm̂ → xm̂, (A.2)

where c is a constant and m̂ 6= 1. We denote the field f (f = gmn, bmn, φ, x
m) after the

T-dual transformation as f ′. We do the T dual operation along x1 and then the Buscher

rule can be summarized as

g′11 =
1

g11
, g′1i =

b1i
g11

, g′ij = gij −
g1ig1j − b1ib1j

g11

b′1i =
g1i

g11
, b′ij = bij −

g1ib1j − b1ig1j

g11
, (A.3)

φ′ = φ− 1

2
log |g11|.

The coordinates transform as

∂ax
′1 = −iεab[g11∂bx

1 + g1m̂∂bx
m̂]− b1m̂∂axm̂, x′

m̂
= xm̂. (A.4)

We then summarize the transformation of RR fields. Given a p−form ωp, we decompose

it as

ωp = ω̄p + ωp[y] ∧ dy, (A.5)

where ω̄p = 1
p!ωα1···αpdx

α1 ∧ · · · ∧ dxαp does not contain dy component. ωp[y] is a (p − 1)

form as (ωp[y])α1···αp−1y. For convention, we define the two one-form fields j and b as:

j =
Gαy
Gyy

dxα, b = B[y] + dy. (A.6)

The T-duality rules for the R-R potential are then given by

C ′p = Cp+1[y] + C̄p−1 ∧ b+ Cp−1[y] ∧ b ∧ j. (A.7)

– 16 –
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In the modified field strength Fp = Fp +H ∧ Cp−3, they change as

F ′p = Fp+1[y] + F̄p−1 ∧ b+ Fp−1[y] ∧ b ∧ j (A.8)

where we used db = H[y].

Sometimes, it is conventional to use Lorentizian worldsheet action, e.g. the study of

GKP string:

S = − 1

4πα′

∫
dτdσ[ηαβ∂ax

m∂βx
ngmn − εαβbmn∂αxm∂βxn]. (A.9)

In this case, (A.4) becomes

εαβ∂βx
′1 = ηαβ∂βx

mG1m − εαβ∂βxmB1m. (A.10)

B Killing spinor equations in original AdS5 × S5 spacetime

We consider the Killing spinor equations in the original spacetime

ds2 =
R2

r2
[dx2 + dr2] +R2ds2

5 =
R2

r2

[
dx2 +

6∑
j=1

dyjdyj

]
, (B.1)

F5 = −4R4

(
1

r5
dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr + ωS5

)
, (B.2)

where |y| = r. Then the Killing spinor equations become

δψM̂ = eM̂
M∇M ε+

1

2

1

R
γ0̂1̂2̂3̂4̂γM̂ ε̂ = 0, (B.3)

δψ̂M̂ = eM̂
M∇M ε̂−

1

2

1

R
γ0̂1̂2̂3̂4̂γM̂ ε = 0. (B.4)

We are mainly interested on the Killing spinor in [4], where ε̂ = iε and ε is independent of

the coordinates M = x0,1,2,3. This leads to the relation

iγ0̂1̂2̂3̂4̂ε = γ4̂ε. (B.5)

Then the Killing spinor equations become

eĵ
j∇jε−

1

2R
γĵγ4̂ε = 0, (B.6)

where j the coordinate of the remaining 6D part (R × S5). Since the remaining 6D part

does not transform under our deformation. This leads to the Killing spinors (2.20) used

in [4]. It is easy to find (B.6) has the same form as with (2.14). This is the reason why

we choose the same ε as [4] to perform fermionic T-dual transformation in section 2. The

difference between our Killing spinor and the chosen one in [4] is the signature of ε̂.

– 17 –
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C Elliptic functions

In this appendix, we summarize the Elliptic Integrals and Jacobi Elliptic functions that

were used in section 4. We main follow the notations in [54]. The elliptic integrals E and

F are defined by:

E(φ|m) =

∫ φ

0

√
1−m sin2 θdθ, F(φ|m) =

∫ φ

0

dθ√
1−m sin2 θ

. (C.1)

Using φ in u = F(φ|m), we define the Jacobi Elliptic functions by

sn(u|m) = sinφ, cn(u|m) = cosφ, dn(u|m) =

√
1−m sin2 φ, φ = am(u|m). (C.2)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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