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Experimental Procedures 

Infrared Action Spectroscopy of Ions Trapped in Helium Nanodroplets 

The instrumentation utilized to obtain the infrared spectrum of ions trapped in helium nanodroplets has been 

described in several preceding publications.[1] Concisely, the instrument comprises a modified commercial 

quadrupole time-of-flight mass spectrometer coupled to custom chambers for helium nanodroplet formation, ion 

pickup, and spectroscopic interrogation. Ions are transferred to the gas phase by nanoelectrospray ionization 

(nESI), m/z-selected by a quadrupole mass filter, and directed via a DC bender into a hexapole ion trap. A fraction 

of these ions are then picked up by a pulsed beam of helium nanodroplets traversing the trap (average size of ~2 

× 104 He atoms).[2] The helium droplets with embedded ions possess sufficient kinetic energy to escape the 

potential well of the hexapole trap and travel to the laser interaction region, where the helium nanodroplet beam 

overlaps with focused infrared radiation produced by the Fritz Haber Institute free-electron laser (FHI FEL).[3] 



2 

 

Resonant photon absorption by the embedded ions leads to evaporation of helium, and the sequential absorption 

of multiple photons yields free ions that can be detected by time-of-flight mass spectrometry.[1a, 1b, 4] The 

measurement of ion signal as a function of photon energy therefore provides an infrared spectrum of the 

embedded ions.[1d] Each data point represents an average of 25 repetitions of the ion ejection and detection 

process. As a first-order correction to the nonlinear dependence of ion signal intensity on transition strength and 

photon flux,[1a, 1b, 2, 4a] signal intensities are divided by the measured energy of the FEL macropulse.  Additionally, 

regions of the spectrum where low-intensity features were observed were often measured with a higher photon 

flux (i.e., a more focused laser beam) to improve the signal intensity. The spectral region was then scaled to 

match the intensity measured at lower photon flux. 

The formate dimer ions were generated by nESI of a 0.5% (v/v) aqueous solution of formic acid, formic acid-13C, 

or formic acid-d2 (Sigma-Aldrich, Munich, Germany). For measurement of the fully deuterated formate dimer, 

[2DCOO−+D+]−, a 0.5/49.5/49.5% (v/v) solution of  formic acid-d2/CH3OD/D2O was utilized. In addition, a flow of 

nitrogen bubbled through a solution of D2O was introduced as a cone gas at the atmospheric pressure inlet to 

reduce back-exchange of the shared deuteron for a proton during the transfer across the intermediate vacuum 

stages of the instrument. 

Vibrational Predissociation Spectroscopy 

Gas phase Ar-tagged formic acid anions were generated by passing 40 PSI Ar over a temperature-controlled (4.0-

6.0C) reservoir containing 90% formic acid; this mixture was expanded through a pulsed valve (General Valve, 

0.5 mm orifice). The deuterated formic acid analogues were obtained using formic acid-d2 (Sigma-Aldrich, 98 

atom % D). The expansion was ionized using a counter-propagating 1 keV electron beam, and the ions of interest 

were mass-selected in the Yale double focusing, tandem time-of-flight (TOF) photofragmentation spectrometer 

described in detail previously.17,20 The spectra reported here are averages of ~15 individual scans and include 

corrections for fluctuations in laser pulse energy over the scan range.  The effective resolution of the spectrometer 

is ~4 cm-1 (FWHM) due to laser bandwidth and scan reproducibility.  

Theoretical Chemical Calculations 

Theoretical investigation of possible structures of the formate dimer was undertaken with calculations performed 

in Gaussian09 rev. D.01.[5] Relaxed dihedral angle scans and subsequent calculation of the harmonic vibrational 

modes of local minima were performed at the MP2/aug-cc-pVTZ level of theory.[6] Additionally, the accurate 

energies of local minima were computed from a complete basis set extrapolation scheme by Halkier et. al [7] using 

the aug-cc-pVnZ (n=3,4,5) basis sets and corrected for the difference between CCSD(T) and MP2 electron 

correlation energy using the aug-cc-pVTZ basis set.[8] Zero-point energy (ZPE) corrections were evaluated 

utilizing the harmonic approximation. For the fully symmetric structure 3, ZPE corrections were taken from the 

fully symmetric geometry, although this geometry in fact corresponds to a transition state with an extremely low 

barrier height of less than 4 × 10−3 kJ/mol. Optimization and harmonic frequency calculations for local minima 
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were also performed at the MP2/ def2-TZVPP level of theory,[9] where structure 3 does not correspond to a 

transition state. 

The reduced masses and cartesian displacement vectors for structure 1 obtained from harmonic frequency 

calculations at the MP2/aug-cc-pVTZ level of theory were further utilized to generate potential energy surfaces in 

a normal coordinate basis. Following the method of Tan and Kuo,[10] single point calculations at the MP2/aug-cc-

pVTZ level of theory were utilized to generate a grid in each dimension (i.e., along each normal coordinate). In 

one dimension, the geometry at any point on the grid can be represented as 

 

𝜉𝑖(𝑥, 𝑦, 𝑧) = 𝜉𝑒𝑞(𝑥, 𝑦, 𝑧) + 𝑛𝑖Δ𝑖𝑋𝑖(𝑥, 𝑦, 𝑧) 

where 𝜉𝑒𝑞  is the equilibrium geometry of the molecule, 𝑋𝑖 is the cartesian displacement vector for normal mode i 

obtained from the Gaussian 09 output, Δ𝑖  is the grid step size of normal mode i, and 𝑛𝑖 is the step number, which 

adopts integer values from −(ntotal − 1)/2 to (ntotal − 1)/2, where ntotal is the number of grid points. For 1D and 2D PES 

construction, 17 grid points were used, and 9 grid points were used for 4D PES construction. For a hypothetical 

three-dimensional grid consisting of normal modes i, j, and k, the geometry at any point on the grid is given by  

𝜉𝑖,𝑗,𝑘(𝑥, 𝑦, 𝑧) = 𝜉𝑒𝑞(𝑥, 𝑦, 𝑧) + 𝑛𝑖Δ𝑖𝑋𝑖(𝑥, 𝑦, 𝑧) + 𝑛𝑗Δ𝑗𝑋𝑗(𝑥, 𝑦, 𝑧) + 𝑛𝑘Δ𝑘𝑋𝑘(𝑥, 𝑦, 𝑧) 

The relative step sizes for each normal mode fulfill the condition 

𝜇𝑖Δ𝑖
2 = 𝜇𝑗Δ𝑗

2 = 𝜇𝑘Δ𝑘
2  

where 𝜇𝑖 is the reduced mass of normal mode i. 

To obtain the eigenstates and eigenvectors of the Hamiltonian for these potential energy surfaces, a discrete 

variable representation[11] was utilized, as previously described by Colbert and Miller.[12] The Hamiltonian matrix 

was constructed and diagonalized within Mathematica 11.1 (Wolfram, Oxfordshire, United Kingdom).  A similar 

process was repeated to obtain the potential energy surfaces as well as eigenstates and eigenvectors of the 

vibrational Hamiltonian for the fully deuterated formate dimer. 

To quantify the normal mode contributions to the coupled vibrational modes, eigenvectors obtained from 

multidimensional potential energy surfaces were decomposed as a linear combination of the outer products of 

eigenvectors in each component dimension (i.e., the outer product of eigenvectors from one-dimensional 

potentials). A least squares method was utilized to find the weighting factors in the linear combination. When the 

multidimensional and one-dimensional eigenvectors are first normalized, the relative contribution of each 

normal mode state is obtained as the square of the weighting coefficient in the linear combination. To obtain the 

atomic motion associated with the coupled vibrational modes from the two-dimensional potential, the squared 

coefficients were utilized as weighting factors for the Cartesian displacement vectors obtained from frequency 

calculations in Gaussian 09. 
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To calculate the intensity of transitions, dipole moment surfaces in a normal coordinate basis were also 

constructed.  Specifically, the dipole moment component along the x, y, and z axes in Cartesian coordinates was 

obtained at each grid point as outlined above utilizing single-point energy calculations with the Gaussian 

command nosymm. Utilizing these surfaces and the eigenvectors obtained from DVR analysis of the PES, the 

transition dipole moment was calculated according to the formula 

〈𝜇𝑥〉 = ⟨𝜓𝑓(𝑄1, 𝑄2, … , 𝑄𝑛)|𝜇𝑥(𝑄1 , 𝑄2, … , 𝑄𝑛)|𝜓𝑖(𝑄1, 𝑄2, … , 𝑄𝑛)⟩ 

where 𝜓𝑓 and 𝜓𝑖  are the normalized wave functions of final state f and initial state i,  and 𝜇𝑥 is the dipole moment 

along the Cartesian x axis. Practically, this value was calculated by finding the value of 𝜓𝑓𝜇𝑥𝜓𝑖 at each grid point 

and then integrating over all coordinate space utilizing an interpolating function. With the transition dipole 

moment in coulomb-meters, the intensity in km/mol of the transition 𝐼𝑓,𝑖 between final state f and initial state i 

was then obtained according to the equation 

𝐼𝑓,𝑖 =  
1

1000
(

2𝜋2𝑁𝐴

3𝑐2𝜀0ℎ2
) 𝐸𝑓,𝑖 [(|〈𝜇𝑥〉|2)2 + (|〈𝜇𝑦〉|

2
)

2

+ (|〈𝜇𝑧〉|2)2]

1
2⁄

 

where 𝑁𝐴 is Avogadro’s constant, 𝑐 is the speed of light, ℏ is the reduced Planck’s constant, 𝜀0 is the permittivity 

of vacuum, and 𝐸𝑓,𝑖 is the energy difference between f and i in joules.   
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Additional Experimental and Theoretical Infrared Spectra  

 

 

Figure S1. Vibrational spectra of the proton-bound dimer of formate and its isotopologues trapped in helium 

nanodroplets; the unlabeled dimer (a) exhibits a prominent transition at 605 cm−1, with other strong features 

occurring at 841, 1037, 1192, and 1684 cm−1. Only minor shifts in most features are observed upon 13C substitution 

(b) or partial deuteration (c), whereas deuteration of the shared proton (d) results in a demonstrable shift of the 

most intense transition to 433 cm−1. Features labeled with * in d result from proton back-exchange during ion 

trapping. 
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Figure S2. Comparison of experimental spectra for AHA− (a, b) and ADA− (f, g) to harmonic theoretical spectra 

(0.952 scaling factor) for low-energy structures 1 (c, h), 2 (d, i), and 3 (e, j). Structures 1 (blue) and 3 (red) feature a 

fully shared proton or deuteron, whereas structure 2 (green) exhibits a localized proton or deuteron and double 

contact structure (see Figure 2). Calculations were performed at the MP2/def2-TZVPP level of theory. 
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Figure S3. Comparison of experimental spectra for HCOOˉ·H+·ˉOOCH (a), H13COOˉ·H+·ˉOOC13H (d), and 

DCOOˉ·H+·ˉOOCD (g) to harmonic theoretical spectra (0.952 scaling factor) for low-energy structures 1 (b, e, h) 

and 2 (c, f, i). Structure 1 (blue) features a fully shared proton, whereas structure 2 (green) exhibits a localized 

proton and double contact structure (see Figure 2). Calculations were performed at the MP2/def2-TZVPP level of 

theory. 

 

  



8 

 

Tabulation of Experimental Spectral Line Positions  
 

Table S1. Tabulation of Selected Spectra Lines for the Formate Proton-Bound Dimer and Isotopically Substituted Variants.[a] 

Species Band 
Freq. 
[cm−1] 

Band 
Freq. 
[cm−1] 

Band 
Freq. 
[cm−1] 

Band 
Freq. 
[cm−1] 

Band 
Freq. 
[cm−1] 

Band 
Freq. 
[cm−1] 

Band 
Freq. 
[cm−1] 

HCOOˉ·H+·ˉOOCH a1 619 a2 
849, 864,  

875 
a3 1034 a4 1194 a5 

1685, 
1700 

    

HCOOˉ·H+·ˉOOCH b1 605 b2 
841, 860,  

878 
b3 1037 b4 1192 b5 1684     

H13COOˉ·H+·ˉOO13C
H 

f1 600 f2     837,  870 f3 1029 f4 1178 f5 1647     

DCOOˉ·H+·ˉOOCD c1 603 c2 
833, 843,  

862 
c3 1036 c4 1190 c5,   c6 

1668, 
1678 

    

DCOOˉ·D+·ˉOOCD d1 433 d2 660 d3,   d4 814, 857 d5 942 d6,   d7 
1077, 
1100 

d8,     d9,    
d10 

1138, 
1156, 1172 

d11, 

d12 
1666, 
1689 

DCOOˉ·D+·ˉOOCD   e1 676 e2,   e3 845, 876 e4 942 e5,   e6 
1069, 
1092 

e7,      e8,    
e9 

1130, 
1148, 1167 

e10, e11 
1667, 
1693 

[a] Band labels correspond to those given in Figure 2 and Figure S1. 
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Two-Dimensional PESs, Displacement Vectors, and Calculated Frequencies and Intensities  
 

 

Figure S4. Two-dimensional potential energy surfaces and excited state eigenvectors of the vibrational 

Hamiltonian for AHA− and ADA−. The relative energy as a function of the Cartesian displacement vectors 

corresponding to the normal modes ν|| and δ(OCO)OOP  is shown in color for AHA− (a, b) and ADA−  (c, d). The 

white contours superimposed on these potentials represent the eigenvectors of the first (a, c) and second (b, d) 

excited states of the vibrational Hamiltonian calculated utilizing the discrete variable representation (DVR) 

method. 
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Figure S5. Displacement vectors of normal modes and coupled modes derived from 2D PES for AHA− (a-d) and 

ADA− (e-h). The harmonic normal modes for proton motion parallel to the shared proton axis, ν|| (a, e), and out-

of-phase deformation of the two carboxylate moieties, δ(OCO)OOP (b, f), exhibit large-amplitude displacement of 

the shared proton or deuteron. For AHA−, a 2D PES reveals strong coupling of the modes (c, d), whereas the 2D 

PES for ADA− indicates only weak coupling (g, h).  
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Table S2. Theoretical Frequencies and Intensities for AHA− and ADA− Derived from 1D and 2D PESs.[a] 

Species 
(OCO)OOP 1D 

Freq. [cm−1] 

(OCO)OOP 1D 

Int. [km mol−1] 

|| 1D  

Freq. 

[cm−1] 

|| 1D  Int. 

[km mol−1] 

Coupled Mode 

1 Freq. [cm−1] 

Coupled Mode 1 

Int. [km mol−1] 

Coupled Mode 

2 Freq. [cm−1] 

Coupled Mode 2 

Int. [km mol−1] 

HCOOˉ·H+·ˉOOCH 899.5 1896 899.0 3540 656.8 256 1213.5 5480 

DCOOˉ·D+·ˉOOCD 803.5 838 587.1 1933 544.2 885 891.1 2307 

[a] One-dimensional frequencies (Freq.) and intensities (Int.) were calculated utilizing a discrete variable representation (DVR) along the cartesian displacement 

vector corresponding to the designated normal mode. The coupled modes are calculated utilizing DVR with a two-dimensional PES comprising the cartesian 

displacement vectors of the two normal modes. 
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Normal Mode Contributions for Two-Dimensional PESs 

Table S3. Contributions of Outer Products of (1D) Normal Mode Eigenvectors to 2D PES Eigenvectors.a 

((OCO)OOP, ||) 
HCOOˉ·H+·ˉOOCH 

Coupled Mode 1 

HCOOˉ·H+·ˉOOCH 

Coupled Mode 2 

DCOOˉ·D+·ˉOOCD 

Coupled Mode 1 

DCOOˉ·D+·ˉOOCD 

Coupled Mode 2 

(0, 1) 42.3 51.6 15.1 82.6 

(1, 0) 51.6 40.4 82.3 14.6 

(2, 1) 1.5 3.9 0.1 1.7 

(1, 2) 2.9 3.8 2.0 0.8 

[a] Values given in percent; percent contribution obtained as the square of the linear combination weighting coefficient for each normal mode excited state. 
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Displacement Vectors of s(O–H–O) and (OCO)IP 

 

Figure S6. Additional displacement vectors for normal modes of AHA− (a, b) and ADA− (c, d). The normal modes 

for the O–H–O symmetric stretch, νs(O–H–O) (a, c), and in-phase carboxylate deformation, δ(OCO)IP (b, d),  

strongly modulate the the interformate O–O distance. 
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Calculated Frequencies and Intensities from Four-Dimensional PESs 
 

Table S4. Theoretical Frequencies and Intensities for AHA− and ADA− Derived from 4D PESs.[a] 

Species 
Freq. 
[cm−1]  

Int.  
[km 
mol−1] 

Freq. 
[cm−1]  

Int.  
[km 
mol−1] 

Freq. 
[cm−1]  

Int.  
[km 
mol−1] 

Freq. 
[cm−1]  

Int.  
[km 
mol−1] 

HCOOˉ·H+·ˉOOCH 619 703 944 2055 1103 1295 1389 548 

DCOOˉ·D+·ˉOOCD 466 1181 786 490 918 716 - - 

[a] Only transitions with predicted frequency (Freq.) below 1400 cm−1 and predicted intensity (Int.) above 100 km 

mol−1 are tabulated. 
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Normal Mode Contributions for Four-Dimensional PESs 

Table S5. Contributions of Outer Products of (1D) Normal Mode Eigenvectors to 4D PES Eigenvectors for 

HCOOˉ·H+·ˉOOCH.[a] 

((OCO)IP, s(O–H–O), (OCO)OOP, ||) 618.5 943.5 1103.4 1389.3 

(0, 0, 0, 1) 53.3 1.1 20.6 6.7 

(0, 0, 1, 0) 24.1 45.9 5.0 13.5 

(0, 1, 0, 0) 0.0 0.0 0.0 0.0 

(1, 0, 0, 0) 0.0 0.0 0.0 0.0 

(0, 1, 0, 1) 9.3 25.5 13.0 0.5 

(0, 1, 1, 0) 1.4 0.7 39.1 24.3 

(1, 0, 0, 1) 2.5 2.7 2.8 0.1 

(1, 0, 1, 0) 0.2 1.1 0.5 0.6 

(0, 0, 2, 1) 0.5 1.9 0.2 1.2 

(0, 0, 1, 2) 2.6 0.0 0.8 0.8 

(0, 2, 0, 1) 1.0 9.0 4.6 21.6 

(0, 2, 1, 0) 0.0 0.1 5.2 1.4 

(0, 3, 0, 1) 0.1 1.3 0.5 9.6 

(1, 1, 0, 1) 0.7 3.9 0.1 2.2 

(1, 1, 1, 0) 0.0 0.2 1.0 0.5 

(1, 2, 0, 1) 0.1 1.3 0.2 5.1 

[a] Values given in percent; percent contribution obtained as the square of the linear combination weighting 

coefficient for each normal mode excited state. Vibrational eigenstates are denoted by their energy above the 

ground state. 
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Table S6. Contributions of Outer Products of (1D) Normal Mode Eigenvectors to 4D PES Eigenvectors for 

DCOOˉ·D+·ˉOOCD.[a] 

((OCO)IP, s(O–H–O), (OCO)OOP, ||) 465.8 785.9 918.2 

(0, 0, 0, 1) 71.4 1.3 17.3 

(0, 0, 1, 0) 4.0 62.0 22.4 

(0, 1, 0, 0) 0.0 0.0 0.0 

(1, 0, 0, 0) 0.0 0.0 0.0 

(0, 1, 0, 1) 12.8 18.6 22.4 

(0, 1, 1, 0) 0.0 1.9 9.9 

(1, 0, 0, 1) 3.4 0.8 1.3 

(1, 0, 1, 0) 0.0 0.7 0.5 

(0, 0, 2, 1) 0.0 0.6 0.3 

(0, 0, 1, 2) 1.2 0.1 0.3 

(0, 2, 0, 1) 1.4 7.0 12.1 

(0, 2, 1, 0) 0.0 0.2 0.3 

(0, 3, 0, 1) 0.1 1.0 2.2 

(1, 1, 0, 1) 0.9 2.0 1.3 

(1, 1, 1, 0) 0.0 0.1 0.1 

(1, 2, 0, 1) 0.2 0.7 1.0 

[a] Values given in percent; percent contribution obtained as the square of the linear combination weighting 

coefficient for each normal mode excited state. Vibrational eigenstates are denoted by their energy above the 

ground state. 
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Parameters and Energies of Theoretical Structures 

Table S7. Equilibrium Geometry of HCOOˉ·H+·ˉOOCH Structure 1.[a] 

Atom     x      y     z 

O          0.12956        3.07807       -0.40487 

C         -0.12956        1.89452       -0.19098 

O          0.50963        1.09227        0.59908 

H         -0.99065        1.42375       -0.70492 

O         -0.50963       -1.09227        0.59908 

C          0.12956       -1.89452       -0.19098 

O         -0.12956       -3.07807       -0.40487 

H          0.99065       -1.42375       -0.70492 

H         -0.00000       -0.00000        0.59415 

[a] Optimization at the MP2/aug-cc-pVTZ level of theory, with coordinates in Angstroms. 

Table S8. Equilibrium Geometry of HCOOˉ·H+·ˉOOCH Structure 2.[a] 

Atom     x      y     z 

O          2.74437        0.49863        0.00041 

C          1.54833        0.23970        0.00030 

O          1.06170       -0.98301       -0.00105 

H          0.77180        1.01686        0.00135 

O         -1.45379       -1.01539        0.00075 

C         -2.09330        0.08863        0.00017 

O         -1.64210        1.24826       -0.00061 

H         -3.19860       -0.03327        0.00035 

H          0.01506       -0.94145       -0.00044 

 [a] Optimization at the MP2/aug-cc-pVTZ level of theory, with coordinates in Angstroms. 

Table S9. Equilibrium Geometry of HCOOˉ·H+·ˉOOCH Structure 3.[a] 

Atom     x      y     z 

O          2.31083        0.71563       -0.55671 

C          2.05644       -0.35270        0.00103 

O          0.94307       -0.75569        0.51518 

H          2.85647       -1.11230        0.10563 

O         -2.31083       -0.71579       -0.55654 

C         -2.05644        0.35271        0.00089 

O         -0.94307        0.75584        0.51494 

H         -2.85647        1.11234        0.10525 

H          0.00003        0.00004        0.44255 

[a] Optimization at the MP2/aug-cc-pVTZ level of theory, with coordinates in Angstroms. 
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Table S10. Calculated Energies of HCOOˉ·H+·ˉOOCH Structures 1, 2, and 3.[a] 

Structure 
Number 

Energy MP2/ 
aug-cc-pVTZ 

Zero-Point 
Energy MP2/ 
aug-cc-pvTZ 

Energy MP2/ 
aug-cc-pVQZ 

Energy   MP2/      
aug-cc-pV5Z 

Energy 
CCSD(T)/ 

aug-cc-pVTZ 

Energy CBS + 
CCSD(T) 

Correction 

1 -378.468086 0.052217 -378.574982 -378.613778 -378.524282 -378.69207 

2 -378.469150 0.055585 -378.576136 -378.615046 -378.526329 -378.69447 

3 -378.46149 0.051295 -378.568456 -378.607298 -378.517726 -378.68568 

[a] Optimization at the MP2/aug-cc-pVTZ level of theory, with single point energy calculations at higher levels of 

theory; all values reported in Hartrees. 
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