
ARTICLE

Clustering huge protein sequence sets in linear
time
Martin Steinegger 1,2,3 & Johannes Söding 1

Metagenomic datasets contain billions of protein sequences that could greatly enhance large-

scale functional annotation and structure prediction. Utilizing this enormous resource would

require reducing its redundancy by similarity clustering. However, clustering hundreds of

millions of sequences is impractical using current algorithms because their runtimes scale as

the input set size N times the number of clusters K, which is typically of similar order as N,

resulting in runtimes that increase almost quadratically with N. We developed Linclust, the

first clustering algorithm whose runtime scales as N, independent of K. It can also cluster

datasets several times larger than the available main memory. We cluster 1.6 billion meta-

genomic sequence fragments in 10 h on a single server to 50% sequence identity, >1000

times faster than has been possible before. Linclust will help to unlock the great wealth

contained in metagenomic and genomic sequence databases.

DOI: 10.1038/s41467-018-04964-5 OPEN

1 Quantitative and Computational Biology group, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany. 2 Department
for Bioinformatics and Computational Biology, Technische Universität München, 85748 Garching, Germany. 3 Department of Chemistry, Seoul National
University, 08826 Seoul, Republic of Korea. Correspondence and requests for materials should be addressed to
M.S. (email: martin.steinegger@mpibpc.mpg.de) or to J.S. (email: soeding@mpibpc.mpg.de)

NATURE COMMUNICATIONS | (2018) 9:2542 | DOI: 10.1038/s41467-018-04964-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-8781-9753
http://orcid.org/0000-0001-8781-9753
http://orcid.org/0000-0001-8781-9753
http://orcid.org/0000-0001-8781-9753
http://orcid.org/0000-0001-8781-9753
http://orcid.org/0000-0001-9642-8244
http://orcid.org/0000-0001-9642-8244
http://orcid.org/0000-0001-9642-8244
http://orcid.org/0000-0001-9642-8244
http://orcid.org/0000-0001-9642-8244
mailto:martin.steinegger@mpibpc.mpg.de
mailto:soeding@mpibpc.mpg.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications

In metagenomics, DNA is sequenced directly from the envir-
onment, allowing us to study the vast majority of microbes
that cannot be cultivated in vitro1. During the last decade,

costs and throughput of next-generation sequencing have drop-
ped two-fold each year, twice faster than computational costs.
This enormous progress has resulted in hundreds of thousands of
metagenomes and tens of billions of putative gene and protein
sequences2,3. Therefore, computing and storage costs are now
dominating metagenomics4–6. Clustering protein sequences pre-
dicted from sequencing reads or pre-assembled contigs can
considerably reduce the redundancy of sequence sets and costs of
downstream analysis and storage.

CD-HIT and UCLUST7,8 are by far the most widely used tools
for clustering and redundancy filtering of protein sequence sets
(see ref. 9 for a review). Their goal is to find a representative set of
sequences such that each of the input set sequences is represented
well enough by one of the K representatives, where “well enough”
is quantified by some similarity criteria.

Like most other fast sequence clustering tools, they use a fast
prefilter to reduce the number of slow pairwise sequence align-
ments. An alignment is only computed if two sequences share a
minimum number of identical k-mers (substrings of length k). If
we denote the average probability by pmatch that this happens by
chance between two non-homologous input sequences, then the
prefilter would speed up the sequence comparison by a factor of
up to 1/pmatch at the expense of some loss in sensitivity. This is
usually unproblematic: if sequence matches are missed (false
negatives) we create too many clusters, but we do not lose
information. In contrast, false positives are costly as they can
cause the loss of unique sequences from the representative set.

CD-HIT and UCLUST employ the following "greedy incre-
mental clustering" approach: each of the N input sequences is
compared with the representative sequences of already estab-
lished clusters. When the sequence is similar enough to the
representative sequence of one of the clusters, that is, the simi-
larity criteria such as sequence identity are satisfied, the sequence
is added to that cluster. Otherwise, the sequence becomes the
representative of a new cluster. Due to the comparison of all
sequences with the cluster representatives, the runtimes of CD-
HIT and UCLUST scale as O(NK), where K is the final number of
clusters. In protein sequence clustering K is typically of similar
size to N and therefore the total runtime scales almost quad-
ratically with N. The fast sequence prefilters speed up each
pairwise comparison by a large factor 1/pmatch but cannot
improve the time complexity of O(NK). This almost quadratic
scaling results in impractical runtimes for a billion or more
sequences.

Here we present the sequence clustering algorithm Linclust,
whose runtime scales as O(N), independent of the number of
clusters found. We demonstrate that it produces clusterings of
comparable quality as other tools that are orders of magnitude
slower and that it can cluster over a billion sequences within
hours on a single server.

Results
Overview of Linclust. The Linclust algorithm is explained in
Fig. 1 (for details see Methods and Fig. 5). As in previous
methods, we reduce the number of pairwise comparisons by
requiring the sequences to share at least one identical k-mer
substring. A critical insight to achieve linear time complexity is
that we need not align every sequence with every other sequence
sharing a k-mer (see steps 3,4). We reach similar sensitivities by
selecting only a very small subset of sequences as "center
sequences" (colored dots) and only aligning sequences to the
center sequences with which they share a k-mer. Linclust thus

requires less than mN sequence comparisons with a small con-
stant m (default value 20), instead of the � NKpmatch comparisons
needed by UCLUST, CD-HIT and other tools.

In most clustering tools, the main memory size severely limits
the size of the datasets that can be clustered. UCLUST, for

Sequences

(1) Select m (e.g. 20) k-mers per sequence and find groups
of sequences sharing a k-mer.

(2) Select longest sequence per group as center sequence

(3,4) Compare each sequence in group only with center
sequence…

… not with all sequences in the group

(5) Sequences are recruited by center sequences into
clusters

k-mer groups

Fig. 1 Overview of linear-time clustering algorithm. (1) For each sequence
Linclust selects m k-mers (with the lowest hash function values). It sorts
the k-mers alphabetically in quasi-linear time to find the groups of
sequences sharing a k-mer (colored sets) and (2) it selects the longest
sequence per k-mer group as center. (3,4) It compares each sequence (in
three consecutively slower and more sensitive steps) only with the center
sequences it shares a k-mer with, not with all sequences it shares a k-mer
with. It therefore needs to compute at most m comparisons per sequence
and mN in total. Pairs that pass the clustering criteria are linked by an edge.
(5) The sequences are clustered in time O(mN) using a greedy incremental
algorithm that finds clusters whose members all have an edge with a
representative sequence. For a more details see Fig. 5

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04964-5

2 NATURE COMMUNICATIONS | (2018) 9:2542 | DOI: 10.1038/s41467-018-04964-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

example, needs 10 bytes per residue of the representative
sequences. Linclust needs m × 16 bytes per sequence, but before
running it automatically checks available main memory and if
necessary splits the table of mN lines into chunks such that each
chunk fits into memory (Supplementary Fig. 1 and Methods). It
then processes the chunks sequentially. In this way, Linclust can
cluster sequence sets that would occupy many times its main
memory size at almost no loss in speed.

Linclust and Linclust/MMseqs2 workflows. We integrated Lin-
clust into our MMseqs2 (Many-versus-Many sequence searching)
software package10, and we test two versions of Linclust in our
benchmark comparison: the bare Linclust algorithm described in
Fig. 1 (simply named “Linclust”), and a combined four-step
cascaded clustering workflow (“Linclust/MMseqs2”). In this
workflow, a Linclust clustering step is followed by one (above
60% sequence identity) or three (≤60%) clustering steps, each of
which clusters the representative sequences from the previous
step by performing an increasingly sensitive all-against-all
MMseqs2 sequence search followed by the greedy incremental
clustering algorithm. We also include in our benchmark our
original MMseqs clustering tool11.

Runtime and clustering sensitivity benchmark. We measure
clustering runtimes on seven sets: the 61522444 sequences of the
UniProt database, randomly sampled subsets with relative sizes 1/
16, 1/8, 1/4, 1/2, and UniProt plus all reversed sequences (123
million sequences). Each tool clustered these sets using a mini-
mum pairwise sequence identity of 90%, 70% and 50%. Sequence
identity was defined similarly for all three tools. The three tools
use somewhat different strategies to try to ensure that only pro-
teins with the same domain architecture are clustered together
(see Methods: Clustering criteria).

At 50% identity, Linclust clusters the 123 million sequences 10
times faster than Linclust/MMseqs2 and, by extrapolation, 2300
times faster than UCLUST, 720 times faster than MMseqs, 4600
times faster than CD-HIT, 1600 times faster than DIAMOND12,
69000 times faster than MASH13, and 26000 times faster than
RAPsearch214 (Fig. 2a, b). At 90% identity, Linclust still clusters
these sequences 570 times faster than MMseqs, 100 times faster
than UCLUST, 62 times faster than CD-HIT, and 4.5 times faster
than Linclust/MMseqs2.

At 90% sequence identity threshold, we determined how the
runtimes scale with the input set size N by fitting a power law
T � aNb
� �

to the measured runtimes. Runtimes scale very
roughly quadratically for UCLUST (N1.62) and CD-HIT (N2.75)
whereas they grow only linearly for Linclust/MMseqs2 (N0.94)
and Linclust (N1.01). The speed-ups due to Linclust’s Hamming
distance stage and the ungapped alignment filter are analyzed in
Supplementary Fig. 2.

To assess the clustering sensitivity, we compare the average size
of clusters: a deeper clustering with more sequences per cluster
implies a higher sensitivity to detect similar sequences. All three
tools produce similar numbers of clusters at 90% and 70%
sequence identity (Fig. 2c). Importantly, despite Linclust’s linear
scaling of the runtime with input set size, it manifests no loss of
sensitivity for growing dataset sizes. At 50%, Linclust produces
13% more clusters than UCLUST. But we can increase Linclust’s
sensitivity simply by selecting more k-mers per sequence. By
increasing m from 20 to 80, Linclust takes only 1.5 to 2 times
longer but attains a sensitivity similar to UCLUST (pink in
Fig. 2a–c, Supplementary Fig. 4).

To estimate the fraction of missed sequence pairs that could
have been clustered together, we examined the distribution of
sequence identities between representative cluster sequences

R
un

tim
e

in
 m

in
ut

es
R

un
tim

e
in

 m
in

ut
es

S
eq

ue
nc

es
 p

er
 c

lu
st

er

2000

1500

1000

500

100

6

5

LINCLUST/MMseqs2
UCLUST
MMseqs
LINCLUST-m80
LINCLUST
CD-HIT

4

2

10,000

1000

100

10

1

1.9 3.8 7.6 15 30 61 123

Count of sequences in millions

Count of sequences in millions

Count of sequences in millions

1.9 3.8 7.6 15 30 61 123

Seq. id.
50
70
90

0 30 60 90 120

LINCLUST/MMseqs2
UCLUST

RAPsearch2
Diamond
MMseqs

MASH

Seq. id.
50
70
90

LINCLUST-m80
LINCLUST

CD-HIT

Seq. id.
50
70
90

a

b

c

Fig. 2 Linclust and Linclust/MMseqs2 manifest unique linear scaling of
runtime with sequence set size. a Runtime versus input set size on linear
scales. The plotting symbols indicate the sequence identity threshold for
clustering of 90%, 70%, and 50%. The curves are fits with a power law,
bNa. For comparison, we include runtimes of all-against-all searches using
sequence search tools DIAMOND, RAPsearch2, and MASH. Runtimes were
measured on a server with two Intel Xeon E5-2640v3 8-core CPUs and 128
GB RAM. b Same as (a) but on log-log scales. c Average number of
sequences per cluster at 90%, 70%, and 50% sequence identity. Larger
average cluster sizes imply higher sensitivities to detect similar sequences

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04964-5 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:2542 | DOI: 10.1038/s41467-018-04964-5 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

(Fig. 3a–c). For each clustering run, we searched with BLAST15 a
random sample of 1000 representative sequences against all
representative sequences of the clustering. We show the
cumulative distribution of sequence identities for the best
matches that satisfy the minimum coverage threshold of 90%
used in the clustering runs. This coverage threshold is favorable
for UCLUST since its own coverage criterion is less strict (see
Methods, “Clustering criteria”). Due to the heuristic prefiltering
methods employed by all tools, none produces a perfect
clustering. This limitation is seen most clearly at 50% sequence
identity (Fig. 3c), for which Linclust/MMseqs2, UCLUST,
Linclust-m80 and Linclust miss 2%, 10%, 16% and 28% of
sequence pairs satisfying the clustering threshold.

Cluster consistency analysis. We measure the quality of the
clusterings produced by the tools by analyzing the homogeneity
of the functional annotation of the sequences in the clusters16.
We assess Gene Ontology (GO) annotations17 (Fig. 4a, b) and
Pfam domain annotations18 (Fig. 4c) provided by the UniProt
database. For each of these annotations, we averaged two score
variants over all clusters, “mean” and a “worst”. The “mean”
(“worst”) score for a cluster is the mean (minimum) annotation
similarity score between the representative sequence and all other
cluster members, as described in ref. 16.

Overall, the consistencies of cluster annotations are similar for
all tools, which is not surprising since they all use exact Smith-
Waterman alignments and similar acceptance criteria (Supple-
mentary Fig. 3, Methods). However, Linclust/MMseqs2 and
Linclust clusterings have better consistencies than UCLUST and
CD-HIT according to purely experimentally derived GO annota-
tions (Fig. 4a) and according to Pfam domain annotations
(Fig. 4c). This might be either due to a stricter minimum coverage
criterion in Linclust or due to its slightly different definition of
sequence similarity, which translates the sequence identity
threshold into an approximately equivalent threshold for the
similarity score of the local alignment divided by the maximum
length of the two aligned segments (Methods: Clustering criteria).
This similarity measure is more appropriate than sequence
identity to cluster together sequences with conserved functions, as
it also accounts for gaps and for the degree of similarity between
aligned residues. The cluster consistencies of all tools are similar
when GO annotations based on computational predictions are
included (Fig. 4b).

Clustering 1.6 billion metagenomic sequences. As a demon-
stration of Linclust’s ability to cluster huge sets, we applied it to
cluster 1.59 billion protein sequence fragments predicted by
Prodigal19 in 2200 metagenomic and metatranscriptomic
datasets3,20,21 downloaded mainly from the Joint Genome Insti-
tute. We clustered these sequences with a minimum sequence
identity of ≥50% and minimum coverage of the shorter sequence
of 90% (Methods: Clustering criteria), producing 424 million
clusters in 10 h on a 2 × 14-core server.

Our Metaclust database of 424 million representative
sequences will improve the sensitivity of profile sequence searches
by increasing the diversity of the underlying multiple sequence
alignments. It will thereby raise the fraction of annotatable
sequences in genomic and metagenomic datasets6,21. It could also
increase the number protein families for which reliable structures
can be predicted de novo, as shown by Ovchinnikov et al.22, who
used an unpublished dataset of 2 billion metagenomic sequences.
Metaclust should also allow us to predict more accurately the
effects of mutations on proteins23.

F
ra

ct
io

n

0.5

0.4

0.3

0.2

0.1

0.0

20

0.4

0.2

40 60
Sequence identity

80 100

Sequence identity

F
ra

ct
io

n

20 40 60 80 100

20 40 60

Sequence identity

80 100

Clustering at 70%
sequence identity

Clustering at 90%
sequence identity

Clustering at 50% sequence identity

LINCLUST

LINCLUST/MMseqs2
LINCLUST-m80

UCLUST

0.6

0.4

0.2

F
ra

ct
io

n

0.0

a

b

c

Fig. 3 Cumulative distance distribution between representative sequences.
We clustered the test set of 123 million sequences at three different
sequence identity thresholds (a–c at 50%, 70%, and 90%, respectively).
For each clustering, we randomly sampled 1000 representative cluster
sequences, compared them to all representative sequences of the
clustering, and plotted the fraction whose best match (excluding self-
matches) with minimum sequence coverage of 90% had a sequence
identity above the x-value. The y-value at the clustering threshold (dashed
line) is the fraction of false negatives, pairs of sequences whose similarity
was overlooked by the clustering method

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04964-5

4 NATURE COMMUNICATIONS | (2018) 9:2542 | DOI: 10.1038/s41467-018-04964-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

Discussion
Clustering a set of N items is challenging when both N and the
number of clusters K are large, due to the time complexity of
existing clustering algorithms. Hierarchical agglomerative clus-
tering approaches have a time complexity of O(N2logN)24, others
with a predefined number of clusters such as K-means or
expectation maximization clustering have complexity O(NK).
When both N and K are in the tens of millions, traditional
approaches are impracticably slow. Driven by the need to cluster
huge datasets in the era of big data, most work has focused on
reducing the proportionality constant.

One example is the widely used canopy clustering algorithm25.
The items are first preclustered into overlapping sets ("canopies")
based on a fast approximate similarity measure. Canopies could
be biological sequences sharing the same k-mer or documents
sharing a keyword. Some traditional clustering algorithm is run
on all items, but with the restriction that slow, exact similarities
are only computed between items belonging to the same canopy.
Similar to the k-mer prefilter used in CD-HIT, UCLUST, kclust,
and MMseqs8,11,26,27, the preclustering reduces the number of
comparisons by a large factor F using the slow, exact measure, but
the time complexity of the exact distance calculation O(N2/F) is
still quadratic in N. Linear-time clustering algorithms, using for
instance hashing techniques, have been proposed28,29. But like the
preclustering step in canopy clustering or Linclust’s prefilter to
find k-mer matches, these algorithms are only approximate. If
falsely clustered pairs are costly (e.g., for redundancy filtering),
pairwise links need to be verified with the exact similarity mea-
sure, which still requires quadratic time complexity. In contrast,
Linclust’s linear time complexity of O(mN) includes verification
of all edges between items using the exact distance measure.

Linclust can be trivially generalized to cluster any items for
which a set of m keys per item can be defined such that (1) items
belonging to a cluster are likely to share at least one of their keys
and (2) items not belonging to a cluster are unlikely to share a key
(see Methods, Optimal k-mer length). For clustering documents
the keys could be all m ¼ n

k

� �
subsets of the n keywords of size k,

for example28. To achieve a high sensitivity, we could select as
center of the group of items sharing a key the member with the
largest sum of sizes of groups it belongs to. In this way, the center
items are able to pull together into the same cluster many items
from different groups.

We perform the clustering in step 5 of Fig. 1 with the greedy
incremental clustering, because it always chooses the longest
sequence as the cluster representative. It ensures that the repre-
sentative sequences, being the longest sequence in each cluster,
are likely to contain all protein domains of all cluster members.
Our rule in step 2 to choose the longest protein sequence per k-
mer group as its center is well-suited to achieve large clusters,
because the longest sequences tend to be selected as centers of
most of the k-mer groups they belong to, and these long
sequences therefore have edges to most sequences they share k-
mers with.

As far as we know, Linclust is the only algorithm that could run
on datasets of billions of items resulting in billions of clusters,
overcoming the time and memory bottlenecks of existing clus-
tering algorithms. Linclust could therefore be useful for many
other applications. We have recently extended Linclust to
nucleotide sequences. We are also working on a version to cluster
D-dimensional vectors, which could be used, for instance, for
metagenomic binning to cluster contigs by their coverage profiles
across D metagenomic samples30.

In summary, we hope the Linclust algorithm will prove helpful
to exploit the tremendous value in publicly available metage-
nomic and metatranscriptomic datasets. Linclust should lead to
considerable savings in computing resources in current

A
ve

ra
ge

 c
on

si
st

en
cy

1.0

0.9

0.8

Consistency of GO molecular function annotations
inferred from experiments

LINCLUST/MMseqs2
UCLUST
LINCLUST
CD-HIT
LINCLUST-m80

Number of clusters

Consistency of all GO molecular function annotations

1 × 10+7 2 × 10+7 3 × 10+7

Number of clusters

1 × 10+7 2 × 10+7 3 × 10+7

Number of clusters

1 × 10+7 2 × 10+7 3 × 10+7

Seq. id.

50
70

Type

90

1.0

0.9

A
ve

ra
ge

 c
on

si
st

en
cy

0.8

Consistency of Pfam annotations
1.00

0.95

A
ve

ra
ge

 c
on

si
st

en
cy

0.90

LINCLUST/MMseqs2
UCLUST
LINCLUST
CD-HIT
LINCLUST-m80

Seq. id.

50
70

Type

90

LINCLUST/MMseqs2
UCLUST
LINCLUST
CD-HIT
LINCLUST-m80

Seq. id.
50
70

Type

Mean
Worst
Mean
Worst

90

Mean
Worst
Mean
Worst

Mean
Worst

Mean
Worst

c

b

a

Fig. 4 Cluster consistency of GO molecular functional and Pfam
annotations. a Cluster annotation consistency of GO functional annotations
inferred from experiments (EXP_F). “Mean” and “worst” refers to the mean
and the minimum annotation similarity between each representative
sequence and all other cluster members. Plotting symbols indicate the
sequence identity threshold for clustering. CD-HIT was only run at 90%
sequence identity due to run time constraints. Linclust-m80 was only run at
50% sequence identity. b Same as (a) but using manually and
computationally assigned functional GO annotations. c Consistency of Pfam
annotation from the representative sequences to the cluster members

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04964-5 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:2542 | DOI: 10.1038/s41467-018-04964-5 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

applications. Most importantly, it will enable previously infeasible
large-scale analyses.

Methods
The Linclust algorithm consists of the following steps (Figs 1 and 5):

Step 1: Generating the table of k-mers. We transform the sequence set into a
reduced alphabet of 13 letters to increase the number of k-mer matches and hence
the k-mer sensitivity at a moderate reduction in selectivity (see subsection
“Reduced amino acid alphabet”). The k-mer length is chosen as described in
subsection “Optimal k-mer length” and is typically between 10 and 14.

For each sequence, we extract m k-mers, as described in “Selection of k-mers”.
Increasing m from its default value of 20 (option—kmer-per-seq) increases the
sensitivity at the cost of a moderately decreasing speed (Supplementary Fig. S4).
We store each extracted k-mer index (8 bytes), the sequence identifier (4 bytes), its
length (2 bytes), and its position j in the sequence (2 bytes) in a table with mN lines.
Therefore, Linclust has a memory footprint of mN × 16 bytes.

Step 2: Finding exact k-mer matches. We sort this table by the k-mer index using
the in-place sort from the OpenMP template library (http://freecode.com/projects/
omptl). The sorting has a quasi-linear time complexity of O(mNlog(mN)) and
typically takes less than 10% of the total runtime. The sorting groups together
sequences into blocks of lines that contain the same k-mer. For each such k-mer
group we select the longest sequence as its center sequence. We overwrite the
position j with the diagonal i−j of the k-mer match with the center sequence,
where i is the position of the group’s k-mer in the center sequence. We further
overwrite the k-mer index by the center sequence identifier and resort the mN lines
of the table by the center sequence identifier. The k-mer match stage results file has
one entry for each center sequence identifier containing the list of identifiers of

sequences that share a k-mer with the center sequence. If a sequence shares
multiple k-mer matches with a center sequence, we keep only the entry with the
lowest diagonal i−j.

Step 3a: Hamming distance pre-clustering. For each k-mer group we compute
the Hamming distance (the number of mismatches) in the full amino acid alphabet
between the center sequence and each sequence in the group along the stored
diagonals i−j. This operation is fast as it needs no random memory or cache access
and uses AVX2/SSE4.1 vector instructions. Members that already satisfy the spe-
cified sequence identity and coverage thresholds on the entire diagonal are
removed from the results passed to step 3b and are added to the cluster of their
center sequence after step 5.

Step 3b: Ungapped alignment filtering. For each k-mer group we compute the
optimal ungapped, local alignment between the center sequence and each sequence
in the group along the stored diagonals i−j, using one-dimensional dynamic
programming with the Blosum62 matrix. We filter out matches between center and
member sequences if the ungapped alignment score divided by the length of the
diagonal is very low. We set a conservative threshold, such that the false negative
rate is 1%, i.e., only 1% of the alignments below this threshold would satisfy the two
criteria, sequence identity and coverage. For each combination on a grid {50, 55, 60,
…,100}⊗{0, 10, 20,…,100}, we determined these thresholds empirically on 4
million local alignments sampled from an all-against-all comparison of the UniProt
database31.

Step 4: Local gapped sequence alignment. Sequences that pass the ungapped
alignment filter are aligned to their center sequence using the AVX2/SSE4.1-vec-
torized alignment module with amino acid compositional bias correction from
MMseqs210, which builds on code from the SSW library32. Sequences satisfying the
specified sequence identity and coverage thresholds are linked by an edge. These

1

4
3
2

5
6
7
8
9

1
4

2
5

2
4

8

1

5
6
8

1
4

3
7

2
5

6
8

2
4

8

3
7

3
7

7

9

3

9

9

(5) Cluster with greedy incremental algorithm

1

1

2

3

4 6

7 5
9

86

m = 2
N = 9

2

3

4 6

7 5
9

8

1

1

5

5

4

7

(1) Select m k-mers with lowest hash
values in each of N sequences;
Generate table of m × N lines, 1 per k-mer
(k-mer; sequence ID, k-mer position);

(2) Sort table and select longest sequence per
 k-mer group as center sequence

(3) Merge groups by center sequence;
 Align each sequence without gaps to its
 center sequence (< m × N alignments!)

(4) Remove links below cut-off ; validate
 remaining links using gapped alignment

Fig. 5 Linear-time clustering algorithm. Steps 1 and 2 find exact k-mer matches between the N input sequences that are extended in step 3 and 4. (1)
Linclust selects in each sequence the m (default: 20) k-mers with the lowest hash function values, as this tends to select the same k-mers across
homologous sequences. It uses a reduced alphabet of 13 letters for the k-mers and sets k between 10 and 14 depending on the sequence set size and the
sequence identity threshold. It generates a table in which each of the mN lines consists of the k-mer, the sequence identifier, and the position of the k-mer
in the sequence. (2) Linclust sorts the table by k-mer in quasi-linear time, which identifies groups of sequences sharing the same k-mer (large shaded
boxes). For each k-mer group, it selects the longest sequence as center. It thereby tends to select the same sequences as center among groups sharing
sequences. (3) It merges k-mer groups with the same center sequence together (1: red+ cyan and 5: orange+ blue) and compares each group member to
the center sequence in two steps: by global Hamming distance and by gapless local alignment extending the k-mer match. (4) Sequences above a score
cut-off in step 3 are aligned to their center sequence using gapped local sequence alignment. Sequence pairs that satisfy the clustering criteria (e.g., on the
E-value, sequence similarity, and sequence coverage) are linked by an edge. (5) The greedy incremental algorithm finds a clustering such that each input
sequence has an edge to its cluster’s representative sequence. Note that the number of sequence pairs compared in steps 3 and 4 is less than mN, resulting
in a linear time complexity

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04964-5

6 NATURE COMMUNICATIONS | (2018) 9:2542 | DOI: 10.1038/s41467-018-04964-5 | www.nature.com/naturecommunications

http://freecode.com/projects/omptl
http://freecode.com/projects/omptl
www.nature.com/naturecommunications

edges (neighbor relationships) are written in the format used by MMseqs2 for
clustering results.

Step 5: Greedy incremental clustering. This algorithm was already implemented
for MMseqs11. Briefly, the file with the validated directed edges from center
sequences to member sequences is read in and all reverse edges are added. The list
of input sequences is sorted by decreasing length. While the list is not yet empty,
the top sequence is removed from the list, together with all sequences still in the list
that share an edge with it. These sequences form a new cluster with the top
sequence as its representative.

Reduced amino acid alphabet. We iteratively constructed reduced alphabets
starting from the full amino acid alphabet. At each step, we merged the two letters
{a, b}�! a′ = (a or b) that conserve the maximum mutual information,
MI ¼ PA

x;y¼1 p x; yð Þlog2 p x; yð Þ=p xð Þ=p yð Þð Þ. Here A is the new alphabet size, p(x)
is the probability of observing letter x at any given position, and p(x, y) is the
probabilities of observing x and y aligned to each other. These probabilities are
extracted from the Blosum62 matrix. When a and b are merged into a′, for
example, p(a′)= p(a)+ p(b) and p(a′,y)= p(a, y)+ p(b, y). The default alphabet
with A= 13, which performed well over all tested clustering sequence identities
from 50% to 100%, merges (L, M), (I, V), (K, R), (E, Q), (A, S, T), (N, D),
and (F, Y).

Optimal k-mer length. For optimal results and efficiency, the majority of the
sequences in k-mer groups should be homologous to their center sequence. In
other words, the k-mers have to be specific enough for the size of the database,
with larger databases requiring larger k. To automatically set a good value of k, a
very conservative condition is to limit to 1 the expectation value EFP of the
number of sequences per k-mer group that are not homologous to their center
sequence. EFP is equal to the number mN of k-mers selected in the entire
sequence set times the probability pmatch for one of those k-mers to match the k-
mer of the k-mer group by chance. If the k-mers were not preselected by their
hash function values, this probability would be approximately 1=Ak

eff , where

1=Aeff ¼
PA

a¼1 p
2
a is the probability for two letters from the reduced alphabet of

size A to match by chance (1/8.7 for A= 13) and pa is the frequency of letter a in
the database. Due to the preselection, only a fraction ~m/L of the entire set of k-
mers is used, where L is the average sequence length. Therefore, the probability
of two selected k-mers to match by chance is L= mAk

eff

� �
. The condition for the k-

mer specificity is 1 � EFP ¼ mNL= mAk
eff

� � ¼ NL=Ak
eff , and hence we demand

k � log NLð Þ=log Aeffð Þb c ¼: kspec. In Linclust, we set k=max{kspec, kseqid}, with
kseqid= 14 for a sequence identity clustering threshold ≥90% and kseqid= 10
otherwise to ensures slightly higher efficiency for high sequence identities, for
which longer k-mers are sufficiently sensitive.

Selection of k-mers. To be able to cluster two sequences together we need to find a
k-mer in the reduced alphabet that occurs in both. Because we extract only a small
fraction of k-mers from each sequence, we need to avoid picking different k-mers
in each sequence. Our first criterion for k-mer selection is therefore to extract k-
mers such that the same k-mers tend to be extracted from homologous sequences.
Second, we need to avoid positional clustering of selected k-mers in order to be
sensitive to detect local homologies in every region of a sequence. Third, we would
like to extract k-mers that tend to be conserved between homologous sequences.
Note that we cannot simply store a subset of Akm/L k-mers to be selected due to its
sheer size.

We can satisfy the first two criteria by computing hash values for all k-mers in a
sequence and selecting the m k-mers that obtain the lowest hash values. Since
appropriate hash functions can produce values that are not correlated in any simple
way with their argument, this method should randomly select k-mers from the
sequences such that the same k-mers always tend to get selected in all sequences.
We developed a simple 16-bit rolling hash function with good mixing properties,
which we can compute very efficiently using the hash value of the previous k-mer
(Supplementary Fig. 5).

In view of the third criterion, we experimented with combining the hash value
with a k-mer conservation score Scons x1:kð Þ ¼ Pk

i¼1 S xi; xið Þ=k. This score ranks
k-mers x1:k by the conservation of their amino acids, according to the diagonal
elements of the Blosum62 substitution matrix S(⋅, ⋅). We scaled the hash function
with a rectified version of the conservation score: hash−value(x1:k)/max{1,
Scons(x1:k) − Soffset}. Despite its intuitive appeal, we did not succeed in obtaining
significant improvements and reverted to the simple hash function.

Clustering datasets that do not fit into main memory. Linclust needs m × 16
bytes of memory per sequence. If the computer’s main memory is too small,
Linclust automatically splits the k-mer array into C equal-sized chunks small
enough to fit each into main memory (Supplementary Fig. 1). For each chunk
index c∈ {0,…,C− 1} we run Linclust steps 1 and 2 (Fig. 5) normally but extract
only k-mers whose numerical index modulo C yields a rest c. This way each of the
C runs builds up a k-mer table with only about mN/C lines instead of mN, and

hence each run needs C times less memory. Each run writes out a file with all found
k-mer groups, and afterwards all C files are merged into a single file such that k-
mer groups are sorted by ascending center IDs. Finally, Linclust steps 3 to 5 are
performed as usual.

Parallelization and supported platforms. We used OpenMP to parallelize all
stages except the fast step 5 and SIMD instructions to parallelize step 3 and step 4.
Linclust supports Linux and Windows, Mac OS X and CPUs with AVX2 or SSE4.1
instructions.

Clustering criteria. Linclust/MMseqs2 and Linclust has three main criteria to link
two sequences by an edge: (1) a maximum E-value threshold (option -e [0, ∞[)
computed according to the gap-corrected Karlin-Altschul statistics using the ALP
library;33 (2) a minimum coverage (option -c [0,1], which is defined by the number
of aligned residue pairs divided by either the maximum of the length of query/
center and target/non-center sequences (default mode, --cov-mode 0), or by the
length of the target/non-center sequence (--cov-mode 1), or by the length of the
query/center (--cov-mode 2); (3) a minimum sequence identity (--min-seq-id [0,
1]) with option --alignment-mode 3 defined as the number of identical aligned
residues divided by the number of aligned columns including internal gap columns,
or, by default, defined by a highly correlated measure, the equivalent similarity
score of the local alignment (including gap penalties) divided by the maximum of
the lengths of the two locally aligned sequence segments. The score per residue
equivalent to a certain sequence identity is obtained by a linear regression using
thousands of local alignments as training set (Fig. S2 in27).

The sequence identity in UCLUST is defined as number of identical residues in
the pairwise global alignment divided by the number of aligned columns including
internal gaps. Due to the global alignment, no explicit coverage threshold is needed.
CD-HIT defines sequence identity as the number of identical residues in the local
alignment divided by the length of the shorter sequence. Therefore, sequence
coverage of the shorter sequence must be at least as large as the sequence identity
threshold.

Tools and options for benchmark comparison. Linclust and Linclust/MMseqs2
(commit 5e21868) used the commands mmseqs linclust --cov-mode 1 -c 0.9 --min-
seq-id 0.9 and mmseqs cluster --cov-mode 1 -c 0.9 --min-seq-id 0.9 for 90%,
respectively, and --min-seq-id 0.7 or --min-seq-id 0.5 for 70% and 50%. The
minimum coverage of 90% of the shorter sequence was chosen to enforce global
similarity, similar to UCLUST and CD-HIT. CD-HIT 4.6 was run with the para-
meters -T 16 -M 0 and -n 5 -c 0.9, -n 4 -c 0.7, and -n 3 -c 0.5 for 90%, 70%, and
50%, respectively. UCLUST (7.0.1090) was run with --id 0.9, 0.7, 0.5, for RAP-
search2 (2.23) we used -z 16, for DIAMOND (v0.8.36.98) option --id 0.5, and for
MASH (v2.0) -s 20 -a -i -p 16. Runtimes were measured with the Linux time
command.

Functional consistency benchmark. We evaluated the functional cluster con-
sistency based on Gene Ontology (GO) annotations of the UniProt knowledge
base. We carried out three tests: one based on (1) experimentally validated GO
annotations, (2) general functional GO annotations (mostly inferred from homo-
logous proteins) and (3) Pfam annotations. The UniProt 2016_03 release was
clustered by each tool at 90%, 70% and 50% sequence identity level and then
evaluated. For CD-HIT we computed only the clustering at 90% sequence identity
because of run time constraints. For each cluster, we computed the ‘worst’ and
‘mean’ cluster consistency scores, as described earlier16. These cluster consistency
scores are defined respectively as the minimum and the mean of all pairwise
annotation similarity scores between the cluster’s representative sequence and the
other sequences in the cluster.

GO annotations often annotate the whole sequence. We used the Pfam
annotations of the UniProt to check local consistence of clusters (Fig. 3c). We
compared the Pfam domain annotation of the representative sequence against all
cluster members. If the member had the exact same domain annotation as the
representative sequence we counted it as correct (value= 1) and otherwise as false
(value= 0).

Clustering. We downloaded ~1800 metagenomic and ~400 metatranscriptomic
datasets with assembled contigs from the Joint Genome institute’s IMG/M archive3

and NCBI’s Sequence Read Archive20 (ftp://ftp.ncbi.nlm.nih.gov/sra/wgs_aux)
using the script metadownload.sh from https://bitbucket.org/martin_steinegger/
linclust-analysis. We predicted genes and protein sequences using Prodigal19

resulting in 1,595,926,152 proteins.
We clustered the 1.59 million sequence fragments with Linclust using the

following acceptance criteria: (1) the minimum sequence identity is 50%, using the
score-per-column similarity measure described in Clustering criteria, (2) the
shorter of the two sequences has at least 90% of its residues aligned, and (3) the
maximum E-value is 10−3 (default) (Linclust options: --min-seq-id 0.5 --cov-mode
1 -c 0.9 --cluster-mode 2). The clustering step found 424 million cluster within 10 h
on a server with two 14-core Intel Xeon E5-2680 v4 CPUs (2.4 GHz) and 762 GB
RAM.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04964-5 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:2542 | DOI: 10.1038/s41467-018-04964-5 | www.nature.com/naturecommunications 7

ftp://ftp.ncbi.nlm.nih.gov/sra/wgs_aux
https://bitbucket.org/martin_steinegger/linclust-analysis
https://bitbucket.org/martin_steinegger/linclust-analysis
www.nature.com/naturecommunications
www.nature.com/naturecommunications

Metaclust protein sequence sets. The Metaclust database is available as FASTA
formatted file at https://metaclust.mmseqs.org/.

Code availability. Linclust has been integrated into our free GPLv3-licensed
MMseqs2 software suite10. The source code and binaries for Linclust can be
download at https://github.com/soedinglab/mmseqs2.

Data availability. The Metaclust dataset generated during the current study is
available at https://metaclust.mmseqs.org. The Linclust source code is available at
https://mmseqs.org. All scripts and benchmark data including command-line
parameters necessary to reproduce the benchmark and analysis results presented
here are available at https://bitbucket.org/martin_steinegger/linclust-analysis.

Received: 5 January 2018 Accepted: 26 April 2018

References
1. Rappe, M. S. & Giovannoni, S. J. The uncultured microbial majority. Ann. Rev.

Microbiol. 57, 369–394 (2003).
2. Wilke, A. et al. The MG-RAST metagenomics database and portal in 2015.

Nucleic Acids Res. 44, D590–D594 (2016).
3. Markowitz, V. M. et al. IMG/M 4 version of the integrated metagenome

comparative analysis system. Nucleic Acids Res. 42, D568–D573 (2014).
4. Scholz, M. B., Lo, C.-C. & Chain, P. S. Next generation sequencing and

bioinformatic bottlenecks: the current state of metagenomic data analysis.
Curr. Opin. Biotechnol. 23, 9–15 (2012).

5. Desai, N., Antonopoulos, D., Gilbert, J. A., Glass, E. M. & Meyer, F. From
genomics to metagenomics. Curr. Opin. Biotechnol. 23 72–76 (2012).

6. Prakash, T. & Taylor, T. D. Functional assignment of metagenomic data:
challenges and applications. Brief. Bioinform. 13, 711–727 (2012).

7. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the
next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

8. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460–2461 (2010).

9. Li, W., Fu, L., Niu, B., Wu, S. & Wooley, J. Ultrafast clustering algorithms for
metagenomic sequence analysis. Brief. Bioinform. 13, 656–668 (2012).

10. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence
searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028
(2017).

11. Hauser, M., Steinegger, M. & Söding, J. MMseqs software suite for fast and
deep clustering and searching of large protein sequence sets. Bioinformatics
32, 1323–1330 (2016).

12. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment
using diamond. Nat. Methods 12, 59–60 (2015).

13. Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation
using minhash. Genome Biol. 17, 132 (2016).

14. Zhao, Y., Tang, H. & Ye, Y. RAPSearch2: a fast and memory-efficient protein
similarity search tool for next-generation sequencing data. Bioinformatics 28,
125–126 (2012).

15. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local
alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

16. Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein
sequences and alignments. Nucleic Acids Res. 45, D170–D176 (2017).

17. Gene Ontology Consortium. Gene ontology consortium: going forward.
Nucleic Acids Res. 43, D1049–D1056 (2015).

18. Finn, R. D. et al. The pfam protein families database: towards a more
sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

19. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation
initiation site identification. BMC Bioinforma. 11, 119 (2010).

20. Kodama, Y., Shumway, M. & Leinonen, R. The sequence read archive:
explosive growth of sequencing data. Nucleic Acids Res. 40, D54–D56 (2012).

21. Sunagawa, S. et al., Structure and function of the global ocean microbiome,
Science, 348, no. 6237, pp. 1261359–1–9, (2015).

22. Ovchinnikov, S. et al. Protein structure determination using metagenome
sequence data. Science 355, 294–298 (2017).

23. Hopf, T. A. et al. Mutation effects predicted from sequence co-variation. Nat.
Biotechnol. 35, 128–135 (2017).

24. Day, W. H. & Edelsbrunner, H. Efficient algorithms for agglomerative
hierarchical clustering methods,. J. Classif. 1, 7–24 (1984).

25. McCallum, A. Nigam, K. & Ungar, L. H. Efficient clustering of high-
dimensional data sets with application to reference matching. In Proc. 6th
ACM SIGKDD International Conference on Knowledge Discovery and Data
mining. 169–178 (ACM, 2000).

26. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

27. Hauser, M., Mayer, C. & Soding, J. kClust: fast and sensitive clustering of large
protein sequence databases. BMC Bioinforma. 14, 248 (2013).

28. Marshall J. A. & Rafsky L. C. Exact clustering in linear time. Preprint at
https://arxiv.org/abs/1702.05425 (2017).

29. Wang, J. Shen, H. T., Song, J. & Ji., J. Hashing for similarity search: a survey.
Preprint at https://arxiv.org/abs/1408.2927 (2014).

30. Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained
by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31,
533–538 (2013).

31. Bairoch, A. et al. The Universal Protein Resource (UniProt). Nucleic Acids Res.
33(Suppl. 1), D154–D159 (2005).

32. Zhao, M. Lee, W.-P. Garrison, E. P. & Marth, G. T. SSW Library: An SIMD
Smith-Waterman C/C++ library for use in genomic applications. PLoS ONE
8, e82138 (2013).

33. Sheetlin, S., Park, Y., Frith, M. C. & Spouge, J. L. ALP & FALP: C++ libraries
for pairwise local alignment E-values. Bioinformatics 32, 304–305 (2015).

Acknowledgements
We are grateful to Cedric Notredame and Chaok Seok for hosting MS at the CRG in
Barcelona and at Seoul National University for 12 and 30 months, respectively. Thanks to
Milot Mirdita and Clovis Galiez for discussions and to all who contributed metagenomic
datasets used to build Metaclust, in particular the US Department of Energy Joint
Genome Institute http://www.jgi.doe.gov/ and their user community. This work was
supported by the EU’s Horizon 2020 Framework Programme (Virus-X, grant 685778).

Author contributions
M.S. performed the research and programming, M.S. and J.S. jointly designed the
research and wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-04964-5.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04964-5

8 NATURE COMMUNICATIONS | (2018) 9:2542 | DOI: 10.1038/s41467-018-04964-5 | www.nature.com/naturecommunications

https://metaclust.mmseqs.org/
https://github.com/soedinglab/mmseqs2
https://metaclust.mmseqs.org
https://mmseqs.org
https://bitbucket.org/martin_steinegger/linclust-analysis
https://arxiv.org/abs/1702.05425
https://arxiv.org/abs/1408.2927
http://www.jgi.doe.gov/
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1038/s41467-018-04964-5
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Clustering huge protein sequence sets in linear time
	Results
	Overview of Linclust
	Linclust and Linclust/MMseqs2 workflows
	Runtime and clustering sensitivity benchmark
	Cluster consistency analysis
	Clustering 1.6 billion metagenomic sequences

	Discussion
	Methods
	Step 1: Generating the table of k-mers
	Step 2: Finding exact k-mer matches
	Step 3a: Hamming distance pre-clustering
	Step 3b: Ungapped alignment filtering
	Step 4: Local gapped sequence alignment
	Step 5: Greedy incremental clustering
	Reduced amino acid alphabet
	Optimal k-mer length
	Selection of k-mers
	Clustering datasets that do not fit into main memory
	Parallelization and supported platforms
	Clustering criteria
	Tools and options for benchmark comparison
	Functional consistency benchmark
	Clustering
	Metaclust protein sequence sets
	Code availability
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS

