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Supplementary Figure 1. Splitting the database into chunks For each chunk index c ∈ {0, . . . , C − 1} we run
Linclust steps 1 and 2 (Figure 1) normally but extract only k-mers whose numerical index modulo C yields a rest c. This
way each of the C runs builds up a k-mer table with only about mN/C lines instead of mN , and hence each run needs
C times less memory. Each run writes out a file with all found k-mer groups (sequence ID, diagonal). The diagonal is
i − j of the k-mer match, where i is the position of the groups k-mer in the centre sequence and j the position in the
other sequence. Afterwards all C files are merged into a single file such that k-mer groups are sorted by ascending centre
IDs. Finally, Linclust steps 3 to 5 are performed as usual.
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Supplementary Figure 2. Contribution of Hamming distance pre-clustering and gapless local alignment
filter steps to the decrease of the Linclust runtime Double-logarithmic plot of runtimes versus sequence set
size illustrating the contribution of runtime decrease for the Hamming distance pre-clustering and ungapped alignment
filtering stage.



3

Supplementary Figure 3. Equivalence of two sequence identity measures. Number of clusters obtained at
50% sequence identity for Linclust with two different sequence identity definitions: (1) the default definition (”Linclust”),
based on the local alignment score divided by the maximum length of the two aligned sequence segments; and (2) the
fraction of identical residues in the alignment relative to the number of aligned columns including gaps (”Linclust seqid”).
Both measures produce very similar numbers of clusters.
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Supplementary Figure 4. Influence of the number m of k-mers extracted per sequence. Double-logarithmic
plot of runtimes versus cluster size. Through the parameter m, the number of k-mers selected per sequence, the user
can set the trade-off between sensitivity and speed. At m = 80 the runtime of Linclust increases by a factor of 1.66 over
the default setting m = 20 while producing 8% fewer clusters. At m = 80 , Linclust generates only 7% more clusters
than UCLUST while still being much faster.
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// (c) 2017 Johannes Soeding & Martin Steinegger, Gnu Public License version 3

// Rotate left macro: left circular shift by numbits within 16 bits

#define RoL(val, numbits) (val << numbits) ^ (val >> (16 - numbits))

// Transform each letter x[i] to a fixed random number RAND[x[i]]

// to ensure instantaneous mixing into the 16 bits

// Do XOR with RAND[x[i]] and 5-bit rotate left for each i from 1 to k

unsigned circ_hash(const int * x, unsigned length){

short unsigned RAND[21] = {0x4567, 0x23c6, 0x9869, 0x4873, 0xdc51, 0x5cff, 0x944a, 0x58ec,

0x1f29, 0x7ccd, 0x58ba, 0xd7ab, 0x41f2, 0x1efb, 0xa9e3, 0xe146,

0x007c, 0x62c2, 0x0854, 0x27f8, 0x231b}; // 16 bit random numbers

short unsigned h = 0x0;

h = h^ RAND[x[0]]; // XOR h and ki

for (int i = 1; i < length; ++i){

h = RoL(h, 5);

h ^= RAND[x[i]]; // XOR h and ki

}

return h;

}

// Rolling hash variant for previous hash function:

// Computes hash value for next key x[0:length-1] from previous hash value

// hash( x[-1:length-2] ) and x_first = x[-1]

unsigned circ_hash_next(const int * x, unsigned length, int x_first, short unsigned h){

short unsigned RAND[21] = {0x4567, 0x23c6, 0x9869, 0x4873, 0xdc51, 0x5cff, 0x944a, 0x58ec,

0x1f29, 0x7ccd, 0x58ba, 0xd7ab, 0x41f2, 0x1efb, 0xa9e3, 0xe146,

0x007c, 0x62c2, 0x0854, 0x27f8, 0x231b}; // 16 bit random numbers

// undo INITIAL_VALUE and first letter x[0] of old key

h ^= RoL(RAND[x_first], (5*(length-1)) % 16);

// circularly permute all letters x[1:length-1] to 5 positions to left

h = RoL(h, 5);

// add new, last letter of new key x[1:length]

h ^= RAND[x[length-1]];

return h;

}

Supplementary Figure 5. k-mer hashing function implemented in C.


