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Abstract: It has recently been demonstrated that the large N limit of a model of fermions

charged under the global/gauge symmetry group O(N)q−1 agrees with the large N limit of

the SYK model. In these notes we investigate aspects of the dynamics of the O(N)q−1 the-

ories that differ from their SYK counterparts. We argue that the spectrum of fluctuations

about the finite temperature saddle point in these theories has (q−1)N
2

2 new light modes in

addition to the light Schwarzian mode that exists even in the SYK model, suggesting that

the bulk dual description of theories differ significantly if they both exist. We also study

the thermal partition function of a mass deformed version of the SYK model. At large

mass we show that the effective entropy of this theory grows with energy like E lnE (i.e.

faster than Hagedorn) up to energies of order N2. The canonical partition function of the

model displays a deconfinement or Hawking Page type phase transition at temperatures

of order 1/ lnN . We derive these results in the large mass limit but argue that they are

qualitatively robust to small corrections in J/m.
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1 Introduction

It has recently been demonstrated that the dynamically rich Sachdev-Ye-Kitaev model — a

quantum mechanical model of fermions interacting with random potentials — is solvable at

large N [1–3]. This model is interesting partly because its thermal properties have several

features in common with those of black holes. The SYK model self equilibrates over a

time scale of order the inverse temperature and has a Lyapunov index that saturates the

chaos bound [2, 3]. Moreover the long time behaviour of this model at finite temperature is

governed by an effective action that has been reinterpreted as a particular theory of gravity

expanded about AdS2 background solution [1, 4–10].

These facts have motivated the suggestion that the SYK model is the boundary dual of

a highly curved bulk gravitational theory whose finite temperature behaviour is dominated

by a black hole saddle point. If this suggestion turns out to be correct, the solvability of

the SYK model at large N — and its relative simplicity even at finite N — could allow

one to probe old mysteries of black hole physics in a manner that is nonperturbative in 1
N ,

the effective dual gravitational coupling (see e.g. [11–13] for recent progress).

There is, however, a potential fly in the ointment. While the SYK model — defined as

a theory with random couplings — is an average over quantum systems, it is not a quantum

system by itself. One cannot, for instance, associate the SYK model with a Hilbert space

in any completely precise manner, or find a unitary operator that generates time evolution

in this model. As several of the deepest puzzles of black hole physics concern conflicts with

unitarity, this feature of the SYK model is a concern.

Of course any particular realisation of the couplings drawn from the SYK ensemble is a

genuine quantum theory. It is plausible that several observables — like the partition func-

tion — have the same large N limit when computed for any given typical member of the

ensemble as they do for the SYK model defined by averaging over couplings [12, 14, 15]. It

might thus seem that every typical realization of random couplings is an inequivalent con-

sistent quantization of classical large N SYK system. As the number of such quantizations

is very large, this would be an embarrassment of riches. The potential issue here is that if we

work with any given realization of the SYK model, it appears inconsistent to restrict atten-

tion to averaged observables for any finite N no matter how large. On the other hand cor-

relators of individual ψi operators (as opposed to their averaged counterparts) presumably

do not have a universal large N limit (and so are not exactly solvable even at large N).1

In order to address these concerns some authors have recently [16–18] (based on earlier

work [19–24]) studied a related class of models. These models are ordinary quantum

mechanical systems; in fact they describe the global or gauged quantum mechanics of a

collection of fermions in 0+1 dimensions. In this paper we will focus our attention on

the model

S =

∫
dt

NF∑
a=1

[ψ̄aD0ψa − (g ψqa + h.c.)],

D0 = ∂0 + iA0 , g =
J

N
(q−1)(q−2)

4

,

(1.1)

1We thank S. Sachdev for discussion on this point.
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that was first proposed — at least in the current context — in [17]. In (1.1) ψa are a

collection of complex gauged fermionic fields in 0 + 1 dimensions that transform in the

fundamental of each of the q − 1 copies of O(N). The index a is a flavour index that runs

from 1 . . . NF .2 J is a coupling constant with dimensions of mass and ψq is a schematic

for a q vertex generalisation of a ‘tetrahedronal’ interaction term between q copies of the

fermionic fields, whose gauge index contraction structure is explained in detail in [16, 17]

and will be elaborated on below.

The tetrahedral structure of the interaction [16, 17] is such that for any even number

of fermions q each fermion has q−1 indices each in a different O(N)(orU(N)). The indices

among the q fermions are contracted such that every fermion is index contracted with an

index of the same gauge group on one of the remaining fermions. Moreover, given any

— and every — 2 fermions have a single index (of some gauge group) contracted between

them. For q = 4 it is easy to check that these words define a unique contraction structure

which may be viewed as a tetrahedral contraction among the 4 fermions each with q−1 = 3

indices(legs) with every fermion(point or vertex of the tetrahedron) connected to 3 different

coloured legs. For q ≥ 6 it is not clear that the words above define a unique contraction

structure. In case the contraction structure is not unique, we pick one choice — for example

the Round-Robin scheduling process to define our interaction [25, 26].3

The connection between the quantum mechanical theories (1.1) and the SYK model

itself is the following; it has been demonstrated (subject to certain caveats) that sum

over Feynman graphs of the theory (1.1) coincides with the sum over Feynman graphs

of the SYK model at at leading order at large N (see [16] for the argument in a very

similar model), even though these two sums differ at finite values of N (see e.g. the recent

paper [27] and references therein). It follows that the quantum mechanical models (1.1)

are exactly as solvable as the SYK model at large N ; moreover they also inherit much of

the dynamical richness of the SYK model. In other words the models (1.1) are solvable

at large N , are unitary and are potentially boundary duals of (highly curved) black hole

physics.

Motivated by these considerations, in this note we study the effective theory that

governs the long time dynamics of the model (1.1) at finite temperature. We focus attention

on dynamical aspects of (1.1) that have no counterpart in the already well studied dynamics

of the original SYK model.4

In the rest of this introduction we will explain and describe our principal observations

and results.

1.1 New light modes

The thermal behaviour of both the theory (1.1) and the original SYK model is determined

by the path integral of these theories on a circle of circumference β.

2For this simplest case NF = 1 this model was presented in eq. 3.23 of [17].
3We would like to thank J. Yoon for explaining the Round Robin scheduling process to us and clearing

up our misconceptions about uniqueness of the contraction structure for q > 4.
4See [25, 28–37] for other recent work on the model (1.1) and its close relatives.
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It was demonstrated in [2, 3] that, in the case of the original SYK model, this path

integral is dominated by a saddle point of an effective action whose fields are the two

point function and self energy of the fermions. An extremization of this effective action

determines both the fermionic two point function at finite temperature as well as the free

energy of the system at leading order at large N .

In a similar manner, the thermal behaviour of the quantum mechanical systems (1.1)

is dominated by a saddle point at large N . Under appropriate assumptions it may be

shown that resultant effective action has the same minimum as that of the original SYK

theory [16].5 Specialising to the case NF = 1, the leading order fermionic two point function

of the quantum mechanical system is given by

〈ψ̄a(t)ψb(t′)〉 = δabG
SY K(t− t′), (1.2)

where a and b denote the (collection of) vector indices for the fermions and GSY K(t) is the

thermal propagator of the original SYK model.6

While the thermal behaviour of the model (1.1) is thus indistinguishable from that

of the SYK model at leading order in the large N limit, the dynamics of the quantum

mechanical model (1.1) differs from that of the SYK model at subleading orders in 1/N .

The first correction to leading large N thermal behaviour may be obtained by performing

a one loop path integral over quadratic fluctuations around the saddle point. In the long

time limit, correlators are dominated by the lightest fluctuations around the saddle point.

Recall that in the UV (i.e. as βJ → 0) the fermions of (1.1) have dimension zero. The

term proportional to ψq in (1.1) represents a dimension zero relevant deformation of this

UV fixed point. The resultant RG flow ends in the deep IR in a conformal field theory in

which the fermions have dimension 1
q [2, 3]. In this IR limit (relevant to thermodynamics

when βJ →∞) ψq is marginal while the kinetic term in (1.1) is irrelevant [2, 3]. The fact

that the kinetic term is irrelevant in the IR — and so can effectively be ignored in analysing

the symmetries of (1.1) at large βJ — has important implications for the structure of light

fluctuations about the thermal saddle point.

The first implication of the irrelevance of the kinetic term occurs already in the SYK

model and was explored in detail in [2, 3, 6]. The main point is that the action (1.1),

with the kinetic term omitted, enjoys invariance under conformal diffeomorphisms (i.e.

diffeomorphisms together with a Weyl transformation). However the saddle point solution

5A potential subtlety is that path integral of the quantum mechanical system (1.1) has a degree of

freedom that is absent in the original SYK model, namely the holonomy of the gauge group O(N)q−1. As

for the SYK model, integrating out the fermions leads to an effective action — proportional to Nq−1 —

whose fields are a two point function of the fermions, a self energy and the holonomy of the gauge group.

As in the case of the original SYK model, at leading order in the large N limit the free energy of the system

is captured by the saddle point of this effectively classical action. If we work at temperatures that are held

fixed as N → ∞ it is highly plausible that this effective action is minimised when the holonomy is the

identity matrix (see 3 below). Under this assumption the saddle point of the quantum mechanical system

coincides with that of the SYK model.
6Eq. (1.2) applies both the the case that the group O(N)q−1 is global and local. In the latter case this

equation applies in the gauge ∂0A0 = 0. Assuming that the holonomy degree of freedom is frozen to identity

at large N , the gauged and global model coincide.
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for the Greens function GSYK(t) is not invariant under conformal diffeomorphisms. It

follows immediately that the action of infinitesimal conformal diffeomorphisms on this

solution generates zero modes in the extreme low energy limit.

At any finite temperature, no matter how small, the kinetic term in (1.1) cannot

completely be ignored and conformal invariance is broken; the action of conformal diffeo-

morphisms on the SYK saddle point consequently produces anomalously light (rather than

exactly zero) modes. The action for these modes was computed in [2, 3, 6] and takes the

form of the Schwarzian for the conformal diffeomorphisms.

A very similar line of reasoning leads to the conclusion that the model (1.1) has

(q − 1)N
2

2 additional light modes in the large βJ limit, as we now explain. Let us continue

to work in the gauge A0 = 0. In this gauge the action (1.1) is obviously invariant under the

global rotations ψ → V ψ, ψ̄ → ψ̄V † where V is an arbitrary time independent O(N)q−1

rotation. In the global model (1.1) the rotation by V is the action of a global symmetry.

In gauged model on the other hand, these rotations are part of the gauge group and do

not generate global symmetries of our model; the Gauss law in the theory ensures that all

physical states are uncharged under this symmetry.

Let us now consider the transformation ψ → V (t)ψ together with ψ̄ → ψ̄V (t)† where

V (t) is an arbitrary time dependent O(N)q−1 rotation. In the case of the gauged models,

this transformation is not accompanied by a change in A0 (A0 = const throughout) so the

rotation is not a gauge transformation.

At finite βJ the rotation by a time dependent V (t) is not a symmetry of the action (1.1)

in either the global or the gauged theory as the kinetic term in (1.1) is not left invariant by

this transformation. As we have explained above, however, the kinetic term is irrelevant

in the low temperature limit βJ →∞. It follows that the time dependent transformation

is an effective symmetry of dynamics this strict low temperature limit.

However the saddle point solution (1.2) is clearly not invariant under the time depen-

dent rotations by V (t). It follows that, as in the discussion for conformal diffeomorphisms

above, the action of V (t) on (1.2) generates exact zero modes in the strict limit βJ → ∞
and anomalously light modes at any finite βJ . We emphasise that this discussion applies

both to the global model where O(N)q−1 is a global symmetry, and the gauged model

where it is not.

In section 2.2 below we argue that the dynamics of our new light modes is governed

by the effective sigma model on the group manifold

S = −A N q−2

|J |

∫
dt

q−1∑
l=1

Tr

[(
V −1
l (t)

∂

∂t
Vl(t)

)2
]
, (1.3)

where Vl(t) is an arbitrary element of the group O(N) and A is a number of order unity

that we have not been able to determine.

The formula (1.3) has appeared before in a closely related context. The authors of [38]

(see also [14]) studied the a complex version of the SYK model. Their model had an exact

U(1) symmetry at all energies, which — using the arguments presented in the previous

paragraphs — was approximately enhanced to a local U(1) symmetry at low energies. The
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authors of [38] argued the long distance dynamics of the new light modes is governed by

a sigma model on the group manifold U(1).7 Given these results, the appearance of a low

energy sigma model in the large βJ finite temperature dynamics of the theory (1.1) seems

natural.

We would, however, like to emphasise two qualitative differences between the sigma

model (1.3) and the model that appeared in [38]. First (1.3) is a sigma model for a group

O(N)q−1 whose dimensionality goes to infinity in the large N limit, N →∞. Second that

we find the new light modes of the action even of the gauged model (1.1) even though

O(N)q−1 is not a global symmetry of this theory.

The new modes governed by (1.3) are approximately as light — and so potentially as

important to long time dynamics — as the conformal diffeomorphisms described above.

Note, however, that there are (q − 1)N
2

2 light time dependent O(N)q−1 modes but (as far

as we can tell) only one conformal diffeomorphism.

We have already remarked above that the light diffeomorphism degree of freedom

described above has been given an interpretation as a particular gravitational action in an

AdS2 background. It seems likely to us that the effective action (1.3) will, in a similar way,

admit a bulk interpretation as a gauge field propagating in AdS2. The Yang Mills coupling

of this gauge field — like Newton’s constant for the gravitational mode — will be of order
1

Nq−1 (this is simply a reflection of the fact that our model has N q−1 degrees of freedom).

This means that the t’ Hooft coupling of all the gauge fields in the bulk will be of order

g2
YMN ∼ 1

Nq−2 . The fact that this coupling goes to zero in the large N limit implies that

the bulk gauge fields are classical even though there are so many of them.8

It has been established that the light diffeomorphism degree of freedom has a qualita-

tively important effect on out of time ordered thermal correlators; it leads to exponential

growth in such correlators at a rate that saturates the chaos bound G ∼ e2πTt. When we

include the contribution of the new light modes described in this subsection, we expect this

growth formula to be modified to9

G(t) ∼
(
e2πTt +N2f(t)

)
. (1.4)

The factor of N2 is a reflection of the fact that our new modes are N2 in number, whereas

— as far as we can tell — there is only a single light mode corresponding to conformal

diffeomorphisms.

Given that the solutions of the equations of motion to the Sigma model (1.3) grow

no faster than linearly in time, we expect f(t) to grow at most polynomial in time. This

suggests it that the light modes (1.3) will dominate correlators up to a time of order
1
πT lnN . At later times the exponentially growing diffeomorphism mode will dominate,

leading to exponential growth and a Lyapunov index that saturates the chaos bound.

To end this subsection let us return to a slightly subtle point in our discussion. In order

to derive the effective action for V (t) we worked in the gauge A0 = 0. As our theory is on a

thermal circle, in the case of the gauged model (1.1) we have missed a degree of freedom —

7They also argued for some mixing between the diffeomorphism and U(1) long distance modes.
8We would like to thank J. Maldacena for a discussion of this point.
9See [26] for related work.
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the gauge holonomy — by working in the gauge A0 = 0. This, however, is easily corrected

for. Even in the presence of a holonomy, we can set the gauge field A0 to zero by a gauge

transformation provided we allow ourselves to work with gauge transformations that are

not single valued on the circle. The net effect of working with such a gauge transformation

is that the matter fields are no longer periodic around the thermal circle but obey the

boundary conditions

ψ(β) = −Uψ(0), (1.5)

where U is the holonomy around the thermal circle. For the fields of the low energy effective

action (1.3) this implies the boundary conditions

V (β) = UV (0)U−1. (1.6)

Recall we are instructed to integrate over all values of the holonomy U . Consequently we

must integrate over the boundary conditions (1.6) with the Haar measure. See section C

for some discussion of this point.

In summary, the discussion of this subsection suggests that the bulk low energy effec-

tive action ‘dual’ to the gauged/global quantum mechanics of (1.1) differs from the low

energy effective action ‘dual’ to the SYK model in an important way; in addition to the

gravitational field it contains gauge fields of a gauge group whose rank is a positive frac-

tional power of the inverse Newton (and Yang Mills) coupling constant of the theory. In

the classical limit in which Newton’s constant is taken to zero, the rank of the low energy

gauge fields also diverges. Nonetheless the limits are taken in such a way that the effective

bulk theory remains classical.

1.2 Holonomy dynamics and the spectrum at large mass

Our discussion up to this point has applied equally to the ‘global’ and ‘gauged’ quantum

mechanical models (1.1). In the rest of this introduction we focus attention on the gauged

models, i.e. the models in which the O(N)q−1 symmetry algebra is gauged. In this case

the thermal path integral of our system includes an integral over gauge holonomies over

the thermal circle. We wish to study the effect of this holonomy integral on the dynamics

of our system.

In order to do this in the simplest and clearest possible way we deform the model (1.1)

in a way that trivializes the dynamics of all non holonomy modes in the theory. This

is accomplished by adding a mass to the fermions. For concreteness we work with the

O(N)q−1 model

S =

∫
dt

NF∑
a=1

[(
ψ̄aD0ψa +mψ̄aψa

)
− (g ψqa + h.c.)

]
,

D0 = ∂0 + iA0 , g =
J

N
(q−1)(q−2)

4

,

(1.7)

where m, the mass of the fermion is taken to be positive.10 We work the large mass limit,

i.e. the limit m
J � 1. The effective interaction between fermions in (1.7), J

m , is small in this

10In the case that the mass is negative, most of our formulae below go through once under the replacement

m→ |m|.
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limit and can be handled perturbatively. In the strict m → ∞ limit the only interaction

that survives in the system is that between the (otherwise free) matter fields and the

holonomy U .11

Let us first work in the strict limit m
J →∞. In this limit the dynamics of the holonomy

field U in this theory is governed by an effective action obtained by integrating out the

matter fields at one loop.12 The resultant effective action is easily obtained and is given

by ([39])

Z = Trx
H
m =

∫ q−1∏
i=1

dUi exp(−Seff(Ui)),

Seff(Ui) = −NF

∞∑
n=1

(−x)n
(∏q−1

i=1 TrUni

)
n

,

x = e−β|m|,

(1.8)

where H is the Hamiltonian of our theory.13

Each Ui is an O(N) matrix that represents the holonomy in the ith factor in the gauge

group O(N)q−1. dU is the Haar measure over the group O(N)q−1 normalized so that the

total group volume is unity.

Notice that when x is of order unity, Seff ∼ N q−1 in (1.8). On the other hand the

contribution of the group measure to the ‘effective’ action is of order N2. The integral

in (1.8) is interesting when these two contributions are comparable. This is the case if we

scale temperatures so that

x = e−β|m| =
α

NFN q−3
, (1.10)

with α held fixed as N is taken to infinity. In this limit the terms in the second of (1.8)

with n > 1 are subleading and can be ignored. Effectively

Z(x) =

∫ q−1∏
i=1

dUi exp(−Seff(Ui))

Seff =
α

N q−3

(
q−1∏
i=1

TrUi

)
.

(1.11)

11We emphasize that, in the limit under consideration, modes corresponding to diffeomorphisms or V (t)

are no longer light — and so are irrelevant. However the holonomy continues to be potentially important.
12For orientation, we remind the reader that the integral over the holonomy is the device the path integral

uses to ensure that the partition function only counts those states that obey the A0 equation of motion, i.e.

the Gauss law constraint. Restated, the integral over holonomies ensures that the partition function only

counts those states in the matter Hilbert space that are singlets under the gauge group.
13The generalization of these results to a model with NB bosons and NF fermions yields the holonomy

effective action

Seff(Ui) =

∞∑
n=1

(NB + (−1)n+1NF ) xn
(∏q−1

i=1 TrUni
)

n
. (1.9)

As we will see below, in the scaling limit of interest to this paper, only the term with n = 1 is important.

In the strictly free limit it follows that most the results presented above apply also to a theory with NF
fermions and NB bosons once we make the replacement NF → NF +NB .

– 8 –
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In the large N limit the matrix integral (1.11) is equivalent — as we show below — to

the well known Gross Witten Wadia model and is easily solved. The solution — presented

in detail below — has the following features

• 1. In the canonical ensemble, the partition function undergoes a deconfinement type

phase transition at α = α1pt where the value of α1pt is given in (3.19). At smaller

values of α the system is dominated by the ‘confining’ saddle point in which U is the

clock matrix. At larger values of α1pt the system is dominated by a more complicated

‘deconfined’ or black hole saddle point. The phase transition is reminiscent of the

transitions described in [40, 41].14

• 2. In the microcanonical ensemble, the scaling limit described above captures the

density of states of the system at energies less than or of order N2. Over the range

of energies 1� E < N2

4 , the entropy S is given by the simple formula

S(E) = (q − 3)

[
E

2
ln

(
E

2

)
− E

2

]
+ E logNF + (q − 3)

E

2
ln(2). (1.12)

The saddle point that governs the density of states of the theory changes in a non

analytic manner at E = N2

4 . For E > N2

4 the formula for the entropy is more

complicated. For energies E � (q − 2)N
2

4 , however, the entropy simplifies to the

formula for nBN
q−1 complex bosonic and nFN

q−1 free complex fermionic harmonic

oscillators

S(E) = E

[
1− log

(
E

pN q−1

)]
. (1.13)

The complicated formula that interpolates between these special results is presented

in (3.41).

The formula (1.12) suggests that if a dual bulk interpretation of the theory (1.8)

exists, it is given in terms of a collection of bulk fields whose number grows faster than

exponentially with energy. It would be fascinating to find a bulk theory with this unusual

behaviour.

Moreover the existence of a Hawking Page type phase transition in this model — and

in particular the existence of a subdominant saddle point even at temperatures at which

the dominant phase is a black hole phase — opens the possibility of the subdominant

phase playing a role in effectively unitarizing correlators about the black hole saddle point

by putting a floor on the decay of the amplitude of correlators as in [42].

The results presented above apply only in the limit m
J →∞. We have also investigated

how these results are modified at very weak (rather than zero) coupling. We continue to

work at low temperatures, in a manner we now describe in more detail. It turns that

Seff(U) takes the schematic form

Seff(U) =

∞∑
a=1

xafa(β, U). (1.14)

14We note that the first order phase transitions described in [41] were strongly first order (i.e. not on the

edge between first and second order) only after turning on gauge interactions. In the current context, in

contrast, the phase transition in our system is strongly first order even in the absence of interactions.
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Working to any given order in perturbation theory, the functions fa(β) are all polynomials

of bounded degree in β. We work at temperatures low enough so that we can truncate (1.14)

to its first term. In other words the terms we keep are all proportional to x multiplied by

a polynomial dressing in β.

We demonstrate below that within this approximation the partition function (1.14)

takes the form

− Seff(U) = N q−1x

(
q−1∏
m=1

ρ1
m

)( ∞∑
k=0

(
J

m

)2k

H̃k

(
J2β

m

))
. (1.15)

Note that (1.15) asserts that the interacting effective action has the same dependence on

x and U as its free counterpart did. The only difference between the interacting and free

effective action is a prefactor which is a function of the two effective couplings J
m and

J2β
m . Below we have summed an infinite class of graphs and determined the function H̃0.

Working at NF = 1 we find

H̃0 =2

[
1

2
+ 2γ(q)

(−β)

m
|J |2eγ(q)

(−β)
m
|J |2 − 1

2
e2γ(q)

(−β)
m
|J |2 − (−1)q/2

2
q β
|J |2
m

]
, (1.16)

where γ(q) is defined in (4.33).

Eqs. (1.15) and (1.16) determine the effective action of our system whenever the terms

proportional to H̃m (m = 1, 2 . . .) in the second line of (4.35) can be ignored compared

to the term proportional to H̃0. This is always the case at weak enough coupling; the

precise condition on the coupling when this is the case depends on the nature of the as yet

unknown large argument behaviour of the functions H̃m.

The partition function that follows from the action (1.15) is identical to the free par-

tition function described above under the replacement α → αH̃0. It follows that the

interacting partition function is essentially identical to the free one in the canonical en-

semble. The β dependence of the effective value of α leads to some differences in the

micorcanonical ensemble that turn out not to impact the main qualitative conclusions of

the analysis of the free theory. For instance the super hagedorn growth of the entropy

persists upon including the effects of interaction.

Note added. We have recently become aware of the preprint [43] which overlaps with

this paper in multiple ways. We hope it will prove possible to combine the results of this

paper with the methods of [43] to better understand the new light modes discussed earlier

in this introduction.

2 Light thermal modes of the Gurau-Witten-Klebanov-Tarnopolsky

models

In this section we consider the Gurau-Witten-Klebanov-Tarnopolsky model at finite tem-

perature. The Lagrangians for the specific theories we study was listed in (1.1). As we

have explained in the introduction, this model has a new set of light modes parameterized
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by V (t), an arbitrary group element as a function of time, where V belongs to O(N)q−1.

In this section we will present an argument that suggests that the dynamics of these light

modes is governed by a (quantum mechanical) sigma model on the group manifold. We

will also present an estimate for the coupling constant of this sigma model.

That the dynamics of V (t) should be governed by a sigma model is very plausible

on general grounds. Recall that in the formal IR limit, V (t) is an exact zero mode of

dynamics. It follows that V (t) picks up dynamics only because of corrections to extreme

low energy dynamics. From the point of view of the low energy theory these corrections

are UV effects, and so should lead to a local action for V (t). The resultant action must be

invariant under global shifts V (t) → V0V (t). We are interested in the term in the action

that will dominate long time physics, i.e. the action with this property that has the smallest

number of time derivatives. Baring a dynamical coincidence (that sets the coefficient of an

apparently allowed term to zero) the action will be that of the sigma model.

In the rest of this section we will put some equations to these words. We would like

to emphasise that the ‘derivation’ of the sigma model action presented in this section is

intuitive rather than rigorous — and should be taken to be an argument that makes our

result highly plausible rather than certain.

2.1 Classical effective action

In [3] the effective large N dynamics of the SYK model was recast as the classical dynamics

of two effective fields; the Greens function G(t) and the self energy Σ(t). The action for Σ

and G derived in [3] was given by

S = N q−1

(
− logPf(∂t − Σ̃) +

∫
dt1 dt2

[
−Σ̃(t1, t2)G̃(t2, t1)− J2

q
G̃q(t1, t2)

])
. (2.1)

The utility of the action (2.1) was twofold. First, the solutions to the equations of motion

that follow from varying (2.1) are the saddle point that govern thermal physics of the SYK

model. Second, an integral over the fluctuations in (2.1) also correctly captures the leading

order (in 1
N ) correction to this saddle point result. In order to obtain these corrections,

one simply integrates over the quadratic fluctuations about this saddle point. In particular

the action (2.1) was used to determine the action for the lightest fluctuations about the

saddle point (2.1), namely conformal diffeomorphism [3].

In this section we wish to imitate the analysis of [3] to determine the action for fluc-

tuations of the new zero modes — associated with time dependent O(N)q−1 rotations —

described in the introduction. The action (2.1) is not sufficient for this purpose. As ex-

plained in the introduction, the low energy fluctuations we wish to study are obtained

by acting on the saddle point Greens function with time dependent O(N)q−1 rotations;

however the fields G and Σ that appear in (2.1) have no indices and so cannot be rotated.

As the first step in our analysis we proceed to generalise the effective action (2.1) to

an action whose variables are the matrices Gba and Σb
a. The indices a and and b are both

fundamental indices of the group O(N)q−1. Our generalised action is given by

S = − logPf(D0 − Σ̃) +

∫
dt1 dt2

[
−Σ̃ b

a (t1, t2)G̃ a
b (t2, t1)− |g|

2

q
G̃q(t1, t2)

]
. (2.2)
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In this action, the expression G̃q is a product of q copies of G̃ab where all gauge indices

are contracted in a manner we now describe. Recall that a and b are fundamental indices

for the group O(N)q−1. Each of these indices may be thought of as a collection of q − 1

fundamental indices

a = (a1a2 . . . aq−1), b = (b1b2 . . . bq−1),

where ai and bi are fundamental indices in the (ith factor of) O(N). In the contraction G̃q,

a type indices are contracted with each other while b type indices are also contracted with

each other — there is no cross contraction between a and b type indices. The structure of

contractions is as follows; the a indices of precisely one of the O(N) factors of the gauge

group are contracted between any two (and every two) Gs and, simultaneously, the b indices

of the same two O(N) factors are also contracted between the same two G̃s.15

As a quick check note that the total number of contraction of a (or b) indices, according

to our rule, is the number of ways of choosing two objects from a group of q, or, q(q−1)
2 . As

each pair hit two indices, we see that the pairing rule described in this paragraph saturates

the indices present q copies of G̃ (there are a total of q(q − 1) a type indices).

The contraction structure described for a type indices in the previous paragraph is

precisely the contraction structure for the interaction term ψq in the action (1.1).

We regard (2.2) as a phenomenological action with the following desirable properties.

First it is manifestly invariant under global O(N)q−1 transformations. Second if we make

the substitutions G̃ab → G̃δab , Σ̃a
b → Σ̃δab into (2.2) we recover the action (2.1). It follows in

particular that, if G and Σ denote the saddle point values of (2.1) then

Gab = δabG, Σa
b = δabΣ, (2.3)

are saddle points of (2.2). This point can also be verified directly from the equations of

motion that follow from varying (2.2), i.e.

G b
a (t1, t2) =((D0 − Σ)−1) b

a (t1, t2),

Σ b
a (t1, t2) =|g|2 (Gq−1) b

a (t1, t2).
(2.4)

While (2.2) correctly reproduces finite temperature saddle point of the the model (1.1), it

does not give us a weakly coupled description of arbitrary fluctuations about this saddle

point. The fact that (2.2) has N2(q−1) fields makes the action very strongly coupled. The

key assumption in this section — for which we will offer no detailed justification beyond its

general plausibility — is that the action (2.2) can, however, be reliably used to obtain the

effective action for the very special manifold of configurations described in the introduction,

namely

G̃ a
b (t1, t2) =V b′

b (t1)G(t1, t2)V a
b′ (t2),

Σ̃ a
b (t1, t2) =V b′

b (t1)Σ(t1, t2)V a
b′ (t2),

(2.5)

15These rules have their origin in the generalized ‘tentrahedronal’ contraction structure described in the

introduction. For values of q at which the basic interaction structure has an ambiguity, we make one choice;

for instance we adopt the ‘Round Robin’ scheme to fix the ambiguities. As far as we can tell, none of our

results depend on the details of the choice we make.
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where the index free functions G(t,t2) and V (t1, t2) are the solutions to the SYK gap

equations and V (t) is an arbitrary O(N)q−1 group element. The r.h.s. in (2.5) is the result

of performing a time dependent O(N)q−1 rotation on the saddle point solution (2.3).

The fact that we have only (q − 1)N
2

2 fields (V (t)) on this manifold of solutions — at

least formally makes the action restricted to this special manifold weakly coupled, as we

will see below.

In the rest of this section we will use the action (2.2) to determine the effective ac-

tion that controls the dynamics of the matrices V (t) at leading order in the long wave-

length limit.

2.2 Effective action

In order to study quadratic fluctuations about (2.3), we follow [3] to insert the expansion16

G̃ b
a (t1, t2) =G b

a (t1, t2) + |G(t1, t2)| q−2
2 g b

a (t1, t2),

Σ̃ b
a (t1, t2) = Σ b

a (t1, t2) + |G(t1, t2)| 2−q2 σ b
a (t1, t2),

(2.6)

into (2.2) and work to quadratic order in g b
a (t1, t2) and σ b

a (t1, t2). Integrating out σ b
a (t1, t2)

using the linear equations of motion, we find an effective action of the general structure

S(G̃, Σ̃) = S(G,Σ) +
1

2

∫
dt1..dt4 g

b
a (t1, t2)K̃−1(t1, t2; t3, t4)g a

b (t3, t4)

− |g|
2

q

q

2
N

1
2

(q−1)(q−4)+1

∫
dt1 dt2 g(t1, t2)g(t1, t2).

(2.7)

The expression in the first line of (2.7) results from varying the first two terms in (2.2),

while the second line is the variation of the G̃q term in (2.2). This term denotes the a sum

of different contraction of indices between the two gs

g(t1, t2)g(t1, t2) =

q−1∑
k=1

g
c1c2...ck−1akck+1....cq−1

c1c2...ck−1bkck+1....cq−1
g
d1d2...dk−1akdk+1....dq−1

d1d2...dk−1bkdk+1....dq−1
. (2.8)

In the special case that the fluctuation fields g are taken to be of the form gab = δab g, the

matrix contractions in (2.7) give appropriate powers of N , and (2.7) reduces to the effective

action for g presented in [3].

It was demonstrated in [3] that

K̃(t1, t2; t3, t4) = −|G(t1, t2)| q−2
2 G(t1, t3)G(t2, t4)|G(t3, t4)| q−2

2 . (2.9)

In the long distance limit the Greens function can be expanded as

G = Gc + δG+ . . . ,

δG(t1, t2) ≡ Gc(t1, t2) f0(t1, t2),
(2.10)

16Note that we have scaled G fluctuations and Σ fluctuations with factors that are inverses of each other

ensures that our change of variables does not change the path integral measure. The scalings of fluctuations

in (2.6) are chosen to ensure that the second line of (2.7) takes the schematic form gg rather than gK′G

where K′ is an appropriate Kernel. We emphasise that the scaling factor |G(t1, t2)|±
q−2
2 in (2.6) represents

the power of a function; no matrices are involved.
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where Gc is the Greens function in the conformal limit and δG is the first correction to

Gc in a derivative expansion. It follows that f0 is an even function of the time difference,

an approximate form of which is given in [3]. Plugging this expansion into (2.9) it follows

that K̂ can be expanded as

K̃ = K̃c + δK̃ + . . . , (2.11)

where [3]

δK̃(t1, t2; t3, t4) = K̃c(t1, t2; t3, t4)

[
q − 2

2
(f0(t1, t2) + f0(t3, t4)) + f0(t1, t3) + f0(t2, t4)

]
.

(2.12)

The first two contributions have their origin in the factors of G
q−2

2 in (2.9) and were called

rung contributions in [3] (2.9). The remaining two contributions have their origin in the

factors of G in (2.9) and were called rail contributions in [3]. We note that for rung

contributions f0 appears with either first two times or last two times of the kernel. On the

other hand the two times in rail contributions are one from the first set and one from the

second.

Our discussion so far has applied to general fluctuations about the saddle point, and

has largely been a review of the general results of [3] with a few extra indices sprinkled in.

In the rest of this subsection we now focus attention on the specific fluctuations of interest

to us, namely those generated by the linearized form of (2.5) around conformal solution

(gc)
b
a (t1, t2) = |Gc(t1, t2)| q−2

2 Gc(t1, t2)
[
H b
a (t1)−H b

a (t2)
]
. (2.13)

Notice that the fluctuations (2.13) represent the change of the propagator under a time de-

pendent O(N)q−1 rotation. The form of (2.13) is similar in some respects to the variation

of the propagator under diffeomorphisms, studied in [3], with one important difference;

the factors of Hb
a(t1) and Hb

a(t2) appear with a relative negative sign in (2.13), whereas

the infinitesimal diffeomorphism fields in the light fluctuations of [3] appeared with a rel-

ative positive sign in [3]. The fact that our fluctuations are ‘antisymmetric’ rather than‘

symmetric’ will play an important role below.

Specialising to this particular fluctuation, It can be shown (see appendix A) that gc is

an eigenfunction of K̃−1
c with eigenvalue |J |2 more clearly∫

dt3 dt4 K̃c
−1

(t1, t2; t3, t4)(gc)
b
a (t3, t4) = |J |2 (gc)

b
a (t1, t2). (2.14)

It follows immediately from (2.14) that

1

2
gc K̃

−1
c gc =

|g|2
q

gc gc. (2.15)

Using this equation it may be verified that for the for the particular fluctuations under

study — the second line of (2.7) simply cancels the part of the term in the first line

obtained by replacing K̃ with K̃c.
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It follows that the action (2.7) evaluated on the modes (2.13) is nonzero only because

K−1 differs from K−1
c . Recall K = Kc + δK (see (2.11)). Using δK−1 = −KδKK−1 that

the action for our special modes evaluates at quadratic order to

Seff = −1

2
gc K̃

−1
c δK̃ K̃−1

c gc. (2.16)

Using the fact that K̃−1 is hermitian ([3]) and the eigenvalue equation (2.14), the action

simplifies to

Seff = −1

2
|J |4

∫
dt1..dt4 (gc)

b
a (t1, t2) δK̃(t1, t2; t3, t4) (gc)

a
b (t3, t4). (2.17)

Plugging the specific form of our fluctuations (2.13) into this expression we find17

Seff = −1

2
N q−2

q−1∑
l=1

∑
(i,k) pair

(−1)i−k
∫
dti dtk (Hl)

b
a (ti)(Hl)

a
b (tk)Lik(ti, tk), (2.18)

where i ∈ (1, 2), k ∈ (3, 4) and

Lik(ti, tk) =

∫
A(t1, .., t4)

∏
m 6=i,m 6=k

dtm,

A(t1, ..t4) = |J |4 Gc(t1, t2)|Gc(t1, t2)| q−2
2 δK̃(t1, t2; t3, t4)|Gc(t3, t4)| q−2

2 Gc(t3, t4). (2.19)

The expression (2.18) is not yet completely explicit, as Lik in (2.19) is given in terms of

δK which is given in terms of the first correction to the conformal propagator Gc which,

in turn, is not explicitly known. Luckily δG can be eliminated from (2.18) as we now

demonstrate.18

While we do not know the explicit form of the correction to the conformal two-point

function δG(t1, t2), we know that it satisfies the equation

Σc ∗ δG+ δΣ ∗Gc + s ∗Gc = 0. (2.22)

This is simply the gap equation expanded around the conformal point. Here s(t1, t2) =

− ∂
∂t1
δ(t1 − t2) is a local differential operator.

17Here factors of N comes from trace over other colour index δ-functions that multiply Hl of any colour.
18Using the fact that gc is an eigenfunction of K̃c with eigenvalue 1

|J|2 rung contributions can easily be

summed up to

Srung
eff = −1

2
(q − 2)

1

|J2|

∫
(gc)

b
a (t1, t2) f0(t1, t2) (gc)

a
b (t1, t2) dt1dt2. (2.20)

This expression is not by itself useful as the integral that appears in it has a log divergence once numerically

determined form of f0(τ1, τ2) −−−−−−−→
|τ1−τ2|→0

1
|τ1−τ2|

(from [3]) is used; follows from

gc(τ1, τ2) = |Gc(τ1, τ2)|
q−2
2 Gc(τ1, τ2)[H(τ1)−H(τ2)] −−−−−−−→

|τ1−τ2|→0

sgn(τ1 − τ2)

|τ1 − τ2|
H ′(τ1)(τ1−τ2) ∼ O(|τ1−τ2|0).

(2.21)
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In order to make the expression (2.18) explicit we first simplify the formulae (2.19) for

Lij . Plugging the expansion G = Gc + δG into (2.9), and using properties of conformal

solutions, it may be verified after some algebra that for odd i− k,19

Lik(ti, tk) = 2 δ(ti − tk)
[
q − 2

2
Gc ∗

δΣ

q − 1
+ Σc ∗ δG

]
(ti, tk). (2.23)

The fact that Lik is proportional to a δ function establishes that the contribution of terms

with odd i−k to the action is local. Eq. (2.23) may be further simplified using the relation

δ(ti − tk)Gc ∗
δΣ

q − 1
(ti, tk) = δ(ti − tk)Σc ∗ δG(ti, tk), (2.24)

and to give

Lik(ti, tk) = qδ(ti − tk)Σc ∗ δG(ti, tk). (2.25)

Multiplying δ-function on both sides of (2.22) and using (2.24), we find

Lik(ti, tk) = −δ(ti − tk)s ∗Gc(ti, tk) = δ(ti − tk)
∂

∂ti
Gc(ti, tk). (2.26)

On the other hand when i− k is even, using properties of conformal solutions20

Lik(ti, tk) = −
[
q − 2

2
× 2 + 1

]
Σc(ti, tk)δG(ti, tk) + (Σc ∗ δG ∗ Σc)(ti, tk)Gc(ti, tk). (2.27)

Eq. (2.27) can be further simplified by substituting

Σc ∗ δG ∗ Σc = δΣ + s, (2.28)

and then using the linearized form of the gap equation

δΣ Gc = (q − 1)δG Σc, (2.29)

to give

Lik(ti, tk) = −Gc(ti, tk)
∂

∂ti
δ(ti − tk). (2.30)

Adding together the contributions of i − k even and i − k odd we have a manifestly local

effective action, whose structure accounts for the fact that we have worked beyond the

purely conformal limit (recall that in the purely conformal limit our fluctuation action

simply vanished) even though the final expression makes no reference to the explicit form

of the correction δG to the conformal propagator Gc.

Seff =−N q−2
q−1∑
l=1

∫
dti dtkGc(ti − tk)δ(ti − tk) Tr

(
∂

∂ti
Hl(ti)Hl(tk)

)
(2.31)

19Here overall factor of 2 comes from symmetry of the integrations and q−2
2

comes from rung part.
20As before q−2

2
× 2 comes from rung part.
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Expanding Hl(tk) in a Taylor series expansion about ti

Hl(tk) =

∞∑
n=0

∂n

∂tn
Hl(ti)

(tk − ti)n
n!

allows us to recast (2.31) into the form

Seff = −N q−2

∫
dt

q−1∑
l=1

∞∑
n=0

Cn Tr

(
∂

∂t
Hl(t)

∂n

∂tn
Hl(t)

)
. (2.32)

where

Cn =
1

n!

∫
dt Gc(t)δ(t)t

n. (2.33)

The term in the sum (2.32) with n = 0 is a total derivative and so can be ignored. It

follows that

Seff = −
∫
dt

q−1∑
l=1

∞∑
n=1

Cn Tr

(
∂

∂t
Hl(t)

∂n

∂tn
Hl(t)

)
. (2.34)

Our final result (2.34) for the effective action, has now been arranged as an expansion over

terms with increasing numbers of derivatives.

Recall that all the results of this section have been obtained after expanding the Greens

function

G(t1, t2) = Gc(t1, t2) + δG(t1, t2), (2.35)

and assumed that δG� Gc. This assumption is only valid when t1 − t2 � 1
J , but are not

valid for t1 − t2 ∼ 1
J . All potential non localities in the effective action for H presumably

have their origin in regions where our approximations are valid. It thus seems plausible

that the central result of this section — namely the absence of nonlocalities in the effective

action on length scales large compared to 1
J — which therefore takes the form (2.34) — is

a reliable result.

On the other hand the precise expressions for the coefficient functions Cn involve

integrals over a function — namely the delta function — which varies over arbitrarily

small distances — and so is not reliable (it uses our approximations in a regime where they

are not valid). We would expect the correct versions of (2.33) to be given by smeared out

versions of the integrals in (2.33). On general dimensional grounds it follows that

Cn →
An
|J |n . (2.36)

We will make the replacement (2.36) in what follows. The numbers An could presumably be

computed by studying four point correlators of appropriate operators at finite temperature.

We will not attempt this exercise in this paper.

For the purposes of long time physics we are interested only in the term with the

leading number of derivatives, i.e. with the term with n = 1 in (2.34). The coefficient of
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our action in this case is proportional to A1 ≡ A.21 and the effective action of our theory

at leading order in the derivative expansion takes the form

S = −A N q−2

|J |

∫
dt

q−1∑
l=1

Tr

(
∂

∂t
Hl(t)

∂

∂t
Hl(t)

)
. (2.40)

In the analysis presented so far we have determined the form of the effective action

for infinitesimal group rotations H. The group invariant extension of our result to finite

group rotations is the sigma model action

S = −A 1

|J |

∫
dt

q−1∑
l=1

Tr

[(
V −1
l (t)

∂

∂t
Vl(t)

)2
]
, (2.41)

where Vl ∈ SU(N) whose infinitesimal form is Vl = 1 + Hl +O(H2
l ). Eq. (2.29) is simply

the action for a free particle moving on the group manifold O(N)q−1.22 As explained in the

introduction, the structure of this action could have been anticipated on general grounds.

The fact that the action is proportional to 1
J follows largely on grounds of dimensional

analysis.

As we have already seen in the introduction, once we have established that the action

for V (t) is local the form of the low energy effective action (1.3) for our system is almost

inevitable using the general principles of effective field theory. The main accomplishment

of the algebra presented in this section is the demonstration that the effective action for

V (t) is, indeed, local.

Note that the Sigma model action (2.29) has an O(N)q−1×O(N)q−1 global symmetry

under which

Vl → AVlB, (2.42)

where A and B both belong to O(N)q−1. The rotations by A are simply the global

symmetry that the microscopic SYK model possesses. Rotations by B are an emergent

symmetry of the low energy effective action. The corresponding conserved quantities are

Ll = V̇lV
−1
l , and Rl = V −1

l V̇l.
23 Choosing a basis (Ta),

24 of Lie algebra O(N) it can be

21Note that

C1 =

∫
dt δ(t)Gc(t) t. (2.37)

Plugging the formula

Gc = b
sgn(t)

|Jt|
2
q

, (2.38)

into (2.37) we find, formally, that

C1 ∝
∫
dt|t|1−

2
q δ(t) = 0, (2.39)

(where we have used the fact that q > 2). As explained above, we expect that the vanishing of C1 is

not a physical result but rather is a consequence of inappropriate use of approximations. We assume that

C1 → A
|J| in what follows where A is an unknown dimensionless number.

22Non-trivial holonomy can be turned on for these new light modes, details of contribution of these light

modes to effective action for holonomy is presented in appendix C.
23A dot over a quantity indicates derivative with respect to time.
24It is assumed in what follows that this basis puts the Killing form in a form proportional to identity.
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shown that Hamiltonian vector fields corresponding to group functions Ll,a = Tr (TaLl),

Rl,a = Tr (TaRl) give two copies of O(N) (at both classical and quantum level), both of

which commutes with the Hamiltonian which is the quadratic Casimir of the algebra.

3 Holonomy dynamics and density of states at large mass

We now switch gears; in this section and next we discuss a the mass deformed SYK the-

ory (1.7) in the large mass limit. We work with the theory based on the O(N)q−1 symmetry

where this symmetry is gauged. The large mass limit is of interest because it allows us to

focus on the dynamics of the holonomy at finite temperature, and also allows us to compute

the growth of states in the theory as a function of energy in a very simple setting.

3.1 Scaling limit

As explained in the introduction, in this section we will compute the finite temperature

partition function

Z = Tr x
H
m ,

for the mass deformed gauged O(N)q−1 melonic theory (1.7).

In the large mass limit all fields in (1.7) except the holonomies of the gauge group can

be integrated out at quadratic order. The result of this integration is easily obtained using

the formulae of [39], and is given by (1.8).

Notice that the effective action Seff(Ui) presented in (1.8) is invariant under the global

‘gauge transformations’ Ui → ViUiV
−1
i for arbitrary orthogonal matrices Vi. This invari-

ance may be used to diagonalize each Ui. The integral in (1.8) may then be recast as an

integral over the eigenvalues of each of the holonomy matrices Ui with the appropriate

measure. As Um are each unitary, their eigenvalues take the form eiθ
n
m where n runs from

1 to N . We define the eigen value density functions

ρm(θ) =
1

N

N∑
n=1

δ(θ − θnm). (3.1)

As we are dealing with orthogonal matrices, the eigenvalues of our matrix occurs in equal

and opposite pairs (θa,−θa) and so the eigenvalue density function defined in (3.1) is an

even function.

As usual the rather singular looking sum over delta functions in (3.1) morphs into an

effectively smooth function at large N as the individual eigenvalues merge into a continuum.

Note that

TrUnm
N

=

∑N
j=1 e

inθjm

N
=

∫
ρi(θ)e

inθ ≡ ρnm, (3.2)

where the last equality defines the symbol ρni . Note that the subscript m on ρ runs from

1 . . . q − 1 and labels the O(N) factor under study, while the superscript n runs from

1 . . .∞ and labels the Fourier mode of the eigenvalue distribution. Using the fact that

ρi(θ) = ρi(−θ) it follows that

ρni =

∫
dθρ(θ) cosnθ. (3.3)

It follows that ρni are all real numbers and that ρni = ρ−ni .
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In the large N limit the integral over the eigenvalues θnm may be recast, in the large N

limit into a path integral over the eigenvalue functions ρm(θ) given by25

Z(x) =

∫ q−1∏
i=1

Dρi exp

1

2

∞∑
n=1

−N2
q−1∑
m=1

|ρnm|2
n
− 2NFN

q−1(−x)n

(∏q−1
m=1 ρ

n
m

)
n

 , (3.4)

where the path integral is now taken over the eigenvalue density functions ρm with a

measure which descends from the flat integration measure for individual eigenvalues θjm.

As we have only (q − 1)N eigenvalues, the Jacobian of this variable change is of order N

in the exponent and so is subleading at large N and will not concern us.

Notice that the effective action in (3.4) is a sum of two kinds of terms; those propor-

tional to N2 (we call these terms the contribution of the measure) and those proportional

to N q−1 (we call these terms the contribution of the energy). As q ≥ 4 the energy over-

whelms the measure at large N if x is taken to be of order unity. In order to work in a

regime in which the measure and the energy compete with each other we define

x =
α

pN q−3
, (3.5)

where26

p = NF ,

and take the limit N → ∞ with α held fixed. In this limit the ‘energy’ term with n = 1

in (3.4) is of order N2 and so competes with the measure. All energy terms with n > 1

are, however, subleading compared to the measure and can be dropped at large N . In the

limit under consideration, in other words, the effective action in (3.4) simplifies to

Z(α) =

∫ q−1∏
i=1

dUi exp(−Seff(Ui)),

Seff = − α

N q−3

(
q−1∏
i=1

TrUi

)
.

(3.6)

We will now evaluate the integral (3.4) at large N with the effective action replaced by the

simplified effective action (3.6). In order to facilitate comparison with the matrix model

25Let us focus on the special case NF = 1. In this case the Hilbert space of our quantum mechanical

problem is simply the sum of q forms of the group O(N3) with q running from 1 to N3. The exponential

in (3.4) is the character of this Hilbert space w.r.t. the subgroup O(N)3, with representations coming from

q forms in O(N3) graded by xq. (In order to view the exponential as a character one must use (3.2)).

The integral in (3.4) projects onto the singlet subspace, and so counts the number of O(N)3 singlets. Note

that it was very important for this discussions that the fundamental fermions in this paper are complex.

The case of real fermions was studied from this point of view in [44]. In this case the Hilbert space of

the NF = 1 theory consists of spinors of O(N3), and the decomposition of this representation content

into representations of O(N)3 appears to be a very different problem; it was suggested in [44] that this

decomposition contains no singlets. We thank C. Krishnan for discusssions on this point.
26As explained in the introduction, in the free limit we could as well study bosons coupled to the gauge

field in which case we would have p = NB +NF where NB is the number of bosons.
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literature, it is useful to note that the matrix integral (3.6) is closely related to the following

integral over unitary matrices

ZSU(α) =

∫ q−1∏
i=1

dUi exp(−Seff(Ui)),

Seff = − α

N q−3

(
q−1∏
i=1

TrUi +

q−1∏
i=1

TrU †i

)
.

(3.7)

Where the integral is now taken over unitary matrices. In the large N limit the two matrix

models have the same gap equation (see below) and

lnZSU(α) = 2 lnZ(α). (3.8)

3.2 Determination of saddle points

The matrix model (3.7) (and so (3.6)) is easily solved in the large N limit using the usual

saddle point method. In order to see how this can be done note that as far as the integral

over the eigenvalues of U1 are concerned, TrU2, TrU3 . . . TrUq−1 are all constants. Focusing

only on the integral over U1, (3.6) reduces to

ZSU =

∫
dU1 exp

(
N

g1

(
TrU1 + TrU †1

))
,

1

g1
= αρ1

2ρ
1
3 . . . ρ

1
q−1 = αu2u3 . . . uq−1,

(3.9)

where in order to lighten the notation we have defined

ρ1
m = um (3.10)

A similar statement applies to the integral over all Ui for i = 1 . . . q − 1. However (3.9)

is precisely the celebrated Gross Witten Wadia matrix integral [45–47]. Recall that the

saddle point that dominates the integral (3.9) (and its counterparts for U2 etc.) is given

by [45–47]

ρm(θ) =


1

2π

[
1 +

2

gm
cos θ

]
, gm ≥ 2, |θ| ≤ π

2

πgm
cos

θ

2

√
gm
2
− sin2 θ

2
, gm < 2, |θ| < 2 sin−1

(gm
2

)1/2
,

(3.11)

where27

1

gm
= α

∏
j 6=m

uj . (3.12)

27This eigenvalue densities produced above solve the GWW saddle point equations

2N

gm
sin θnm =

∑
j 6=n

cot

(
θjm − θnm

2

)
,

in the large N limit.
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Taking the Fourier transform of (3.11) it follows that

um =


1

gm
, gm ≥ 2

1− gm
4
, gm < 2.

(3.13)

We refer to the solution um = 1
gm

as the wavy phase while the solution um = 1 − gm
4

as

the gapped phase.

Eqs. (3.12) and (3.13) may be regarded as a set of 2(q − 1) equations for the 2(q − 1)

variables um and gm. In order to complete the evaluation of our matrix integrals we will

now solve these equations.

Let us first demonstrate that the variables gm are either all greater than 2 or all less

than two simultaneously; (3.12) and (3.13) admit no solutions in which some of the gm are

greater than 2 while others are less than 2.28

Let us assume that gm ≥ 2. It follows from (3.12) and (3.13) that

αu1u2 . . . uq−1 =
um
gm

=
1

g2
m

≤ 1

4
. (3.14)

On the other hand let us suppose that gk < 2 Then it follows from (3.12) and (3.13) that

αu1u2 . . . uq−1 =
uk
gk

=
1

gk
− 1

4
>

1

4
. (3.15)

As (3.14) and (3.15) contradict each other it follows that either all gm ≥ 2 or all gm < 2

as we wanted to show. Moreover it follows immediately from (3.15) that when all gm ≤ 2

they are in fact all equal. Similarly it follows from (3.14) that when all gm ≥ 2 then once

again they are all equal.29 It follows that in either case all um and all gm are equal. Let

us refer to the common saddle point value of um as u. The saddle point equations (3.13)

now simplify to

u =


αuq−2 u ≤ 1

2

1− 1

4αuq−2
, u > 1

2 .
(3.16)

Once we have determined the solution to (3.16) value of the partition function (3.6), in the

28Equivalently ums are either all less than half or all greater than half. Equivalently the matrix models

for Um are all simultaneously in the wavy phase or simultaneously in the gapped phase.
29Actually all solutions are equal up to sign — however saddle points that differ by sign assignments are

actually essentially identical — they can be mapped to each other by U → −U , so we ignore this issue.
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large N limit under consideration, is given by30

Z(α) = exp

(
−N

2

2
V (u)

)
,

V (u) = (q − 1)f(u)− 2α uq−1,

f(u) =

u
2, u ≤ 1

2
1

4
− 1

2
ln [2(1− u)] , u > 1

2 .

(3.17)

Indeed the saddle point equation (3.16) is simply the condition that the ‘potential’ V (u)

in (3.17) is extremised. In other words the saddle point solutions of our matrix integral are

in one to one correspondence with the saddle points (or extrema) of V (u); the contribution

of each saddle point to the matrix integral is simply given by e−N
2 V (u)

2 .

At every positive value of α, V (u) = 0 when u = 0 and V (u) diverges as u approaches

unity from below.31 However the qualitative behaviour of the function V (u) for values

between zero and unity depends sensitively on α.

It is easily verified that for α ≤ αc = (q−1)q−1

4(q−2)q−2 the function V (u) increases monotoni-

cally as u increases from 0 to unity (see figure 1 (a)). It follows that when α ≤ αc the only

saddle point lies at u = 0. In this case the saddle point value of the partition function is

Z(x) = 1 (see below for a discussion of fluctuations about this saddle point value).

At α = αc the potential V (u) develops a point of inflection at u = uc = q−2
q−1 (see

figure 1 (b)). Note that uc >
1
2 . At this value of α we have a new saddle point in the

gapped phase.

As α is increased above αc the point of inflection at u = uc splits up into two saddle

points; a local maximum at u = umax < uc and a local minimum at u = umin > uc (see

figure 1 (c)). To start with both saddle points are in the gapped phase. We refer to the

saddle point at umax as the upper saddle and the saddle point at umin as the lower saddle.

As α is increased further the value of umin continues to increase while the value of umax

continues to decrease. At α = αpt = 2q−3 > αc, umax = 1
2 . For α > αpt, umax <

1
2 and

the upper saddle makes a Gross Witten Wadia phase transition into the wavy phase (see

figure 1 (d)).32

Finally, when the new saddle point at u = uc is first nucleated, we have V (uc) > 0.

As α is increased V (umin) decreases below this value. At α = α1pt = we have V (umin) = 0

(see figure 1 (f)). For larger values of α, V (umin) < 0 and our matrix model undergoes a

30The factor of 1
2

in the exponent of the first equation in (3.6) is a consequence of the fact that we

are working with the orthogonal model. The analogous formula for the partition function of the unitary

model, (3.7), is the square of the partition function listed here and so does not have the factor of half in

the exponential.
31Note that u = TrU

N
≤ 1.

32The formula for umax, umin as a function of α is complicated in general. However the formula simplifies

at large α and we find

umax =

(
1

α

) 1
q−3

, umin = 1 +
1

−4α+ q − 2
+

q2 − 3q + 2

2(−4α+ q − 2)3
+ . . . (3.18)
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Figure 1. Effective potential for different values of temperature and associated phase transitions.

The graphs are drawn for q = 4.

first order phase transition from the saddle at u = 0 to the saddle at u = umin. Note that

at α = α1pt (i.e. at the ‘Hawking Page transition temperature’) the saddle at u = umax is

already in the the wavy phase when q = 4 but is still in the gapped phase for q > 4.

3.3 Thermodynamics in the canonical ensemble

The thermodynamics of our system in the canonical ensemble follows immediately from

the nature of the function V (u) as a function of α described at the end of the last section.

For convenience we discuss the phase diagram of our system as a function of α rather than

temperature (recall that α is defined by the relations e−βm = x = α
pNq−3 ).

For α < αc the saddle at u = 0 is the only saddle point in the theory (see figure 1 (a)).

For αc < α < αpt,
33 there are two additional saddle points at u = umin and u = umax

33In the text of this paragraph and the next we have assumed that αpt < α1pt as is the case for q = 4.

For q ≥ 6 the order above is reversed, and the discussion has obvious modifications.
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with 1
2 < umax < umin < 1. The saddle point at u = umax is a local maximum and

V (umax) > 0 (see figure 1 (c)). The saddle point at u = umin is a local minimum and

however V (umin) > 0. Both these saddles are subdominant compared to the flat saddle in

this range of α.

For αpt < α < α1pt the two new phases continue to be subdominant compared to the

phase at u = 0; in this range, however, the solution at u = umax <
1
2 is now in the wavy

phase (see figure 1 (e)).

At α = α1pt we have V (umin) = 0. For α > α1pt V (umin) < 0, so the solution

at u = umin is the dominant saddle point. Our system undergoes a phase transition at

α = α1pt (see figure 1 (e)). The value of α1pt is given as a function of q by

α1pt =
1

4
(q − 1)w

[
1− 1

(q − 1)w

]−(q−2)

, w = −W−1

−2 exp
[
− (q+1)

2(q−1)

]
q − 1

 , (3.19)

where Wn is the productlog function.

3.4 Thermodynamics in the microcanonical ensemble

In this subsection we compute the density of states as a function of energy corresponding

to each of the saddle points described in the previous subsection. In order to do this we

use the thermodynamical relations

E(α) = α∂α lnZ(α) S(α) =

(
lnZ(α)− E(α) ln

α

N q−3p

)
, (3.20)

where E is the eigenvalue of H
m . We invert the first of these equations to solve for α(E),

and then plug this solution into the second equation to obtain S = S(E). For the trivial

saddle, the saddle value of S(E) is trivial, so we include the contribution of fluctuations

around this saddle.

3.4.1 The saddle at u = 0

The saddle point at u = 0 exists at every value of α. In this case the saddle point values

of the energy and entropy both vanish so the first nontrivial contribution to the thermo-

dynamics comes from the study of fluctuations about the saddle point. In this subsection

— which is a bit of a deviation from the main flow of the (otherwise purely saddle point)

computations of this paper we describe the relevant computations. For the purposes of

this subsection — and this subsection only — we retreat away from the scaling limit (1.10)

and work with the full matrix model (1.8) — or more precisely with its generalisation (1.9)

which allows for bosonic as well as fermionic harmonic oscillators. Working with this gen-

eralised model we compute the fluctuations around the trivial saddle point TrUnm = 0,

i.e. ρnm = 0.

For the purposes of studying small fluctuations around this saddle point we work with

the integral (3.4). The integral (3.4) can be simplified by making the variable change

ρnm =
βnm
N

(3.21)
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The point of the scaling (3.21) is that it eliminates all explicit factors of N from the inte-

gral (3.4). It follows that — at least for the purposes of the perturbative Wick contraction

evaluations we perform in this subsection — at any finite order in perturbation theory the

integral over βmn receives significant contributions only from values of βmn of order unity.

Note however that if βmn are of order unity then ρmn are of order 1
N and so are very small.

We can thus safely integrate over all values of βmn without worrying about boundaries to

the domain of integration.34 In other words (3.4) may be rewritten in terms of these scaled

variables

Z(x) =

∞∏
n=1

Fn(x),

Fn(x) =


Mn

∫ q−1∏
m=1

dβnm exp

− q−1∑
m=1

|βnm|2
2n

+NFx
n

(∏q−1
m=1 β

n
m

)
+ c.c

n

 n odd

Mn

∫ q−1∏
m=1

dβnm exp

− q−1∑
m=1

|βnm|2
2n

−NFx
n

(∏q−1
m=1 β

n
m

)
+ c.c

n

 n even.

(3.22)

The expressions for Fn above involve an integral with the usual measure dzdz̄ for the

complex variable βnm. The integral is taken over the whole complex plane.35 The x inde-

pendent normalisation constant Mn above are chosen to ensure that normalisation of Haar

measure,i.e, Fn(0) = 1.

The expressions for Fn presented in (3.22) are formal as the integrals that define Fn do

not converge. However this fact does not bother us, as we are not really interested in the

the expression for Z(x) but only in the coefficients in of xk for each k in that expression.

Each of these coefficients is easily obtained (by Taylor expanding the non Gaussian terms

in the integrands in the formulas for Fn above and performing all integrals using Wicks

theorem. We find

Fn(x) =
∞∑
k=0

x2kn
(
p2(2n)q−3

)k
(k!)q−3, p ≡ NF , (3.23)

Let E denote the eigenvalues of H
m ; in other words E is the energy of our theory in

units of the oscillator mass (or frequency). It follows from (3.23) that the functions Fn(x)

represent the partition function of a system whose entropy as a function of energy is given

by Sn(E) where

eSn(E) =

(
E

2n
!

)q−3 (
p2(2n)q−3

) E
2n . (3.24)

34More generally the variables ρmn are constrained by the requirement that the function ρm(θ) =
1

2π

∑
n ρ

n
me
−inθ, is positive for every value of θ. This constraint is trivial when all ρnm as is effectively

the case for the perturbative evaluations discussed above.
35As mentioned above, the difference between this measure and dθjm is sub-dominant in large N limit.
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At large E ( i.e. when E � 2n) we may use Sterling’s approximation to simplify (3.24) to

obtain the asymptotic formula

Sn(E) = (q − 3)
E

2n
ln

(
E

2n

)
+
E

2n
(−(q − 3) + 2 ln p+ (q − 3) ln(2n)) . (3.25)

Notice that the density of states grows faster than exponentially as a function of energy,

explaining the divergence of the integrals that define Fn (or, equivalently, explaining why

the sums in (3.23) are divergent at every x no matter how small.

As the partition function of our system is simply the product over the functions Fn,

the entropy of our system at large energies is obtained by distributing the available energy

E among the various systems Sn in such a way as to maximise the entropy. A glance

at (3.25) is sufficient to convince oneself that the best one can do is to put all available

energy into the ‘system’ S1. It follows that for E � 1, the contribution of the saddle point

at u1 = 0 to the entropy of the system is

S(E) = S1(E) = (q − 3)
E

2
ln

(
E

2

)
+
E

2
((ln(2)− 1)(q − 3) + 2 ln p) . (3.26)

The saddle at u = 0 is exceptional in that it is trivial as a saddle point; in order to

determine the thermodynamics of this ‘phase’ we had to perform the one loop expansion

about this saddle point. The remaining saddle points we will study in this section are

nontrivial even at leading order, and so will be analysed only within the strict saddle point

approximation. In the rest of this subsection we also return to the study of the strict

scaling limit (1.10).

3.4.2 The wavy phase

In this subsection we study the thermodynamics of the wavy saddle, i.e. the saddle point at

u = umax for α > αpt = 2q−3. The contribution of this saddle point to partition function is

lnZ(α) = −N
2

2
(q − 3)α

− 2
q−3 . (3.27)

The energy of the corresponding phase is given by

E(α) = α∂α lnZ(α) =
N2

α
2
q−3

, (3.28)

Note that the energy is a decreasing function of α so that this phase has a negative specific

heat. As this phase exists only for α > αpt it follows that the energy in this phase is

bounded from above by

Ept ≡ E(αpt) =
N2

4
. (3.29)

The entropy of this phase is given by

S(α) =

(
lnZ(α)− E(α) ln

α

N q−3p

)
. (3.30)
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Eliminating α between (3.28) and (3.30) we obtain

S(E) = (q − 3)

[
E

2
ln

(
E

2

)
− E

2

]
+ E log p+ (q − 3)

E

2
ln(2). (3.31)

Note that (3.31) is in perfect agreement with (3.26). This match strongly suggests that

the formula (3.31) is correct for all values of E in the range

1� E <
N2

4
. (3.32)

3.4.3 The gapped phase

The analysis of this section applies to the saddle point at u = umax for α ≤ αpt and to the

saddle point at umin. The partition function of this saddle is given by plugging the solution

of the equation

u = 1− 1

4αuq−2
, u ≥ 1

2
(3.33)

into the formula

lnZ = −N
2

2

[
(q − 1)

(
1

4
− 1

2
ln [2(1− u)]

)
− 2αuq−1

]
. (3.34)

As we have explained above, for α < αc = (q−1)q−1

4(q−2)q−2 there are no legal solutions to (3.33).

For αc < α < αpt = 2q−3 there are two legal solutions and for α > αpt there is a single legal

solution to this equation. After the partition function is obtained one obtains the energy

and entropy of the solution using the thermodynamical formulae

E(α) = α∂α lnZ(α) , S(α) =

(
lnZ(α)− E(α) ln

α

N q−3p

)
. (3.35)

Eliminating α from the expressions obtained in (3.35) we find the entropy S as a function

of the energy. This function S = S(E) is difficult to find explicitly simply because (3.33) is

difficult to solve. The procedure described above, however, implicitly defines this function.

It is not difficult to convince oneself that there is a single saddle point of this nature for

every energy E > N2

4 and that the function S(E) is an analytic function of energy for every

energy greater than N2

4 .

While explicit formulae are difficult to obtain in general, they are easy to obtain in

three special limits which we now describe

A. The solutions with α near αpt i.e. (E near Ept). At α = αpt (3.33) admits the

solution u = 1
2 . (This is a solution at u = umax, i.e. the solutions that is a local maximum).

It follows that at α = αpt− δα, (3.33) admits a solution with u = 1
2 + δu. Here δu is solved

order by order in δα. A few lines of standard algebra gives:

S (Ept + δE) =− 1

4
N2

[
log

(
2q−3N3−q

p

)
+
q − 3

2

]
− log

[
2(q−3)/2N3−q

p

]
δE

+
2(q − 3)

2N2
(δE)2 +

4(7− 3q)

6N4
(δE)3 + . . .

(3.36)
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Comparing (3.36) and (3.31), it is easily verified that while S(E), S′(E) and S′′(E) are

continuous at E = N2

4 , S′′′(E) is discontinuous. In that sense the function S(E) has a

third order phase transition’ at E = N2

4 . Further taking the limit:

lim
ε→0+

S
′′′
(
N2

4
− ε
)

=
4(6− 2q)

N4
, lim

ε→0+
S
′′′
(
N2

4
+ ε

)
=

4(7− 3q)

N4
(3.37)

This discontinuity is a consequence of the fact that the saddle point undergoes a Gross

Witten Wadia transition at this energy.

B. The solutions with α near αc (i.e. E near Ec). At α = αc (3.33) admits the

solution u = q−2
q−1 . For α = αc+δα the (3.33) admits two solutions near this critical solution

at u = uc + δu; these are the solutions at u = umax and u = umin respectively. A careful

calculation shows E,S as a function of α are different for this two branches but S as a

function of E is same for both of them and given by:

S (Ec + δE) =
1

4
N2

[
−(q−2) log

(
(q−2)2−q(q−1)q−1N3−q

4p

)
+ (q−1) log

(
2

q−1

)
+

(q−3)

2

]
−log

[
(q − 2)2−q(q − 1)q−1N3−q

2(q+1)/2p

]
(δE) +

[
− 8

3N4(q − 2)(q − 1)

]
(δE)3 + . . .

(3.38)

Note that (3.38) is completely smooth around E = Ec = 1
4N

2(q − 2).

C. The solutions with α � 1 (i.e. E � N2

2
). At α � 1 (3.33) admits the solution

near u = 1; this is the thermodynamically dominant saddle at u = umax. Setting u = 1−δu,

δu is solved to give as series in 1
α :

δu =

(
1

4

)
α−1 +

(
q − 2

16

)
α−2 + . . . (3.39)

It follows that:

lnZ(α) = N2α+

(
−1

4
N2(q − 1)

)
log(α) + . . . ,

E(α) = N2α+

(
−N

2(q − 2)(q − 1)

32

)
α+ . . . ,

S(α) =
(
−N2

)
α log(α) +

(
N2
(
1 + log

(
2pN q−3

)))
α+ . . .

(3.40)

which gives

S(E) =E − E log

(
E

pN q−1

)
− N2

2

[
q−1

2
log

(
2E

N2

)
+

3

4
(q−1) +

1

8
(q−1)

(
2E

N2

)−1 ]
+ . . .

(3.41)
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3.4.4 Entropy as a function of energy for E � N2

2

We have verified above that for E � N2

2 the saddle point for the eigenvalue distribution

function becomes very peaked and so is well approximated by a delta function. Whenever

the eigenvalue distribution becomes so peaked effect of the holonomies on the partition

function of the system can be ignored. It follows that for energies much greater than N2

the partition function of our system is simply that of NFN
q−1 complex fermionic oscillators.

The partition function for our system thus reduces to

lnZ(x) = NFN
q−1 ln(1 + x), (3.42)

For x� 1 (3.42) reduces to

lnZ(x) = x p N q−1. (3.43)

Substituting x = α
Nq−3p

we find that (3.43) agrees precisely with the leading term in the

first line of (3.40):

lnZ(α) = N2α. (3.44)

The energy of the corresponding phase is given by

E(α) = α∂α ln(Z(α)) = N2α. (3.45)

The entropy of this phase is given by

S(α) = lnZ(α)− E(α) ln
α

N q−3p
= N2

(
1− log

(
α

pN q−3

))
α. (3.46)

Eliminating α between (3.45) and (3.46) we obtain

S(E) = E

(
1− log

(
E

pN q−1

))
. (3.47)

Note that (3.47) matches with the leading and 1st subleading term in (3.41).

4 The holonomy effective action with weak interactions

In the previous section we studied the free energy of the mass deformed SYK model in the

zero coupling J
m = 0. In this section we will study corrections to the results of the previous

section in a power series expansion in the coupling constant. For simplicity we also study

the special case NF = 1 in (1.7).

In principle the leading large N contribution to Seff is given as follows (we restrict

attention to the massless case for simplicity in this paragraph). Consider the gap equa-

tion (2.4). We are instructed to solve this gap equation on a thermal circle, subject to the
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requirement that the solution respect the boundary conditions

G

(
t1 +

β

2
, t2

)
= −UG

(
t1 −

β

2
, t2

)
G

(
t1, t2 +

β

2

)
= −G

(
t1, t2 −

β

2

)
U−1

Σ

(
t1, t2 +

β

2

)
= −UΣ

(
t1, t2 −

β

2

)
Σ

(
t1 +

β

2
, t2

)
= −Σ

(
t1 −

β

2
, t2

)
U−1

(4.1)

We must then plug this solution into (2.2) and the corresponding result is represented by

Seff(U). While this prescription is clear it is rather difficult to implement in practice. In

order to get some intuition for the effect of interactions on Seff(U) present some perturbative

results for this object.

The thermal partition function of theory (1.7) is given, as usual, by the Euclidean

path integral of the theory on a thermal circle of circumference β. The free result (1.8)

is obtained by integrating out all fermions at at ‘one loop’ (i.e. by computing fermionic

determinants — we explain how this works in more detail below). Corrections to (1.8) are

obtained by including the contribution of more general diagrams.

It was demonstrated in [16] that, in the strict large N limit of interest to this paper,

the only graphs that contribute are melonic graphs. One way of organising the graphs

that contribute to our computation is by the number of melons a graph contains. We will

refer to a graph with n melons as an nth order graph. Such graphs are proportional to

J2n. As in the previous section we will be interested in the effective action as a function of

holonomies, Seff(U). Let the contribution to Seff(U) from graphs of nth order be denoted

by Sn(U). We have

Seff(U) =

∞∑
n=0

Sn(U). (4.2)

As in the previous section we will principally be interested in the partition function in

the scaling limit (1.10). In this limit the temperature is very small and so β is very large

β ∼ lnN . For this reason it is important to keep track of explicit multiplicative factors of β

(as opposed, for instance, to factors of x = e−βm) in our results. Below we will demonstrate

that nth order graphs have at least one and at most n explicit multiplicative factors of β.

It follows that the contributions of nth order graphs to the effective action can be organised

in series

Sn(U) =
J2nβn

mn

n−1∑
a=0

(
1

mβ

)a
fna (x, U) ≡ −

(
J

m

)2n

F2n(mβ, x, U). (4.3)
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Substituting (4.3) into (4.2), we can rearrange the sum over graphs as

Seff(U) =

∞∑
k=0

(
J

m

)2k

Hk

(
J2β

m
, x, U

)
,

Hk(
J2β

m
, x, U) =

∞∑
n=k

(
J2β

m

)n−k
fnk (x, U).

(4.4)

As we are interested in the scaling limit (1.10) it follows that:

Hk

(
J2β

m
, x, U

)
= H̃k

(
J2β

m

)
x

q−1∏
i=1

TrUi,

fnk (x, U) = fnk x

q−1∏
i=1

TrUi,

Hk

(
J2β

m

)
=
∞∑
n=k

(
J2β

m

)n−k
f̃nk ,

Seff(U) = x

q−1∏
i=1

TrUi ×
∞∑
k=0

(
J

m

)2k

H̃k

(
J2β

m

)
,

(4.5)

where we will present an argument for the u dependences asserted here below.

Eq. (4.5) represents an interesting reorganisation of usual perturbation theory. This

reorganisation is particularly useful at small J2

m2 � 1 but finite values of J2β
m . As β ∼ m

lnN

in the scaling limit, it follows that J2β
m is fixed only for J2

m2 ∼ 1
lnN . At these small values of

the coupling, Seff(U) is well approximated by the first term in the expansion in (4.5), i.e. by

the term proportional to H̃0. We will explicitly evaluate H̃0 in this section and so reliably

determine the partition function when J2

m2 is in the parametric range described above.36

In the rest of this section we present the results of our explicit perturbative compu-

tations. Although we are principally interested in the function H0 in the scaling limit,

to set notations and for practice we first present the results of simpler computations. To

start with we work out the partition function at level zero and recover the free partition

function of the previous section. We then work out the partition function at level 1 (i.e.

including graphs with a single melon). Next we present our results at level 2 (i.e. including

all graphs with two melons). Finally we turn to the problem of principal interest to us,

namely the sum of the infinite set of graphs that generates H0. As preparation for all these

computations we first briefly discuss the structure of the free Greens function.

36Although this is far from guaranteed, it is possible that the approximation Seff ∼ H0 has a larger

range of validity. Let us consider the parametric regime in which J2

m2 is small compared to unity but large

compared to 1
mβ

. In this regime J2β
m

is effectively scaled to infinity. Let us define

rk = lim
J2β
m
→∞

Hk

H0
. (4.6)

If it turns out that rk is bounded (finite) then it follows that H0 is in fact also a good approximation to

the partition function for all values of β assuming only that J2

m2 � 1. It would be interesting to investigate

whether rk above are actually bounded for all k; however we leave that to future work.
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4.1 Free Greens function

Consider the free fermionic Greens function

〈ψa(t)ψ̄b(0)〉.

We work in a colour basis in which the holonomy U is diagonal. In this basis in which the

action of holonomies on the fermions is given by

Uψa = eiθaψa,

Uψ̄a = e−iθaψa.
(4.7)

The free fermionic Greens function at finite temperature is given by

〈ψa(t)ψ̄b(0)〉 =G0(t)δab , G0(t) = f(t,m, θa), for −β ≤ t ≤ β (4.8)

where

f(t,m, θa) =
1

2
e−(m+iθa)t

[
sgn(t) + tanh

(
1

2
(m+ iθa)β

)]

=
e−(m+iθa)t

1 + x e−iθaβ

[
Θ(t)−Θ(−t) x e−iθaβ

]
.

(4.9)

Note that the function f obeys the identity

f

(
β

2
+ t,m, θa

)
= −f

(
−β

2
+ t,m, θa

)
for 0 ≤ t < β

2
, (4.10)

from which it follows that the Greens function is antiperiodic on the circle as required on

physical grounds.

Note that we have presented the Greens function only in the ‘fundamental domain’

−β < t < β. Our fermionic Greens function is taken by definition to be a periodic function

of t with period 2β; this property plus the explicit results (4.8) and (4.9) can be used to

define the Greens function at every value of Euclidean time as required. The extended

Greens function defined in this manner has singularities at t = nβ for every integral value

of n, and is smooth everywhere else.

Note also that the ‘reversed’ Greens function 〈ψ̄a(t)ψbb(0)〉 is also given in terms of

the function G0 by the formula37

〈ψ̄a(t)ψb(0)〉 = −G0(−t)δba. (4.11)

This formula is also manifestation of symmetry of mass deformed SYK Lagrangian under

the simultaneous swaps ψ̄ ↔ ψ, U ↔ U−1, m↔ −m.

37Owing to time translation symmetry.
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4.2 Level zero: free theory

In this brief subsection we compute Seff at one loop, i.e. in the free theory. The result for

Seff(U) was already presented in the previous subsection; we obtain that result here from

a one loop computation as a simple practice exercise. Let

ωn =
2π

β

(
n+

1

2

)
. (4.12)

The fields ψa and ψ̄a can be independently expanded in Fourier space as

ψ(t) =
∑
n

ψne−iωnt , ψ̄(t) =
∑
n

ψ̄ne
+iωnt. (4.13)

When substituted the free part of action (1.7) becomes

S =
∑
n,a

ψ̄a,n[β(−iωn +m+ iθa)]ψ
a,n. (4.14)

Fermionic integration gives:

ZF =
∏
a

n=+∞∏
n=−∞

[β(−iωn +m+ iθa)]

=
∏
a

n=+∞∏
n=−∞

[−i(2πn+ π) +mβ + iθaβ]

=
∏
a

n=+∞∏
n=−∞

[−i2πn+ c(θa)]

=
∏
a

c(θa)
2
n=+∞∏
n=1

[(−i2πn+ c(θa))(+i2πn+ c(θa))]

=
∏
a

c(θa)
2
n=+∞∏
n=1

[
(2πn)2 + c(θa)

2
]

=
∏
a

c(θa)
2

(
n=+∞∏
n=1

(2πn)2

)
n=+∞∏
n=1

[
1 +

(
c(θa)/2

πn

)2
]

=
∏
a

c(θa)
2

(
n=+∞∏
n=1

(2πn)2

)[
sinh c(θa)

2
c(θa)

2

]

=N
∏
a

[
sinh

c(θa)

2

]
∼
∏
a

e
c(θa)

2 (1− e−c(θa)),

(4.15)

where

c(θa) = mβ + iθaβ − iπ

and

N =
∏
a

n=+∞∏
n=1

(2
√

2πn)2
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ψ
ψ̄

Figure 2. Single loop contribution to free energy.

is an infinite holonomy independent constant. As for every θa there is −θa to be taken

into account
∏
a e

c(θa)
2 becomes independent of holonomy. Keeping only holonomy depen-

dent terms38

lnZ =
∑
a

log[1 + xe−iθaβ ] , x = e−mβ , (4.16)

In other words

lnZ = Tr ln[1 + xU ]. (4.17)

Expanding (4.17) in a power series in x we recover (1.8) at NF = 1. In the scaling limit

we recover (3.6).

4.3 Level one: single melon graphs

The contributions of graphs with a single melon (figure 2) to the Free energy is given by

F2 =
1

2!
2C 2

2
(−1)q/2q m2

∫ q∏
k=1

G0(t1 − t2, θak) dt1dt2, (4.18)

In this graph we contract each of fields in the interaction vertex ψq with one of the

fields in ψ̄q. Consider any particular ψ field. This ψ field has to contract with one of the

q ψ̄ fields in the second interaction vertex. It is thus clear that there are q choices for this

contraction (the choices of which ψ̄ our specified ψ pairs up with). Once this choice has

been made, if we are interested — as we are — in graphs that contribute only at leading

order in large N there are no further choices in our contraction. Recall that every one of

the remaining ψ’s (respectively ψ̄’s) has exactly one colour common with the ψ (resp ψ̄)

that we have just contracted together. The leading large N behaviour is obtained only if

the ψ that shares any given gauge index with our special contracted ψ is now contracted

with the ψ̄ that shares the same gauge index with the special contracted ψ̄. This rule

specifies a unique contraction structure for the remaining fields. It follows that, up to a

sign, the symmetry factor is simply q. The sign in question is simply (−1)(q−1)+(q−2)+..+1

Recalling that q is even, it is easy to see that this phase = (−1)q/2.

38Note that this also ensures for β →∞ partition function is 1 and for β → 0 total number of states for

a given a are 2.
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The integral in (4.18) is very easy to perform. To see this note that the analytic

structure of the integrand as a function of t = t1 − t2 takes the form

e−qmt(Aq sgn(t) +Bq),

for various different values of q. The integrand is integrated from −β
2 to β

2 . The integral

over t1 + t2 produces an overall factor of β. The integrals are all trivial to do; evaluating

them we find the final answer

F2 =
(−1)q/2

2!
2C 2

2
q mβ I

(2)
1 (q, x), (4.19)

where

I
(2)
1 (q, x) =

1− xq
q

TrF

q∏
k=1

(
1

1 + xŨk

)
. (4.20)

The expression TrF (. . .) in the equation above represents the trace over an operator built

on a particular Auxiliary Hilbert space. The operator in question is a function of the

elementary operators Ũk that act on this Hilbert space. We will now carefully define the

relevant Hilbert space and the operators Ũk and so give meaning to (4.20).

The operators Ũk in (4.20) have the following meaning. These operators are unitary

operators that act on a vector space whose dimensionality is N
q
2

(q−1). The vector space

in question is the tenor product of q − 1 factors, each of which has dimension N
q
2 . Each

factor described above is associated with one of the q − 1 gauge groups. Let us focus on

any one gauge group, say the first. The factor associated with this gauge group consists

of q
2 distinct factors of isomorphic N dimensional spaces on which the N × N holonomy

matrices of the first gauge group naturally act.

Recall that each ψ field that appears in an interaction has exactly one gauge index

contraction with every other ψ field. This means, in particular, that the indices of gauge

group 1 are contracted between q
2 pairs of ψs. This fact is the origin of the q

2 distinct

factors of the space on which the holonomy matrices of the first gauge group act.

With all this preparation we now explain the form of the operators Ũk. Each Ũk acts

as U1 (the holonomy of the first O(N) gauge group) on one of the q
2 copies of the N

dimensional vector space associated with the first O(N), and as identity on the remaining
q
2 − 1 copies of this space. In a similar fashion it acts as U2 on one of the q

2 copies of

the N dimensional vector space associated with the second O(N), and as identity on the

remaining q
2 − 1 copies of this space. And so on. Exactly two Ũks act as U1 on the same

Hilbert space. Exactly two Ũks act as U2 on the same Hilbert space, etc. Finally every two

Ũks act on the same Hilbert space for one and only one gauge group.39 The symbol TrF
in that equation denotes the trace over the full N

q
2

(q−1) dimensional Hilbert space.

From a practical point of view it is less complicated to use the definitions of the Ũk
operators than it might at first seem. We could, for instance, expand the result (4.20) in

a power series in x. The formal looking expressions of traces of sums of products of Ũk

39This means that if U1 and U3 act on the same copy of the Hilbert space for gauge group 1, then they

necessarily act on different copies of the Hilbert space for all the other gauge groups.
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operators that appear as coefficients in this expansion can easily be evaluated in terms of

traces of powers of the holonomy matrices U1 . . . Uq−1 of the factors of O(N).

A little thought will allow the reader to convince herself that the rules described above

imply that, for instance

Tr

(
q∑

k=1

Ũk

)
= qN

(q−2)(q−1)
2 TrU1Tr U2 . . .TrUq−1, (4.21)

Tr

 q∑
k1 6=k2

Ũk1Ũk2

 = qN
q2−5q+6

2

[ q−1∏
k=1

TrU2
1 (TrU2)2 . . . (TrUq−1)2

+(1↔ 2) + (1↔ 3) + . . . (1↔ q − 1)

]
, (4.22)

Tr

(
q∑

k=1

Ũ2
k

)
= qN

(q−2)(q−1)
2

(
TrU2

1 TrU2
2 . . .TrU2

q−1

)
. (4.23)

As an illustration of these rules let us evaluate the partition function in the low energy

scaling limit described in the previous section. Recall that in the limit of interest x ∼ 1
Nq−3

and we are instructed to retain only those contributions to Seff(U) that are linear in x;

terms of higher order in x can be discarded. It follows that the partition function in this

limit may be evaluated by Taylor expanding (4.20) in x and discarding all terms that are

quadratic or higher order in x. Using the first of (4.21) we conclude immediately that

F2 =
(−1)q/2

2!
2C2/2 q mβ N

q−1(−x)

q−1∏
m=1

ρ1
m. (4.24)

where ρ1
m = TrUm

N as in the previous section, and we have dropped the terms of order x0

which are independent of Um.

4.4 Level 2: 2 melon graphs

At level 2 we once again have contributions from a single Feynman diagram figure 3. In

order to evaluate this graph we must evaluate in integral

F4 =
1

4!
4C4/2 (−1)2(q2)2

∫ 4∏
i=1

dti

(
q−1∏
i=1

G0(t12, θai)

)(
q−1∏
i=1

G0(t34, θbi)

)
×G0(t32, θc2)G0(t14, θc1). (4.25)

We give some details of this expression and the evaluation of this integral in the

appendix B. We have completely evaluated this integral with the help of mathematica

(see appendix B.2 for arbitrary number of melons), but the final result for Seff(U) in the

general case is too complicated to transfer to text. As before, however, the answer simplifies

dramatically in the low energy scaling limit of the previous section (see appendix B.1.1)

and we find

F4 =
(−1)

4!
4C4/2 2(q2)2[mβ I

(4)
1 (q) +m2β2 I

(4)
2 (q)] N q−1x

q−1∏
m=1

ρ1
m, (4.26)
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ψ ψ̄

ψψ̄

Figure 3. Two loop contribution to free energy.

where

I
(4)
1 (q) = −2

q
(2q − 3),

I
(4)
2 (q) = −1.

(4.27)

Note that the final answer had two terms; one proportional to an overall factor of β and

the second proportional to β2. In the next subsection we will argue that a graph at level

n, in the low temperature scaling limit, has terms proportional to βq for q = 1 . . . n.

4.5 The infinite sum H0

We will now turns to a study of the free energy at level n. As in the previous subsection

we will focus on the start at the low energy scaling limit of the previous section, and so

retain only those terms in all graphs that are proportional to x. As we will see below,

general graphs in the scaling limit and at level n break up into different pieces that are

proportional to βk for k = 1 . . . n.40 We will further focus our attention on the graph with

the largest power of β, i.e. in this subsection we will contribute that piece of the level n

answer that scales like βnx. It turns out that this piece is rather easy to extract as we

now explain.

Let us first recall that the propagator in our theory takes the following form:

〈ψa(t)ψ̄b(0)〉 =
e−(m+iθa)t

1 + x e−iθaβ

[
Θ(t)−Θ(−t) x e−iθaβ

]
. (4.28)

It will turn out (and we will see explicitly below) that the denominator in (4.28) only

contributes at order βn−1 or lower in free energy linear in x. For the purposes of the

40For instance the level one graph computed above was proportional to β while the level two graph was

the sum of one term proportional to β and another term proportional to β2.
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current subsection, therefore (where we wish to ignore terms at order x2 or higher and

only keep highest power of β) this denominator can be dropped, and we can work with the

simplified propagator41

〈ψa(t)ψ̄b(0)〉 =e−(m+iθa)t
[
Θ(t)−Θ(−t) x e−iθaβ

]
. (4.29)

In this subsection we assume m > 0; the case m < 0 can be argued in a completely analo-

gous manner with the role of ψ and ψ̄ reversed in the analysis below. In the computation

of Feynman diagrams on the circle we will need to choose a ‘fundamental domain’ on the

circle; our (arbitrary but convenient) choice of fundamental domain is

− β

2
< t <

β

2
(4.30)

Finally some terminology. We will call the part of the propagator (4.29) that is proportional

to θ(t) the ‘forward’ (‘normal’) part of the propagator, and the part of the propagator

proportional to θ(−t) the ‘reverse’ part of the propagator. Note that the normal part of

the propagator ranges is modulus from 1 to
√
x; it is maximum (i.e. unity) at t = 0 and

minimum (i.e.
√
x) at t = β

2 . The modulus of the reverse part of the propagator varies in

magnitude from
√
x to x. It is minimum (i.e. equal to x) at t = 0 and maximum (i.e. equal

to
√
x) at t = −β

2 .

With all this preparation we are now ready to isolate the parts of the level n diagrams

whose contribution is proportional to xβn.

To start with let us consider the simple nth level ring diagram depicted in figure 4.

In this diagram we have n a type vertices and n b type vertices. In this graphs we have

q − 1 propagators connecting adjacent a and b type vertices, but only a single propagator

connecting b to a type vertices.

Consider any propagator between a and b type vortices — which has a type vertex A at

time t1 and its adjacent b type vertex B at time t2. Depending on whether t1 > t2 or t1 < t2,

all the q−1 propagators from A to B are either simultaneously all reverse or simultaneously

all normal. If all propagators are reverse, the modulus of these propagators is less than√
x
q−1

< x (recall q ≥ 4). It follows that configurations in which the propagators from

A to B do not contribute in the scaling limit, and so all propagators from A to B must

be normal. Given that these propagators are all normal their modulus is proportional to

e−m(q−1)|t1−t2|. It is intuitively clear that separating t1 from t2 over a finite fraction of the

circle forces us to pay a high cost in factors of x; it can be shown (this will be clearer in

41The role that of the overall holonomy dependent phase factors above is quite subtle. Naively these

overall factors can be dropped in their contribution to free energy diagrams. The naive argument for this

is that the net contribution to of these phase factors at any interaction vertex is proportional to
∏
a e

i(θa)t1

where the sum runs over the phases θa of all the q propagators that end at that interaction vertex. As the

interaction vertex is a gauge singlet,
∑
θa vanishes, so it might at first seem that the contribution of all

these phase factors drops out. This is in general incorrect. The subtlety is that t1 is not single valued on

the circle. In diagrams in which propagators ‘wind’ as they go around the circle, one of the factors in the

product may effectively be evaluated at, e.g. t1 + β and so the net contribution of this phase factor could

turn out to be eiβθa . While this contribution is constant (independent of t1), it is nontrivial in nonzero

winding sectors. Such a contribution will play an important role in our computation below.
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a b
a

b

a

b

Figure 4. Circle diagram: a, b represents respectively insertions of ψ, ψ̄. Direction of arrow is

from ψ to ψ̄. The diagram is drawn for q = 4.

a bit) that such configurations do not contribute to the result in the scaling limit. In the

scaling limit we only receive contributions from configurations in which |t1− t2| is of order
1
m . It follows that for parametric purposes, we can simply regard t1 and t2 as the same

point, replacing the integral over t1 − t2 by 1
m . For parametric purposes, in other words,

each of the melons in figure 4 can be thought of as a single interaction vertex, inserted at

a single ‘self energy vertex’, inserted at a single time, with effective an effective insertion

factor of order J2

m .

Now let us turn to the propagators between b and a type vertices. These are now n

different propagators connecting the effective self energy blobs described in the previous

paragraph. Let the effective times of insertions of these self energy blobs be T1, T2 . . . Tn.

Our graph is proportional to the product of n propagators, the first from T1 to T2, the

second from T2 to T3 . . . and the last from Tn to T1 + wβ where w is an integer. As each

reverse propagator contributes a factor of at least
√
x to the integrand, no more than two

of these propagators can be reverse.

Let us first consider diagrams in which all propagators are forward. As all propagators

move forward in time, the final propagator in the sequence must end not at time T1 but

at time T1 + wβ where w is a positive integer. The modulus of the product of these

propagators is then easily seen to be proportional to e−wmβ = xw. In the scaling limit of

interest to us, the only option is w = 1. Once we set w = 1, the integrand of the diagram

is now independent of the effective insertion times Ti. The integral over these n insertion

times thus gives a factor βn, and the contribution of the graph in question is proportional

to xβn as desired.

Now let us consider diagrams in which one of the propagators between the effective self

energy vertices is reverse, and the rest are forward. It is easy to verify that the modulus of

the product of propagators in such a graphs is proportional to xe−wmβ where w = 0, 1, . . ..
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In the scaling limit under consideration we are interested only in w = 0. Once again

the modulus of these graphs is independent of the insertion positions of the effective self

energy vertices, and integration over their locations produces a result proportional to xβn

as required.

Diagrams in which two of the propagators are reverse are kinematically very con-

strained. Similar argument as above shows these graphs are proportional to x only if

w = −1, i.e, if the two reverse propagators each have length β
2 (up to corrections of order

1
m) and so all the forward propagators have length zero, again up to corrections of order
1
m . These constraints ensure that such graphs are proportional to β but no higher power

of β (certainly not βn) and so are not of interest to the current section.

In summary, graphs of the form depicted in figure 4 only contribute at order xβn if all

propagators from a to adjacent b type vertices are normal, if the separation between a and

adjacent b type vertices is of order 1
m , and if the propagators between adjacent melons are

either all normal with net winding number one or one reverse and the rest normal with net

winding number zero. Once we have identified the parts of these graphs that contribute at

order xβn, the computation of these contributions is very simple (see below).

Let us now turn to more general graphs than those drawn in figure 4. All graphs

that contribute to the free energy at leading order in the large N limit are of the general

structure depicted in 4, but with the melons in figure 4 replaced by effective melons or

‘cactus graphs’. The net effect of this is to replace the bare propagators between a and b

type vertices in figure 4 by exact propagators. Recall that we are only interested in the

propagator corrections at times t = |t1 − t2| ∼ 1
m � β. The kth order correction to the

forward propagator at short times takes the schematic form

G(t) ∼ |J |
2ktk

mk

k∑
n=0

Cn

(m
t

)n
(4.31)

As all values of t that contribute to our integrand in the low energy scaling limit of interest

to this paper are of order 1
m , it follows that all terms on the r.h.s. of (4.31) are of order J2k

m2k .

As compared to the contribution of the graphs of figure 4, in other words, these graphs

have extra powers of J2 but no compensating factors of β. It follows that The contribution

of such graphs at level n is always of the form xβh with h strictly less than n. Consequently

all such graphs can be ignored.

In summary, the only graphs that contribute at terms proportional to xβn at level

n are the very simple ‘necklace’ graphs depicted in figure 4. We have already explained

above that the contribution of each of these graphs is easily evaluated in the scaling limit.

It follows that the computation of the sum of these graphs is a relatively simple job.

Relegating all further details to the appendix B.1.2 we simply list our results. The

contribution of order xβn to Seff(U) from graphs of level n is given, for n ≥ 2 by

J2n

m2n
F2n = 2xN q−1

(
q−1∏
m=1

ρ1
m

)
1

(n− 1)!

[
γ(q)

(−β)

m
|J |2

]n(
2− 2n−1

n

)
+O(βn−1), (4.32)

where

γ(q) = (−1)
q
2

(q−1) q

2
. (4.33)
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Summing these contributions over all n = 2 to infinity and adding the separate contribution

of n = 1 we find H0.

H0 =2xN q−1

(
q−1∏
m=1

ρ1
m

)[ ∞∑
n=2

1

(n−1)!

[
γ(q)

(−β)

m
|J |2

]n(
2− 2n−1

n

)
− (−1)q/2

2
q2 β
|J |2
m

]

=2xN q−1

(
q−1∏
m=1

ρ1
m

)[
1

2
+2γ(q)

(−β)

m
|J |2eγ(q)

(−β)
m
|J |2− 1

2
e2γ(q)

(−β)
m
|J |2− (−1)q/2

2
q β
|J |2
m

]
,

(4.34)

so that the free holonomy effective action takes the form (4.3) with F0 in that equation

given by H0 in (4.34).

Note that γ(q) is positive for q = 4, 8, 12 . . . but is negative for q = 6, 10, 14 . . .. It

follows that the exponential terms in (4.34) decay at large J2β
m for the first set of values of

q but blow up for the second set of values of q. It would be interesting to better understand

the meaning and consequences of this observation.

4.6 Thermodynamics

At sufficiently weak coupling we have demonstrated in the previous subsection that the

free result for Seff(U) in the scaling limit, (3.6), is replaced by the formula

− Seff(U) = N q−1

(
q−1∏
m=1

ρ1
m

)
xH̃0, (4.35)

where H0 was computed in the previous subsection.

Note that (4.35) has the same structure of U dependence as (3.6); it follows that

the partition function obtained by integrating e−Seff (U) over U is simply Z(x̃) (where the

function Z(x) was defined in (3.6)). At small enough coupling x̃ is close to x, and the

structure of the canonical partition function generated by (4.35) is very similar to the

results described in detail for the free theory in the previous section.

What does consequence does the replacement of x by x̃ have for the micro canonical

partition function? Let us first recall a simple formal result. Let

e−βm → e−mβ(1 + ε h0(β)).

By linearizing the usual thermodynamical formulae it is easy to show that this replacement

results in the replacement

S(E) = S0(E) + ε
E

m
h0

[
∂S0(E)

∂E

]
+O(ε2), (4.36)

(this result holds provided we expand about an analytic point in the phase diagram, i.e.

away from phase transitions). Clearly in our context this result applies if J2

m2 ∼ α
lnN and α

is taken to be small. However our results for the partition function are valid over a larger

parametric regime; they are definitely valid whenever J2

m2 ∼ α
lnN even at finite values of α.

In order to understand the effect H̃0 has on the entropy as a function of energy at such

values of α we take a slightly different route.
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Define a ‘particle mass probability function’ p(m) by the following requirement∫
dm′e−βm

′
p(m′) = xH0. (4.37)

Intuitively p(m) denotes a spread in the mass density function (which was a δ function for

the free theory) that mimics the effects of interactions in thermodynamics.

A little thought demonstrates that the following ansatz for p(m′) reproduces the struc-

ture of our perturbative expansion for xH0

p(m′) =

∞∑
k=0

1

m
gk

(
m′ −m
|J |2/m

)( |J |
m

)2k−2

, (4.38)

where the functions gk(y) do not depend on J . Working with the probability distribu-

tion (4.38) is equivalent to replacing x by

x→
∫ ∞

0
e−βm

′
p(m′)dm′ = x

∞∑
n,k=0

1

n!

(
−|J |

2β

m

)n( |J |
m

)2k ∫ ∞
−m2/J2

ungk(u)du. (4.39)

The lower limit of the integration in (4.39) can safely be approximated by −∞. If we want

the r.h.s. of (4.39) to equal x̃ we must choose∫ ∞
−∞

g0(u)du = 1 ,

∫ ∞
−∞

u g0(u)du =
2

q
γ(q),∫ ∞

−∞
un g0(u)du = 4n

(
1− 2n−2

n

)
γ(q)n , n ≥ 2

(4.40)

These relationships determine the moments the as yet unknown g0. Inverting these relations

we find
p(m′) =2δ(m′ −m)− δ

(
m′ −m− 2γ(q) |J |

2

m

)
− 4γ(q)

|J |2
m

δ′
(
m′ −m− γ(q) |J |

2

m

) (4.41)

Recall that the function p(m′) in the free theory was just a δ function localised at m′ = m.

The interaction effects considered in this section split this δ function into a set of 4 localised

δ (or δ′) spikes, distributed in a width of order J2

m around m′ = m. As an aside we note

the striking fact that interaction effects — at least at the order we have computed them

— do not smoothen the free spectral function out.

It is not difficult to convince oneself that the function S(E) that follows from (4.41)

is qualitatively similar to the entropy as a function of energy derived in detail for the free

theory in the previous section, and in particular displays faster than Hagedorn growth.

5 Discussion

In these notes we have argued that the quantum mechanical model (1.1) — which is known

to agree with the SYK model in the strict large N limit — displays qualitatively new

dynamics at subleading orders in 1
N . We argued that the fluctuation spectrum about the
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finite temperature saddle point in this theory has new light modes — that originate in time

dependent O(N)q−1 transformations — in addition to the modes that arise from conformal

diffeomorphisms and that were present also in the original SYK theory. The total number

of new light modes is (q − 1)N
2

2 and so is very large in the large N limit. We have also

proposed that the dynamics of these new modes is governed by the sigma action (1.3), with

a normalisation constant A whose value we have not been able to calculate.

Assuming that our proposal for the new light modes is correct, it raises several in-

teresting questions. It should be possible to check our proposal for the structure for the

effective action (1.3) by performing an independent computation of the four point function

of four operators in the theory (1.1) (by summing ladder diagrams) and comparing the

long time behaviour of this computation with what one obtains directly from (1.3). Such

a procedure should also permit the direct computation of the as yet unknown constant A.

It is also natural to attempt to find a bulk interpretation of our new modes. One

natural suggestion is that these modes are dual to gauge fields in AdS2
42 If this is the case

it is interesting that the rank of the bulk gauge fields diverges in the effectively classical

N → ∞ limit. In other words the bulk classical dual of this theory is given in terms of a

weakly coupled theory of an infinite number of classical fields. The situation is somewhat

reminiscent of the proliferation of ‘light states’ in the duality of [48], and also the situation

with ABJ ‘triality’ in the ABJM limit [49] (although in this context the number of bulk

Vasiliev fields is never both parametrically large and parametrically weakly coupled). It

would be very interesting to investigate this further.

We have also shown that the density of states in an extreme mass deformation of

the model (1.1) displays a faster than Hagedorn growth at energies of order N2. In our

opinion this is also a very striking result; the phase that displays this rapid growth is the

‘thermal graviton’ or ‘string gas’ phase. The rapid growth in the density of states of this

phase presumably means it cannot thermally equilibriate with another system. It would

be interesting to understand what consequences this rapid growth has for potential bulk

duals of mass deformed versions of the theory (1.1).

Finally we have performed detailed calculations for the holonomy effective action of the

mass deformed theory (1.1) away from the strict large mass limit. In a particular scaling

limit that zooms in on the dynamics of the theory at energies of order N2 we demonstrated

that the holonomy effective action of our theory, Seff(U) takes a simple universal form. We

were able to capture the leading interaction effects by summing the appropriate infinite

class of graphs and obtain a very simple effective action that captures the leading deviation

away from free behaviour. It should certainly be possible to generalise our perturbative

computation of H̃0 to a computation of H̃1. More ambitiously, it may eventually prove

possible to completely sum this perturbative expansion. We leave investigation of this

possibility to the future.
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A Conformal kernel

In this appendix following main result is proved∫
dt3 dt4 K̃c(t1, t2; t3, t4)(gc)

b
a (t3, t4) =

1

|J |2 (gc)
b
a (t1, t2), (A.1)

where relevant quantities are defined by

K̃c(t1, t2; t3, t4) =− |Gc(t1, t2)| q−2
2 Gc(t1, t3)Gc(t2, t4)|Gc(t3, t4)| q−2

2 ,

gc(t1, t2) =|Gc(t1, t2)| q−2
2 Gc(t1, t2)[H(t1)−H(t2)].

(A.2)

Important part of the integration is given by:

Q(t1, t2)≡
∫
dt3 dt4 Gc(t1, t3)Gc(t2, t4)Gc(t3, t4)q−1[H(t3)−H(t4)]

=− 1

|J |2
∫
dt3 Gc(t1, t3)H(t3)

∫
dt4 Gc(t2, t4) |J |2Gc(t4, t3)q−1

− 1

|J |2
∫
dt4 Gc(t2, t4)H(t4)

∫
dt3 Gc(t1, t3) |J |2Gc(t3, t4)q−1

=− 1

|J |2
∫
dt3Gc(t1, t3)H(t3)(−δ(t2−t3))− 1

|J |2
∫
dt4Gc(t2, t4)H(t4)(−δ(t1−t4))

=
1

|J |2 [Gc(t1, t2)H(t2) +Gc(t2, t1)H(t1)]

=− 1

|J |2Gc(t1, t2) [H(t1)−H(t2)] .

(A.3)

This proves claimed result when multiplied with −|Gc(t1, t2)| q−2
2 .

B Details of the perturbative computations

B.1 Leading power of β

B.1.1 Two melon graphs

In this subsection we consider the contribution to the free energy given by figure 5. First

non-trivial effect of winding is seen at this level as explained below. The term whose Wick

contraction is calculated is 1
4!(Jψ

4 + h.c.)4 — where each of 4C4/2 terms contribute the

same. The symmetry factor is calculated as follows. Any one of q number of ψ’s of first

ψ-vortex contracts with any one of q number of ψ̄’s of any one of two ψ̄-vortex to give a

factor of 2q2. Any one of q number of ψ’s of second ψ-vortex contracts with any one of q
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ψ̄(t4)
ψ(t3)

ψ̄(t2)ψ(t1)

θa1

θa2

θa3

θb1

θb2

θb3

θc1
θc2

Figure 5. Direction of arrow is from ψ to ψ̄. The diagram is drawn for q = 4.

number of ψ̄’s of remaining ψ̄-vortex to give a factor of q2. In large-N only non-suppressed

diagram is obtained by joining ψ to ψ̄ (of same vortex) of same common colour. Choice

of external propagator gives q − 1 possibilities at each blob. Sign of the symmetry factor

comes from noticing as there are two identical ’blobs’ sign of contraction of each blob cancel

and overall sign is just because of contraction between two ’blobs’, it turns out to be -1.

Contribution of symmetry factor at this order becomes

F4 =
1

4!
4C4/2 (−1)2[q2(q − 1)]2I(4), (B.1)

where

I(4) =

∫ 4∏
i=1

dti

(
q−1∏
i=1

G0(t12, θai)

)(
q−1∏
i=1

G0(t34, θbi)

)
G0(t32, θc2)G0(t14, θc1). (B.2)

Where θs are holonomies on different propagators. Here time differences are not necessarily

single valued and to satisfy the constraint

t12 + t23 + t34 + t41 = wβ,

where w = 0,±1,±2 (note that each tik is in (−β
2 ,

β
2 ), and this restricts allowed values of

n) we introduce dimensionless Lagrange multiplier integration

P ≡ β
∫ +∞

−∞

ds

2π
eis(t12+t23+t34+t41−wβ) = δ

(
t12 + t23 + t34 + t41 − wβ

β

)
. (B.3)

In the scaling limit (assuming m > 0), the propagator becomes

G0(t) = e−(m+iθa)tθ(t)− xe−iθaβe−(m+iθa)tθ(t)− x1/2e−mβ/2e−iθaβe−(m+iθa)tθ(−t). (B.4)
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This way of writing ensures in each of three parts of G0 excluding explicit x dependence

integration over −β
2 to β

2 gives only positive powers of x. We will refer to these three parts

of G0 as x0, x, x1/2 contributions.

In the scaling limit of interest I(4) can receive contribution from 5 different types of

integration

I(4) =x0 everywhere + x1/2 on one of the outer (θc1 , θc2) lines

+ x1/2 on both of the outer lines + x on one of the outer lines

+ x on one of the inner lines (θa1 , θa2 . . . θaq−1 , θb1 , θb2 . . . θbq−1).

(B.5)

Note that choosing x1/2 on one of the inner propagators will force choosing all the inner

propagators in the same blob to be x1/2 term due to unit step function. Therefore this choice

is ignored in scaling limit calculation. Here we’ll present the calculation corresponding to

the first one and mention results for others.

Consider x1/2 on θc1 say, and on all others we choose x independent part of G0. This

ensures following time ordering for non-zero integrand t12 > 0, t32 > 0, t34 > 0, t41 > 0,

with which only consistent values of n are 0, 1. Contribution to I(4) becomes, omitting

β(−x1/2)e−iθc1βe+iθc1wβ (for a contribution like F0 we must have n = 0 which is shown to

be true below)

I(4) ∼ β(−x1/2)e−iθc1βe+iθc1wβ

∫
ds

2π
dt12 dt32 dt34 dt41 e

−iswβ e−(m(q−1)−is)t12×

e−(m(q−1)−is)t34 e+(m+is)t41−mβ/2e−(m+is)t32

=− β(−x1/2)e−iθc1βe+iθc1wβ

∫
ds

2π

(eisβ/2 − x1/2)(x1/2e−isβ/2 − 1)

(s+ i(q − 1)m)2(s− im)2
e−iswβ +O(x3/2),

(B.6)

where we ignored higher order contributions in x. Simplifying the numerator gives 3 terms:

x independent piece that comes with a non-zero phase factor eisβ/2 (which will give a factor

of β upon integration because only w = 0 will contribute), x1/2 term that comes with no

non-trivial phase (cannot give a β upon integration), x term drops out in scaling limit.

Rest of the integration can be done easily choosing proper contour (semi-circle on upper

or lower half plane as required by convergence) to ensure only w = 0 term contributes to

give the following result

δw,0x
1/2 2

(qm)3

(
−1 +

q

4
mβ
)
. (B.7)

All other integrations can be performed similarly to give leading order contribution to free

energy

F4 =
1

4!
4C4/2 2q4 (q − 1)2

q2
m2β2 N (q−1)2

x

q−1∏
m=1

ρ1
m +O(β). (B.8)

B.1.2 n melon graphs

Here a circle diagram with n ≥ 2 blobs (figure 6) is considered and leading term in β is

calculated using methods demonstrated in previous sub-section.
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ψ(t2n−1)

ψ̄(t2n)

ψ(t1)

ψ̄(t2)

ψ(t3)

ψ̄(t4)

ψ(t5)

ψ̄(t6)

ψ(t7)

ψ̄(t8)

Figure 6. Free energy diagram with n melons.

Symmetry factor for the diagram in large N limit is43

(−1)
nq
2

+n+1

(n!)2
n! (q2)n (n− 1)!. (B.9)

The leading order contribution in β comes from two distinct choices — i) considering x1/2

in any one of the n external propagators (with holonomy θa say) with x0 part of the free

propagator in all others and ii) x0 part of the free propagator in all propagators.

Contribution from the integral due to choice (i) is easily seen to be

− x1/2|g|n e−iθaβ+iwθaβ β

∫
ds

2π
e−i(w−

1
2

)sβ 1

(−is+m(q − 1))n(is+m)n

= −2x |g|n e−iθaβ 1

(n− 1)!

(
β

2mq

)n
δw,0,

(B.10)

where we have kept only highest power of β. Note that extra powers of beta βn−1 came from

the integration because of evaluation of residue around a pole of order n. This contribution

is to be multiplied with a factor of n due to freedom in choosing one external propagator

on which x1/2 is considered.

43Here an extra factor of (n− 1)! comes as compared to n = 2 case because of freedom of joining n blobs

with one another.
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Now we turn to the choice (ii). In this case contribution to the integral is

|g|n eiwθaβ β
∫

ds

2π
e−iwsβ

(1− x1/2e−is
β
2 )n

(−is+m(q − 1))n(is+m)n

= 2x |g|n e−iθaβ 1

(n− 1)!

(
β

2mq

)n(2n−1

n
− 1

)
δw,1.

(B.11)

As before we have kept only highest power of β. Note that this contribution vanishes for

n = 2.

After summing over the holonomies, and canceling loop N’s with that of scaling of g,

contribution to free energy becomes

F2n = 2x N q−1

(
q−1∏
m=1

ρ1
m

)
1

(n− 1)!

[
γ(q)

(−β)

m
|J |2

]n(
2− 2n−1

n

)
+O(βn−1), (B.12)

where

γ(q) = (−1)
q
2

(q−1) q

2
. (B.13)

B.2 All powers of β in a circle diagram

In this subsection we shall compute explicitly the integral involved in computing the con-

tribution to the free energy in the scaling limit linear in x = e−mβ .

The free fermionic Green’s function at any finite temperature is given by,

〈ψ(t)ψ̄(0)〉 ≡ G0(t)

=
1

2
e−(m+iαj)t

[
sgn(t) + tanh

(
β

2
(m+ iαj)

)]
= e−(m+iαj)t

[
θ(t)− xe−iαjβ

]
, (B.14)

where, x = e−mβ � 1 (scaling limit). Hence, one can also write the ‘reversed’ Green’s

function at finite temperature as,

〈ψ̄(0)ψ(t)〉 = G∗0(−m) =
1

2
e(m+iαj)t

[
sgn(t)− tanh

(
β

2
(m+ iαj)

)]
. (B.15)

Here αj are holonomies, satisfying the following constraint

q∑
j=1

αj = 0 . (B.16)

Now in the computation we use discrete representation of the delta function

δ
(
t21 + t32 + t43 + t54 + t65 + . . .− t2n−1 2n + t1 2n

)
=

1

2πβ

∞∑
ω=−∞

e
−2πiω

β
(t21+t32+t43+t54+t65+ . . . −t2n−1 2n+t1 2n )

. (B.17)
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B.2.1 Evaluating the integral

Let us focus on the diagram which can be computed as using the integral,

I(2n) = 1
2πβ

(
J
4

)2n ∞∑
ω=−∞

[∫ β/2

−β/2
dt1 e

−t1(m+iαq)e
−2πiω

β
t1
(

sgn(t1) + tanh
(
mβ+iαqβ

2

))
∫ β/2

−β/2
dtq e

tq((q−1)m−iαq)e
−2πiω

β
tq (A sgn(tq)−B))

]n
. (B.18)

Here the first integral inside the sum is a single propagator while the second one represents

the melon with q − 1 propagatrs, where A and B are defined as

q−1∏
j=1

[
sgn(tq)− tanh

(
mβ+iαjβ

2

)]
= (−1)q (A sgn(tq)−B) . (B.19)

We integrate over the time intervals of these propagators in (B.18) and since there are n of

them we raise it to the power n. However, we would also have to implement the constraint

that the times add up to an integral of β. This is achieved by repesenting the delta function

on a circle of length β as an infinite sum. This contributes a factor of e
2πi

ω
β ti in each of

the propagators as shown in (B.18).

Now we would like to focus on the integrals within the box brackets in (B.18)

F (2n) =
∞∑

ω=−∞

[
I(q)
ω

]n
. (B.20)

Upon integrating over t1 and tq one finds that

I(q)
ω =

f1 + f2

((q − 1)m− iαq + z)(m+ iαq − z)
, z = −2πiω

β
(B.21)

Here f1 consists of terms with e±kzβ where k ∈ Zeven while f2 consists of terms e±kzβ/2

where k ∈ Zodd. Its is evident that upon raising I
(q)
ω to n one would have to evaluate sums

in z of the form

S1 =

∞∑
ω=−∞

e±kzβ

(((q − 1)m− iαq + z)(m+ iαq − z))n
, k ∈ Zeven

S2 =

∞∑
ω=−∞

e±kzβ/2

(((q − 1)m− iαq + z)(m+ iαq − z))n
, k ∈ Zodd. (B.22)

Since z = −2πiω
β we see that these reduce to

S1 =
∞∑

ω=−∞

1

(((q − 1)m− iαq + z)(m+ iαq − z))n
,

S2 =
∞∑

ω=−∞

ezβ/2

(((q − 1)m− iαq + z)(m+ iαq − z))n
. (B.23)
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We will use the technique of Matsubara summation to evaluate the above, where a

weighting function is included to replace the sum by a contour integral. So, first let us

evaluate S1. With a weighting function f(z) = 1
1−ezβ , one can replace the above summation

with the following contour integral,

S1 =

∮
dz

(1− ezβ)(((q − 1)m− iαq + z)(m+ iαq − z))n
(B.24)

Notice that the integrand has two poles at z ≡ za = −(q − 1)m + iαq and z ≡ zb =

m+ iαq and both are of n-th order. Using the residue theorem, one can evaluate the above

integral as,

S1 = lim
z→za

1

(n− 1)!
∂(n−1)
z

1

(1− ezβ)(z − zb)n
+ lim
z→zb

1

(n− 1)!
∂(n−1)
z

1

(1−ezβ)(z−za)n
(B.25)

Now, it is very easy to verify that for any function f(z),

∂(n−1)
z

[
f(z)

1

(z − za)n
]

=
n−1∑
k=0

(−1)k (n−1)Ck
(n+ k − 1)!

(n− 1)!

∂
(n−k−1)
z f(z)

(z − za)n+k
(B.26)

In the present case, taking f(z) = 1
(1−eβz)

, one can evaluate

∂(n)
z

[
1

1− eβz
]

=
βne−βz

(e−βz − 1)n+1
A(n) (B.27)

where, A(n) is the Eulerian polynomial in e−βz, given by,

A(n) =
n−1∑
m=0

m+1∑
k=0

(−1)k n+1Ck(m+ 1− k)n e−βzm (B.28)

Using equation (B.27) and (B.28), one can easily obtain,

∂(n−k−1)
z f(z) = ∂(n−k−1)

z

[
1

1− eβz
]

=
βn−k−1

(e−βz − 1)n−k

n−k−2∑
m=0

m+1∑
l=0

(−1)l n−kCl (m+ 1− l)n−k−1e−β(m+1)z

+
1

1− eβz δn−k−1,0 (B.29)

Finally Substituting equation (B.29) into equation (B.26), we have,

∂(n−1)
z

[
f(z)

(z − za)n
]

= ∂(n−1)
z

[
1

(1− eβz)(z − za)n
]

=

n−1∑
k=0

(−1)k

(z − za)n+k
(n−1)Ck

(n+ k − 1)!

(n− 1)!

[
βn−k−1

(e−βz − 1)n−k

n−k−2∑
m=0

m+1∑
l=0

(−1)l

n−kCl (m+ 1− l)n−k−1e−β(m+1)z +
1

1− eβz δn−k−1,0

]
(B.30)

– 51 –



J
H
E
P
0
6
(
2
0
1
8
)
0
9
4

Evaluating the above expression at both the poles z = za and zb, one can compute S1 as

expressed in equation (B.25).

Now let us discuss about evaluating the summation S2 as given in equation (B.23).

With a weighting function f(z) = eβz/2

1−eβz , one can replace the above summation with the

following contour integral,

S2 =

∮
eβz/2dz

(1− eβz)(((q − 1)m− iαq + z)(m+ iαq − z))n
(B.31)

Notice that we encounter the same n-th order poles in the contour integral as we had with

S1. The residue computation for evaluating this contour integral needs to evaluate the

following term as before,

∂(n)
z f(z) = ∂(n)

z

[
eβz/2

1− eβz
]

=
βne−βz/2

2n(e−βz − 1)n+1
B(n) (B.32)

where, B(n) is the Eulerian polynomial of type-B in e−βz, given by,

B(n) =
n∑

m=0

m∑
k=0

(−1)m−k n+1Cm−k(2k + 1)n e−βzm (B.33)

Finally, using equation (B.26), (B.32) and (B.33), one can obtain,

∂(n−1)
z

[ f(z)

(z − za)n
]

= ∂(n−1)
z

[ eβz/2

(1− eβz)(z − za)n
]

=
n−1∑
k=0

(−1)k

(z − za)n+k
(n−1)Ck

(n+ k − 1)!

(n− 1)!

βn−k−1

2n−k−1(e−βz − 1)n−k

n−k−1∑
m=0

m∑
l=0

(−1)m−l n−kCm−l (2l + 1)n−k−1e−(2m+1)βz/2 (B.34)

Now using the above equation one can compute the residue and hence the integral (B.31).

This finishes the computation of S2 as given in equation (B.23).

One finds that S1 depends only linearly on x = e−mβ while S2 depends as
√
x. Further

noting that the difference in A and B in (B.19) behaves as A−B = O(xq−1) we find that

f1 = (A − B)O(x
−q
2 +1) = O(xq/2) and f2 = (A − B)O(x

−q+1
2 ) = O(x

q
2−1). Therefore in

the scaling limit one can take A = B = 2q−2

(
1− x

q−1∑
j=1

e−iβαj
)

.

Therefore evaluating (f1 + f2)N ≈ F1 + F2 in the scaling limit — where once again

F1 consists of terms with e±kzβ where k ∈ Z while F2 consists of terms e±kzβ/2 where

k ∈ Zodd, F (n) = S1F̄1 + S2F̄2. Here F̄1,2 = F1,2(z = 0).44

The fact that only these two type of summations contribute for any integer value of k,

makes it easier to evaluate equation (B.18) in the scaling limit as,

I(2n)=J2n
n−2∑
k=0

2(q−1)nxβn−k

(mq)n+kΓ(n)2
(2n − 22+kn)(n−1Ck)Γ(n+ k)

q−1∏
m=1

ρ1
m (B.35)

44Since their z dependences were where taken into account in evaluating S1 and S2.
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which can be re-written as

I(2n) =

(
J2β

mq

)n n−2∑
k=0

(
J2

m2

)k (
m

qJ2β

)k 2(q−1)nx

Γ(n)2
(2n − 22+kn)(n−1Ck)Γ(n+ k)

q−1∏
m=1

ρ1
m

+O(β) (B.36)

or equivalently keep all orders in β as

I(2n) =
J2n

m2nqn
(−1)q(n−1)

(n− 1)!

[
(2n− 2)!

(n− 1)! qn−1
mβ

(
1− n

(
q − 2n+ 3

))
(B.37)

+
n−2∑
k=0

(n+ k − 1)!

k!(n− k − 1)! qk
(1− 2k+2−nn)(mβ)n−k

]
x

(
q−1∏
m=1

ρ1
m

)
.

This multiplied with (B.9)×N q−1 gives contribution of a circle diagram with n melons.

B.3 Evaluating the subleading correction

We end this appendix by presenting a technical result which we do not use in the main

text of the paper, but record here anyway, just in case this result finds application subse-

quent work.

The technical result we report here is the evaluation of the Feynman integral for

diagram figure 7 (the figure is drawn for q = 4 but we present the evaluation in general),

which is one of the diagrams that would contribute to the generalization of the results

presented in this paper to subleading orders in 1
β . We present the result for the Feynman

diagram ignoring the symmetry factor (which can easily be independently evaluated). We

evaluate the diagram of figure 7 as follows. In order to get the integrand of the diagram we

first multiply together all the propgators that make it up, keeping careful track of holonomy

factors and making use of the fact that holonomies at any interaction vertex sum to zero.

The integrand is the term in the big square bracket in (B.38) with ε1 and ε2 temporarily

set to zero. The first two lines on the r.h.s. of (B.38) are the n − 2 factors on the in the

diagram figure 8.45

The next four lines on the r.h.s. of (B.38) represent the second factor in figure 8. Lines

3–6 on the r.h.s. of (B.38) are the remaing factors (the propagators outside the square

45t1 in this term is the length of the straight line in these factors, while t2 is the length of the 3 (or more

generally q − 1) melonic lines in the part figure 8 that is enclosed in the square bracket. Really there are

n− 1 different t1s and n− 2 different t2. As t1 and t2 are dummy variables that we integrate over, we have

used the same symbol for all of them.

– 53 –



J
H
E
P
0
6
(
2
0
1
8
)
0
9
4

Figure 7. Subleading diagram.

bracket) in figure 8.46

I(2n−2) =
(

1
2πβ

)2
∞∑

ω1,ω2=−∞

[(∫ β/2

−β/2
dt1e

−(m+iα1+i
ε1
β )t1

(
sgn(t1) + tanh

(
mβ+iα1β

2

))
∫ β/2

−β/2
dt2e

((q−1)m−iα1−i
ε1
β )t2 (sgn(t2)A1 −B1)

)n−2

∫ β/2

−β/2
dt1e

−(m+iα1+i
ε1
β )t1

(
sgn(t1) + tanh

(
mβ+iα1β

2

))
(∫ β/2

−β/2
dt3e

(m+iα2+i
ε2
β )t3

(
sgn(t3)− tanh

(
mβ+iα2β

2

)))2

∫ β/2

−β/2
dt4e

((q−2)m−i(α1+α2)−i (ε1+ε2)
β )t4 (sgn(t4)A1,2 −B1,2)∫ β/2

−β/2
dt5e

(−(q−1)m+iα2+i
ε2
β )t5 (sgn(t5)A2 +B2)

]
(B.38)

After evaluating the integrand we need to perform the integrals. Roughly speaking we

must integrate all propagator lengths in the integrand above from −β
2 to β

2 . However we

need to do this subject to the constraint that as we go round either of the two circles in

the diagram figure 7 we come back to the same time as we started out, modulo β. This

is where the parameters ε1 and ε2 in (B.38) come in. ε1 couples to the sum of lengths of

propagators in units of β around the big circle in figure 7, while ε2 multiplies the sum of

the lengths of all the propagators as we go around the small circle — again in units of β in

figure 7. The constraint that these lengths evaluate to an integral multiple of β can then

be implemented by setting ε1,2 = 2πω1,2 and then summing ωi over all integral values, as

we have done in (B.38).

46The third line in (B.38) is the straight line in this part of figure 8. The last and secondlast lines in (B.38)

are, respectively, the blobs of q − 1 and q − 2 propagators in this part of figure 8. Finally the fourth line

in (B.38) is the product of the two proagatogrs that run between the ‘q− 1 blob’ and the ‘q− 2 blob’. The

times in all these terms represent the lengths of the corresponding propagators.
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Figure 8. Parts of subleading diagram.

In order to proceed we perform the time integrals in an unconstrained manner. The

result can be rearranged (according to its ωi dependence) as a sum of four types of terms.

1. Terms containing ek(z1+z2)β where k ∈ Z

2. those with ekz1β/2 where k ∈ Zodd

3. with ekz2β/2 where k ∈ Zodd

4. and ek(z1+z2)β/2 where k ∈ Zodd;

where zi = −2πi
β ωi.

We deal with these four classes of terms spearately; for each class we explicitly perform

the sum over ωi (by reducing it to a contour integral as in the previous subsection) and

expand the resultant expression in a Taylor series in x (again as in the previous subsection),

keep only the terms that are linear in x. Combining together the results from each of the

four classes we obtain our final result

I(2n−2) =−
(
J2β

mq

)n n−4∑
k=0

x(q−1)

(mqβ)k+1

2(q−1)n(2n+(n−1)23+k)(2n+k−2)Γ(n+k−1)

Γ(n− k − 1)Γ(n)Γ(1 + k)

q−1∏
m=1

ρ1
m

+O(β2) (B.39)

(the terms O(β2) that we have omitted to list in (B.39) are the terms with k = n− 3 and

k = n− 2 which exist in the final answer but the values of whose coefficients do not follow

the uniform rule of the other terms).

Note that (B.39) scales like 1
β in coordinated large β small J limit in which J2β is

held fixed.

C The holonomy effective action from the sigma model

In this section we ask the following question: what is the contribution to Seff(U) — the

effective action for holonomies — resulting from integrating out the new light degrees of
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freedom discovered in the massless tensor model in early sections in this paper? In the bulk

of this section we address this question at the technical level. At the end of the section we

turn to a quick discussion of its physical import.

Turning on holonomy is equivalent to putting appropriate boundary condition on

fermion fields. This translates into boundary condition on Vl, given by Vl

(
−β

2

)
=

UVl

(
+β

2

)
, U ∈ O(N). This boundary condition is equivalent to the computation of

the partition function

Z = e−Seff(U) = Tr e−βH Û , (C.1)

where H is the Hamiltonian of the quantum mechanical system (1.3) and U is the quantum

mechanical operator that implements left rotations on the sigma model by the O(N)q−1

group rotation U . The partition function (1.2) is the product of q − 1 factors, associated

with the sigma models on the q−1 gauge groups. It follows that the effective action Seff(U)

that follows from this computation takes the form

Seff(U) =
∑
i

S(Ui). (C.2)

In the rest of this section we compute the functions S(Ui)

Let us first note that the Hilbert H space on which any one of the factors of q − 1

distinct factors the sigma model (1.3) acts is given as follows. The Hamiltonian acts on

the Hilbert space H

H =
∑
Ri

R̃i ⊗ R̃i. (C.3)

The sum Ri runs over all genuine (as opposed to spinorial) representations of O(N). R̃i
denotes the vector space on which O(N) acts in the ith representation. The space R̃i ⊗ R̃i
transforms in the representation Ri × Ri under O(N)L × O(N)R; the operator Û acts

as an O(N) rotation on the first R̃i but as identity on the second R̃i. The Hamiltonian

corresponding to action (1.3) is diagonal under the decomposition (C.3); the energy of the

ith factor of the Hilbert space is JC2(Ri)
2ANq−2 .

Representations of O(N) are conveniently labeled by the highest weights (h1, h2, h3 . . .),

the charges under rotations in mutually orthogonal two planes. Let h =
∑

i hi. At leading

order in the large N limit the dimensionality of the representation Ri depends only on h

and is given by

d(Ri) =
Nh

h!
.

Moreover the Casimir C2(Ri) of representations of O(N) also depends only on h at leading

order in the large N limit and is given by

C2(Ri) = Nh.

Let χRi(U) denote the character in the Ri representation of O(N) and let

χn(U) =
∑
Ri∈n̂

χRi(U), (C.4)
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where n̂ denotes the collection of all representations of O(N) with h = n. In other words

χn(U) is the sum over the characters of all representations with h = n.

Note that all representations with h = n can be constructed — and can be constructed

exactly once — from the direct products of n vectors of O(N) (this is true when N � n

as we assume).47 Let Pn denote the projector onto representations with h = n

Pn [f(U))] =

∫
dU ′

∑
Ri∈n̂

χRi(U)χ∗Ri(U
′)f(U ′). (C.5)

It follows that

χn(U) = Pn [(TrU)n] . (C.6)

where U on the r.h.s. of (C.6) represents the group element in the vector representation

of O(N).

Finally we define

z = e−
J

2ANq−3 . (C.7)

It follows immediately from all the facts and definitions presented above that

e−S(Ui) =
∞∑
n=0

(zN)n

n!
χn(Ui). (C.8)

Using (C.6), (C.8) can be rewritten in the (perhaps deceptively) elegant form

e−S(Ui) = Pz∂ze
NzTr(Ui). (C.9)

Note that ∫
dUe−S(U) = 1. (C.10)

This is an immediate consequence of the fact that the vacuum is the only representation in

the spectrum of the group sigma model that is a singlet under O(N)L. It follows that the

partition function generated by S(U) by itself is trivial. However S(U) is only one piece

of the effective action for U in the massless tensor model (1.1); we get other contributions

to the effective action by integrating out the fermionic fields themselves (as was explicitly

done earlier in this paper for the case of massive fermions). When put together with other

contributions the effective action (C.9) could have a significant impact on the partition

function, especially at temperatures scaled to ensure that the matter contribution to the

effective action — like the contribution of the sigma model considered in this section — is

of order N2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

47Note, however, that not every representation of n vectors has h = n; the product space includes

representations (formed by contracting 2 vector indices) with h = n − 2, and representations (formed by

contracting 4 vector indices) with h = n− 4 . . . .
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