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Effective mass of quasiparticles from thermodynamics
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We discuss the potential advantages of calculating the effective mass of quasiparticles in the interacting electron
liquid from the low-temperature free energy vis-a-vis the conventional approach, in which the effective mass
is obtained from approximate calculations of the self-energy, or from a quantum Monte Carlo evaluation of
the energy of a variational “quasiparticle wave function”. While raw quantum Monte Carlo data are presently
too sparse to allow for an accurate determination of the effective mass, the values estimated by this method
are numerically close to the ones obtained in previous calculations using diagrammatic many-body theory. In
contrast to this, a recently published parametrization of quantum Monte Carlo data for the free energy of the
homogeneous electron liquid yields effective masses that considerably deviate from previous calculations and
even change sign for low densities, reflecting an unphysical negative entropy. We suggest that this anomaly is
related to the treatment of the exchange energy at finite temperature.
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I. INTRODUCTION

According to Landau’s theory of Fermi liquids [1], the
low-energy excitations of a homogeneous electron liquid are
fermionic quasiparticles characterized by an effective mass m∗,
a charge −e, and a spin h̄/2. Of these three parameters, only
the effective mass, m∗, is nonuniversal, being directly affected
by the electron-electron interaction. Performing an accurate
microscopic calculation of m∗, even in the simplest case of a
homogeneous electron liquid (HEL), is a challenge for many-
body theory [2]. The conventional approach is to perform an
approximate calculation of the electronic self-energy, from
which the poles of the one-electron Green’s function G(k,ω)
for complex frequency ω can be found. These poles, occurring
at ωk = εk − iγk , yield the energy (εk) and the decay rate (γk)
of quasiparticles—the second being much smaller than the first
for quasiparticles in the vicinity of the Fermi surface k = kF.
The effective mass is then computed as

1

m∗ = 1

kF

dεk

dk

∣∣∣∣
k=kF

. (1)

The most popular approach to the calculation of m∗ is prob-
ably the G0W0 approximation [4], in which the self-energy
is obtained as the convolution of the noninteracting Green’s
function (G0) with the screened electron-electron interaction
(W0) calculated in the random phase approximation (RPA)
[2]. Refinements of this idea include local field corrections to
both the effective interaction and the screening [3]. Figure 1
shows recent results that have been obtained for m∗ in the three-
dimensional electron liquid as a function of standard parameter
rs—the average distance between electrons expressed in units
of the Bohr radius a0. The slight dip of m∗ below the bare
mass m at small rs (high density) is a vestige of the dramatic
suppression of the effective mass (m∗ → 0) that would occur if
only exchange were taken into account. This happens because
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the Hartree-Fock self-energy has a logarithmically diverging
slope at the Fermi wave vector in the zero-temperature limit.
By virtue of Eq. (1), this results in a vanishing effective mass
if only exchange effects are considered.

An important message from Fig. 1 is that the plain inclusion
of physical effects beyond the G0W0 approximation is no
guarantee of improvement. For example, the inclusion of short-
range correlation effects via the spin-symmetric local field
factor G+, which heuristically corresponds to the inclusion
of vertex corrections to the self-energy, produces the curves
labeled by G+ in which the ratio m∗/m is less than 1
throughout the metallic density range and beyond. However,
the additional inclusion of short-range correlations via the
spin-antisymmetric local field factor G−, which heuristically
describes the coupling of the electron quasiparticle to spin
fluctuations, yields the curve labeled “G+&G−”, which is
actually close to the original G0W0 (RPA) result. Recently,
fully self-consistent GW calculations for the HEL have
been performed [5,6], yielding effective mass enhancements
less than one for a wide range of densities (1 � rs � 30).
The results, including only the spin-symmetric local field
factor G+, shown in Fig. 1, exhibit a similar behavior, i.e.,
m∗/m � 1, even though they do not decrease monotonically
as the self-consistent GW results. By construction, GW only
screens the direct (Coulomb) interaction between electrons.
Due to the lack of vertex corrections, the effective interaction
mediated by spin fluctuations (paramagnons) is missing in
GW . Taking into account these spin fluctuations by means
of the spin-antisymmetric local field factor G− enhances the
effective mass, as can be seen in Fig. 1.

Attempts to calculate the effective mass from quantum
Monte Carlo (QMC) calculations date back to the early work
of Kwon et al. [7,8] on the two-dimensional electron liquid.
Although QMC provides the most accurate values for the
ground-state energy of the HEL [9], calculations of excited-
state properties suffer from difficulties that are not present in
the calculation of the ground-state energy. One problematic
point is the extrapolation to the thermodynamic limit, since
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FIG. 1. Effective mass enhancements for the three-dimensional
electron liquid [3]. Effective masses calculated without local field
factors (G0W0 approximation, also known as RPA), with local field
factors G+ and G− (G+&G−), and including only the spin-symmetric
local field factor G+. The solid lines represent the effective mass
enhancement according to Eq. (1), while the dashed lines correspond
to the so-called “on-shell” approximation (cf. Ref. [3] for details).
Figure adapted from Ref. [2].

the excitations form a continuum so that energy differences at
the Fermi surface are strongly affected by finite-size effects
[10,11]. Furthermore, it is not clear if the QMC methodology
of Refs. [12,13] addressing excitation energies of small
finite-sized systems away from the Fermi surface can really
be related to quasiparticle energies or the bandwidth. More
pointedly, QMC calculations so far attempted to calculate
exact energy eigenstates of the Hamiltonian for small systems,
but quasiparticles are in general not exact eigenstates of the
Hamiltonian—rather they are defined as poles of the Green’s
function in the lower half of the complex energy plane. In
particular, the finite lifetime of excitations away from the
Fermi surface introduces a broadening of the quasiparticle
resonance in the thermodynamic limit. Therefore, a one-to-one
mapping of quasiparticle exictations, defined as the energies of
the resonance peaks, to exact eigenstates of the Hamiltonian,
is not guaranteed for excitations away from the Fermi surface.
Calculations of the bandwidth [12,13] based on Landau’s
Fermi liquid theory may thus be problematic.

Indeed, although some QMC calculations have predicted
values of the effective mass in good agreement with pre-
existing GW-like theories [10], no clear consensus has
emerged on these values [13]. The interpretation of exper-
iments on simple metals such as Na—the closest realiza-
tion of the three-dimensional HEL in nature [14]—is not
straightforward either due to so-called final-state effects [15].
Electron-phonon interaction introduces further difficulties in
quantitative comparisons between theory and experiment [16].
The measured values of the bandwidth of sodium [17] are not
in good agreement with QMC predictions [12].

In this paper, we propose an alternative approach, which
treats ground-state and excited-state wave functions on equal
footing and thus has the potential of being more accurate.
The method is based on the well-known property of a Fermi
liquid that its low-temperature entropy and heat capacity
coincide with those of an ideal gas of Fermions of mass m∗. A
proof of this fact from microscopic many-body theory can be
found in Ref. [18] (see also Ref. [19]). The formal statement
of this property is that the temperature dependence of the

thermodynamic functions is controlled, at low temperature,
by the pole of the single-particle Green’s function, i.e.,
the quasiparticle energy. By “low” temperature, we mean
θ ≡ kBT/EF � 1, where EF = h̄k2

F/2m is the Fermi energy
determined by the Fermi wave vector, kF, which, in turn, is
given via the density, n, of the electron gas, kF = (3π2n)1/3 =
(αrsa0)−1. The numerical factor α = (4/9π )1/3 connects the
Fermi wave vector, kF, with the Wigner-Seitz radius, rs, in the
three-dimensional electron gas. It follows that the entropy per
particle of the interacting electron liquid, at low temperature,
is given by

s = S

N
= m∗kF

3h̄2n
k2
BT . (2)

m∗ is, strictly speaking, the zero-temperature quasiparticle
effective mass; however, we will continue to refer to it as the
effective mass, since its temperature dependence is negligible
in the temperature window in which Fermi liquid theory
applies. Furthermore, we can use the thermodynamic identity

T
∂s

∂T
= ∂ε

∂T
= cV, (3)

where the derivative with respect to the temperature is taken at
fixed number of particles and volume (ε is the internal energy
per particle), to show that the entropy coincides with the heat
capacity, cV, in the low temperature limit. Equation (3) shows
that an accurate QMC calculation of the low-temperature
internal energy yields the effective mass, provided that
finite-size corrections can be uniformly implemented at low
temperature. The exchange-correlation entropy sxc, defined as
the difference between the full entropy and the noninteracting
entropy s0 = mkF

3h̄2n
k2
BT , is given by

sxc =
(

m∗

m
− 1

)
s0. (4)

Since m∗/m can be slightly less than 1 at high density (see
Fig. 1), we can immediately conclude that sxc (in contrast to s)
is not necessarily positive.

The question at hand is whether more accurate calculations
of m∗ using the method proposed above will confirm previous
G0W0 calculations, or will lead to significant deviations, which
would indicate the onset of strong correlation effects. It must
be borne in mind in this regard that the physical basis of
the G0W0 approach and its extensions is the Landau theory
of Fermi liquids. Starting from the assumption that well-
defined quasiparticles exist one arrives at G0W0 by postulating
an electrostatic interaction between these quasiparticles and
the collective charge density fluctuations of the liquid and
then using a standard unitary transformation to decouple the
electrons from the collective degrees of freedom, generating
the self-energy in the process [20,21]. Different flavors of
GW differ in the form of the effective interaction between
the quasiparticles and the collective degrees of freedom and
yield quantitatively different results (some shown in Fig. 1),
but all rely on the Fermi liquid assumption that one can
draw a clear distinction between single-particle and collective
degrees of freedom. While the paradigm seems to be valid in
the traditional metallic density range (rs < 6), it may break
down at lower density. Hence, the importance of a calculation
that does not rely on Fermi liquid assumptions. A convincing
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demonstration of large qualitative deviations from the G0W0

results for the effective mass (such as an effective mass going to
infinity) would probably indicate a failure of the Fermi liquid
paradigm and the need to introduce new analytical methods.

II. ANALYSIS AND DISCUSSION

QMC calculations of the free energy of the HEL as a
function of temperature and density have been performed by
Brown et al. [22,23] and improved recently [24–26]. The first
comprehensive parametrization of the QMC free energy, based
on the results of Brown et al., has been published by Karasiev
et al. [27], hereafter referred to as KSDT. Very recently its
was shown [28] that Ichimaru’s parametrization [29] of finite-
temperature STLS calculations for the uniform electron gas—
in the following simply referred to as STLS—is a very good
representation of the more recent QMC calculations presented
in Refs. [24–26]. The basic idea behind the STLS procedure
is a self-consistent determination of the spin-symmetric local
field factor G+ and the static structure factor [30]. It has been
known for some time that correlation energies obtained from
the STLS structure factor are close to QMC results at zero
temperature [2]. In the following, we obtain m∗/m in three
different ways:

(1) from the raw QMC data of Brown et al.,
(2) using the aforementioned KSDT parametrization,
(3) employing Ichimaru’s finite-temperature STLS

parametrization.
To estimate the effective mass enhancement directly from

the QMC data we fit—for each available density—the two
data points at the lowest temperature (θ = 0.0625,0.125) for
the total energy to a parabola εQMC(θ ) = C0 + C2θ

2. Note
that the lowest two temperatures presented in Ref. [26] are
θ = 0.5,1.0, which are clearly too high to extrapolate low-
temperature behavior. From this simple fit we obtain the heat
capacity cV = ∂T ε(T ) and the ratio of the QMC heat capacity
and the heat capacity for the noninteracting electron gas leads
to a rough estimate for the effective mass enhancement. The
black dots in Fig. 2 correspond to the estimates for the effective
mass enhancement from the raw QMC data and the error bar
is estimated from the error of the QMC total energies reported
in Ref. [22]. Clearly these estimates are too “noisy” for a
conclusive statement but otherwise close to 1, consistent with
the G0W0 theory. More accurate and closely spaced data for
low temperatures (θ < 10−2) with carefully controlled finite-
size corrections will be needed before m∗/m can be reliably
extracted using this approach.

Turning to the two parametrizations for the free energy,
i.e., KSDT and STLS, we can extract the effective mass
enhancement from the thermodynamic relation,

s = − ∂f

∂T
, (5)

where s is the entropy, and f is the free energy per particle.
Provided the temperature is low enough—such that Eq. (2)
holds—the mass ratio m∗/m is given by the ratio of the
interacting and noninteracting entropy, i.e., m∗/m = s/s0.
To assess whether the temperature is low enough, we can
alternatively compute the heat capacity [cf. Eq. (3)] and extract
the effective mass enhancement, m∗/m, from the ratio of the
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FIG. 2. Plot depicts the effective mass enhancement computed
from the raw QMC data (black dots), the KSDT parametrization
of the QMC data, and the parametrization of STLS calculations at
finite temperature. From the KSDT and the STLS parametrization,
the effective mass enhancement is obtained in two ways: (1) from the
ratio of the interacting and noninteracting entropies (KSDT, red solid
line; STLS, orange solid line); (2) from the ratio of the interacting and
noninteracting heat capacity (KSDT, blue dashed line; STLS, green
dashed line). The inset shows a zoom off the high-density region
(0 � rs � 0.5). All result are obtained at θ = 10−3.

interacting and noninteracting heat capacities. If the entropy
is linear in the temperature, the ratio of the heat capacities of
the interacting and the noninteracting electron gas is identical
to the ratio of the interacting and noninteracting entropies.

The results, presented in Figs. 2 and 3, are very surprising.
The KSDT parametrization exhibits a small dip in m∗ at
very high densities (rs � 1; cf. inset of Fig. 2) and a large
mass enhancement at somewhat lower densities (1 � rs � 4).
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FIG. 3. Similar to Fig. 2 we plot the effective mass enhancement
obtained from the KSDT and the STLS parametrization. Note the
log-scale on the rs axis. The plot shows that both parametrizations
yield an unphysical negative effective mass for low densities rs � 10
(KSDT) and very low densities rs � 300 (STLS), respectively.
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The mass enhancement is significantly larger than in previous
calculations (compare with Fig. 1). At even lower density,
we observe an odd inversion of the tendency, with the
effective mass rapidly dropping below 1 and even becoming
negative for rs � 9.5, which signals an unphysical negative
entropy. Turning to the STLS parametrization, we find mass
enhancements closer to the MBPT results shown in Fig. 1. The
dip below one, due to exchange effects, extends to rs ∼ 2.5,
which is in between the G0W0 (RPA) and the G−&G+ results.
The mass enhancement for metallic densities rs � 10 predicted
by the STLS parametrization seems to be quite close to the
“on-shell” G0W0 (RPA) results (cf. Fig. 1). However, for
even lower densities, shown in Fig. 3, we see that also the
STLS predicts a negative mass enhancement, indicating an
unphysical negative entropy, for rs � 300.

The odd behavior of the KSDT and STLS parametrizations
at low temperature and low density has two potential sources:
(1) inaccuracies in the underlying reference data, (2) the fitting
form chosen to inter- and extrapolate the QMC (or STLS)
data. Concerning the first point, we note that the QMC data
has indeed an intrinsic systematic bias due to finite-size effects
and the fixed-node approximation. The KSDT parametrization
is based on finite-temperature QMC calculations using free
particle nodes [22] and ground-state energies [31], which
include additional backflow effects in the nodes. Backflow
nodes significantly lower energies compared to free particle
nodes [32]: thus, we cannot expect that the systematic bias
due to the nodal approximation cancels out. Having said
this, the fact remains that the estimate for m∗/m from the
QMC data does not show the troubling sign reversal: thus,
we believe that the fitting forms chosen for the KSDT and
STLS parametrizations are responsible for producing negative
entropies. In the following, we discuss the probable cause of
this pathology.

Both KSDT and STLS incorporate as an essential com-
ponent the parametrization of the first-order exchange ap-
proximation for the HEL at finite temperature proposed
by Perrot and Dharma-wardana (PDW) [33]. In Fig. 4, we
have plotted the mass enhancement obtained by including only
the first-order exchange (computed numerically and using the
PDW parametrization). It is immediately evident that the ap-
proximation fails badly, producing negative effective mass and
thus an unphysical negative entropy at relatively small values
of rs . This unphysical behavior of the first-order exchange
approximation may be the culprit for unphysical negative
entropy exhibited by the KSDT parametrization and also by the
STLS approximation—albeit at considerably lower density.
Surely, the coefficients in the fitting forms used in KSDT and
STLS are optimized for the total exchange-correlation (free)
energy, and one could argue that the unphysical first-order
behavior is balanced by other terms in the functional form.
However, it has to be kept in mind that the free coefficients are
determined by QMC (or STLS) reference data on a restricted
parameter region, which only pushes the odd behavior outside
the parameter region covered by the data used in the fit.

It is surprising, at first, that a standard approximation
such as first-order exchange would result in an unphysical
behavior of the entropy. However, a little thought shows
that this is necessarily so. While the self-consistent Hartree-
Fock (HF) approximation always produces positive entropy,
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FIG. 4. Comparison of the effective mass enhancement m∗/m

compute in HF and first-order exchange. The curve labeled “1st order”
corresponds to a numerical evaluation of the first-order exchange
approximation, whereas the curve labeled “PDW” is obtained from
the fit due to Perrot and Dharma-wardana. Similar to Figs. 2 and 3,
we obtained m∗/m in two ways: (1) From the ratio of the interacting
and noninteracting entropies (red solid lines). (2) From the ratio of
the interacting and noninteracting heat capacity (blue dashed lines).
The notable differences between the two methods in the numerical
first order and (barely visible) in the HF results are due to the
nonanalyticity discussed in the main text. The results are obtained
at a relative temperature of θ = 10−3.

the first-order exchange approximation necessarily produces
negative entropy at sufficiently low density, as explained
below. The difference between the two approximations is
that in the HF approximation, one calculates the expectation
value of the interaction energy in an ensemble of single Slater
determinants whose energies are self-consistently determined
by the approximation itself [34,35], whereas in the first-
order exchange one calculates the expectation value of the
interaction in an ensemble of Slater determinants whose
energies do not include the interaction. In a uniform electron
liquid, the two approximations coincide at zero temperature,
because the ground-state, with or without interactions, is given,
at the mean-field level, by a single Slater determinant of plane
waves with wave vectors k � kF. But the situation changes as
soon as a nonvanishing temperature is considered, for different
Slater determinants have different probabilities of occurring
in the ensemble depending on whether the exchange energy is
treated self-consistently (as in HF) or merely to first order.
Within self-consistent HF theory, the heat capacity at low
temperature is approximately given by [36,37]

cHF
V ≈ c

(0)
V

[
1 − αrs

π
log

(
πθ

4αrs

)]−1

, (6)

where c
(0)
V = kB

π2

2 θ is the noninteracting heat capacity and
the correction factor is the effective mass enhancement
of the HF approximation at low temperatures. It is evident
that this expression, contains all powers of x ∝ rs log(θ/rs).
This is because HF is a self-consistent approximation, not a
perturbative expansion in rs. Notice that the HF heat capacity
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from this formula is positive for all rs , as can be seen in
Fig. 4, and so is the entropy. This should be contrasted
to the first-order exchange approximation, which for low
temperatures is

c
(1)
V ≈ c

(0)
V

[
1 + αrs

π
log(θ )

]
. (7)

This apparently reasonable expression becomes inevitably
negative for sufficiently large rs when θ < 1. Thus, we suggest
that the negative entropy of the KSDT and STLS parametriza-
tions arises from the inclusion of the first-order approximation
to the exchange, which is necessarily unphysical at large rs and
low θ . In Fig. 4, we show the numerical results for m∗/m for
both the first-order exchange and the HF approximation. Note
that the different values obtained for m∗/m from the entropy
ratio and the heat capacity ratio is due to the logarithmic
dependence on the relative temperature θ . In addition, we
depict the PDW result, which is a parametrization of first-
order exchange. The difference between the numerical results
and the PDW parametrization is due to the fact that PDW
is supposed to be an accurate parametrization at moderate
temperatures, i.e., for 0.1 < θ < 10 [33], whereas we show
results at θ = 10−3. We have verified that PDW is much
closer to the numerical first-order results for 0.1 < θ < 10.
Furthermore, there are recent parametrizations of first-order
exchange, which are closer to the numerical values [38]. The
generic feature of the first-order results for the effective mass
enhancement—independent of whether they are obtained from
the PDW parametrization or numerically, and irrespective of
whether the entropy or the heat capacity ratio is used—is that
it is given by a straight line (as function of rs) starting at
m	/m = 1 with a negative slope [cf. Eq. (7)]. Accordingly,
m	/m is bound to become negative at low densities. We
stress that the HF approximation always produces a physical
m	/m > 0, which can be clearly seen in Fig. 4. First-order
exchange and HF only become similar at high densities
(rs � 1).

III. SUMMARY AND CONCLUSIONS

We proposed to extract the effective mass for the quasipar-
ticles in the HEL from QMC calculations at finite temperature
using thermodynamic relations. However, we find that the
currently available QMC data [22,26] are too sparse in
the low-temperature region for a quantitative evaluation of
the effective mass. To circumvent this issue we employed a

recent parametrization [27], which extrapolates the QMC data
to arbitrary temperature and densities, to obtain the effective
mass enhancement. We observe that the parametrization yields
unphysical negative mass enhancements for low densities, a
problem related to the fact that the current parametrization
produces negative entropies, which has been pointed out
earlier [39]. Using a different parametrization of the free
energy for the HEL—based on STLS calculations at finite
temperature—we find much improved results for metallic
densities. However, also the STLS parametrization exhibits
unphysical, negative entropies at low densities. We trace back
this oddity to the fact that both parametrizations incorporate
first-order exchange as high-density limit, which unfortunately
spoils the low-density behavior. We argue that replacing
first-order exchange by fully self-consistent HF will be the
cure for this pathological behavior, while still preserving the
correct high density limit [40].

We hope that our analysis stimulates further QMC cal-
culations for the HEL at low but finite temperatures, for
it holds the potential of quantifying the density region in
which Landau’s theory for the Fermi liquid remains valid.
In closing, we point out that an accurate parametrization of
the free energy of the HEL does not only provide the local
density approximation for finite-temperature DFT but is also
a crucial input for the adiabatic local density approximation
within nonequilibrium thermal DFT, a generalization of time-
dependent DFT, which allows for the ab initio calculation
of thermoelectric transport properties [41,42]. We emphasize
that in the context of nonequilibrium thermal DFT, a physically
sensible low-temperature behavior of the entropy is of utmost
importance. This is in contrast to finite-temperature DFT,
nowadays sometimes also referred to as equilibrium thermal
DFT, which focuses on the warm-dense matter regime, i.e., a
regime where an unphysical low-temperature behavior might
be less problematic.
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