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Abstract: The spatial block analysis (SBA) method has been introduced to efficiently extrapolate
thermodynamic quantities from finite-size computer simulations of a large variety of physical systems.
In the particular case of simple liquids and liquid mixtures, by subdividing the simulation box into
blocks of increasing size and calculating volume-dependent fluctuations of the number of particles,
it is possible to extrapolate the bulk isothermal compressibility and Kirkwood–Buff integrals in
the thermodynamic limit. Only by explicitly including finite-size effects, ubiquitous in computer
simulations, into the SBA method, the extrapolation to the thermodynamic limit can be achieved.
In this review, we discuss two of these finite-size effects in the context of the SBA method due to (i) the
statistical ensemble and (ii) the finite integration domains used in computer simulations. To illustrate
the method, we consider prototypical liquids and liquid mixtures described by truncated and shifted
Lennard–Jones (TSLJ) potentials. Furthermore, we show some of the most recent developments of
the SBA method, in particular its use to calculate chemical potentials of liquids in a wide range of
density/concentration conditions.

Keywords: computer simulations; finite-size effects; calculation of free energies; thermodynamic limit

1. Introduction

In the last few decades, computational studies of soft matter have gained ground in the no-man’s
land between purely theoretical studies and experimental investigations. Arguably, this success is
due to the use of statistical mechanics relations between macroscopic thermodynamic properties and
microscopic components and interactions of a physical system in the thermodynamic limit (TL) [1,2].
However, and apart from a few examples [3–5], computer simulations are mainly constrained to
consider closed systems with a finite and usually small number of particles N0. These limitations
introduce spurious finite-size effects, apparent in the simulation results, that in spite of the current
computing capabilities are still the subject of intense investigations [6–13].

A meaningful comparison between computer simulations of finite systems and experimental
results has been always a difficult task. In principle, it is possible to extrapolate the simulation data to
the quantities of interest in the thermodynamic limit by considering systems of increasing size and
performing simulations for each of them. The SBA method has been proposed as a more efficient
alternative where only one system is examined and then subdivided into blocks of different size from
which the data are extracted. The method is rather general since it was originally proposed to study
the critical behavior of Ising systems [14,15] and then extended to study liquids [16–21] and even the
elastic constants of model solids [22].
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In this paper, we examine the SBA method focusing on the extrapolation of bulk thermodynamic
properties of simple liquids. We use prototypical liquids and mixtures described by truncated
and shifted Lennard–Jones (TSLJ) potentials to discuss the original ideas [16,17] and explore the
background [20,21,23–26] for the most recent developments [6,7,9] of the method. The simple examples
presented here, in addition to the results available in the literature [6], suggest that the method is
suitable for the calculation of trends in the chemical potential of complex liquids in a wide range of
density/concentration conditions.

The paper is organized as follows: In Section 2, we introduce the relevant finite-size effects present
in standard computer simulations. In Section 3, we introduce the finite-size integral equations for
liquids and illustrate the procedure to extrapolate thermodynamic quantities. In Section 4, we discuss
the extension of the block analysis method to liquid mixtures. We conclude the paper in Section 5.

2. Boundary and Ensemble Finite-Size Effects

Statistical mechanics establishes the connection between macroscopic thermodynamic properties
and the microscopic components and interactions of a physical system. An interesting example of
this relation is provided by the compressibility equation that identifies the density fluctuations of
a system in the grand canonical ensemble with the bulk isothermal compressibility κT [27]. In the
thermodynamic limit (TL), the isothermal compressibility of a homogeneous system is related to the
fluctuations of the number of particles via the expression [1]:

χ∞
T =

〈N2〉 − 〈N〉2
〈N〉 , (1)

with 〈N〉 the average number of particles contained in a volume V of the fluid. The reduced isothermal
compressibility χ∞

T = ρkBTκT is the ratio between the bulk isothermal compressibility of the system,
κT , and the isothermal compressibility of the ideal gas (ρkBT)−1 with ρ = 〈N〉/V.

Various finite-size effects can be included in the block analysis aiming at extrapolating interesting
thermodynamic quantities. In practice, let us consider a system of N0 particles where the simulation
box of volume V0 = L3

0 is divided into subdomains of volume V = L3, as illustrated in Figure 1.
By evaluating the fluctuations of the number of particles in these subdomains, it is possible to obtain
the distribution PL,L0(N) of the number of particles, with k-moments given by [25]:

〈Nk〉L,L0 =
N0

∑
N=0

Nk PL,L0(N) . (2)

The second moment of the distribution is related to the reduced isothermal compressibility of the
finite system χT(L, L0) [14,16,17,25]:

χT(L, L0) =
〈N2〉L,L0 − 〈N〉2L,L0

〈N〉L,L0

. (3)

The finite-size reduced isothermal compressibility, χT(L, L0), can be extrapolated to the reduced
isothermal compressibility in the TL, χ∞

T , taking the limits L, L0 → ∞. Originally [17,25], by applying
periodic boundary conditions (PBCs) to the total linear size L0 and taking into account volumes such
that L� ζ with ζ the correlation length of the system, it has been proposed that the difference between
χT(L, L0) and χ∞

T is related to boundary effects associated with the finite-size of the subdomains.
This difference takes the form [16,17]:

χT(L, L0 → ∞) = χ∞
T +

c
L
+ O

(
1
L2

)
, (4)

with c a constant. Recently, Equation (4) has been obtained [28] using arguments based on the
thermodynamics of small systems [29,30], underpinning the consistency of the result.
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L

L 0

Figure 1. Snapshot of the simulation box for a system of particles interacting via a TSLJ potential at
density ρσ3 = 0.1 and temperature kBT = 1.2ε. In this particular example, a box of linear size L0 has
been subdivided into blocks of linear dimension L = L0/5 as indicated by the different color shades.
The figure has been rendered with the Visual Molecular Dynamics (VMD) program [31].

To investigate this expression, we consider a liquid system whose potential energy is described by
a 12–6Lennard–Jones potential truncated, with cutoff radius rc/σ = 21/6, and shifted. The parameters
ε, σ and m, define the units of energy, length and mass, respectively. All the results are expressed
in LJ units with time σ(m/ε)1/2, temperature ε/kB and pressure ε/σ3. Various system sizes, namely
N0 = 104, 105 and 106, are considered, and the density is fixed at ρσ3 = 0.864, thus defining the linear
size of the simulation box L0. The systems are equilibrated at kBT = 1.2ε, enforced with a Langevin
thermostat with damping coefficient γ(σ(m/ε)1/2) = 1.0, for 2× 106 molecular dynamics (MD) steps
using a time step of δt/(σ(m/ε)1/2) = 10−3. Production runs span 106 MD steps. All the simulations
have been performed with the ESPResSo++ [32] simulation package.

To use the block analysis method, we compute the fluctuations of the number of particles.
In particular, we choose domains of size 1 < L/σ < L0/σ to scan continuously the fluctuations as
a function of domain size. To increase the amount of statistics, we use 100 randomly-positioned
subdomains per simulation frame.

In Figure 2, we report χT(L, L0) as a function of σ/L. The linear behavior predicted in Equation (4)
is apparent for L� L0. There are evident deviations from the linear behavior, which are not included
in Equation (4), since this equation has been obtained for a system in the grand canonical ensemble.
As a matter of fact, the deviations from linearity are mainly related to the fixed size of the system
because when L→ L0, χT(L0, L0) = 0, that is, the fluctuations of the number of particles for a closed
system are equal to zero. In principle, the isothermal compressibility in the TL can be extracted by
extrapolating a line to the y-axis, i.e., σ/L → 0, and determining the y-intercept. This procedure,
however, might lead to ambiguous and strongly-size-dependent results as suggested by the same plot.

From the previous discussion, Equation (4) satisfactorily describes the boundary size effects
present in a system described in the grand canonical ensemble. However, ensemble size effects,
i.e., the fact that we are computing quantities defined in the grand canonical ensemble using
information obtained from a system in a canonical ensemble, are important even in cases where
the size of the system might appear to be enormous (L0/σ = 105 for N0 = 106 where ζ/σ ≈ 10).
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Figure 2. Fluctuations of the number of particles χT(L, L0) as a function of σ/L for systems described
by a TSLJ potential with rc/σ = 21/6. Data corresponding to system sizes N0 = 104, 105 and 106 are
presented using red squares, blue triangles and green circles, respectively. The vertical lines indicate
the limit σ/L0 at which fluctuations become zero. The black horizontal dashed line indicates the value
χ∞

T = ρkBTκT = 0.0295 with κT the bulk compressibility obtained with the method described in [6].

It is thus clear that the isothermal compressibility of a finite-size system in the TL, i.e., L, L0 → ∞
with ρ = N0/L3

0, should equate to the bulk isothermal compressibility κT . An elegant analysis using
probabilistic arguments for the ideal gas case [26,33] shows that the finite-size reduced isothermal
compressibility can be written as:

χT(L, L0) = χ∞
T

(
1−

(
L
L0

)3
)

. (5)

In spite of the simplicity of the system chosen in this study, it cannot be identified with the ideal
gas. However, at very low densities and temperature kBT = 1.2ε, the system behaves more like
a real gas, and a meaningful trend could be identified. Therefore, to investigate Equation (5), we
consider the density range ρσ3 = 0.1 , · · · , 1.0 for systems of size N0 = 105 particles. Results are
presented in Figure 3 for the cases ρσ3 = 0.1, 0.2 and 0.3. The three datasets follow the theoretical
prediction in Equation (5) with deviations from this behavior for L� L0, thus indicating the signature
of boundary finite-size effects. As expected, the data presented also suggest that upon increasing
density, the deviations from the ideal gas behavior become more evident, as can be seen in the case
ρσ3 = 0.3.
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Figure 3. Fluctuations of the number of particles χT(L, L0) as a function of the ratio L/L0 for systems
described by a TSLJ potential with rc/σ = 21/6. Results corresponding to systems of N0 = 105 particles
with densities ρσ3 = 0.1, 0.2 and 0.3 are presented using red squares, blue triangles and green circles,
respectively. The theoretical prediction presented in the text is plotted using the corresponding value
for χ∞

T , obtained as described in [6], and solid-line curves with the same color code.
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This is also seen in Figure 4, where for a system with density ρσ3 = 0.864, the deviations from
the ideal gas case are much more evident. As a matter of fact, even for the largest size considered
(N0 = 106), it is not possible to convincingly reproduce the ideal gas behavior.

0.0 0.2 0.4 0.6 0.8 1.0

L/L0

0.00

0.02

0.04

0.06

0.08

0.10

χ
T
(L

,L
0
)

N0 = 104

N0 = 105

N0 = 106

χ∞
T (1− (L/L0)3)

Figure 4. Fluctuations of the number of particles χT(L, L0) as a function of the ratio L/L0 for systems
described by a TSLJ potential with rc/σ = 21/6. Results corresponding to sizes N0 = 104, 105

and 106, with density ρσ3 = 0.864, using red squares, blue triangles and green circles, respectively.
The theoretical prediction presented in the text is plotted as the black dashed curve using χ∞

T = 0.0295.

Nonetheless, one intuitively could imagine that the following expression:

χT(L, L0) = χ∞
T

(
1−

(
L
L0

)3
)
+

c
L
+ O

(
1
L2

)
, (6)

captures the two finite-size effects, ensemble and boundary [25]. By neglecting the O(1/L2) terms,
defining λ = L/L0 and multiplying everything by λ, we obtain:

λχT(λ) = λχ∞
T

(
1− λ3

)
+

c
L0

. (7)

Equation (7) is more convenient to analyze because in the limit λ→ 0, provided that ζ < L < L0,
λ3 is negligible, and this expression can be approximated to a linear function in λ with slope χ∞

T and
y-intercept equal to c/L0. In particular, we use a simple linear regression in the interval 0.0 < λ < 0.3,
with the fluctuations data for N0 = 105, to find χ∞

T = 0.0295(5) and c = 0.415(5)σ. Results of the
scaled fluctuations λχT(λ) minus c/L0 are presented in Figure 5, where the intensive character of the
constant c becomes clear. By replacing the calculated values χ∞

T and c in Equation (7), we obtain the
black curve that superimposes on the simulation data in the full range 0 < λ < 1.
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Figure 5. Scaled fluctuations of the number of particles λχT(L, L0), minus c/L0, versus the ratio
λ = L/L0 for systems described by a TSLJ potential with rc/σ = 21/6. Results corresponding to sizes
N0 = 104, 105 and 106, with density ρσ3 = 0.864, using red squares, blue triangles and green circles,
respectively. The theoretical prediction Equation (7) presented in the text is plotted as the black solid
curve using χ∞

T = 0.0295 and c = 0.415σ.
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In addition to the explicit finite-size effects discussed above, there is another type of effect related
to the periodicity of the simulation box. This is the case of implicit finite-size effects that appear due
to anisotropies in the pair correlation function of the system, generated by the use of PBCs [34,35].
These effects, extremely important for small simulation setups, appear as oscillations in λχT(λ) for
λ ≈ 1 caused by short range interactions between the system and its nearest neighbor images. However,
given the large sizes of the systems considered here, implicit finite-size effects can be safely ignored in
the present discussion.

With the trajectories of the system with N0 = 105 particles in the density interval 0.1 < ρσ3 < 1.0,
we compute the scaled fluctuations λχT(λ) and determine, as before, the ratio χ∞

T = κT/κ IG
T as

a function of the density, with κ IG
T = (ρkBT)−1 the isothermal compressibility of the ideal gas

(see Figure 6). As expected for this system at kBT = 1.2ε, a monotonically-decreasing behavior
is observed since the system becomes less compressible as the density increases.
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κ
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Figure 6. Ratio χ∞
T = κT/κ IG

T at kBT = 1.2ε as a function of the density for systems described by a TSLJ
potential with rc/σ = 21/6, with κ IG

T = (ρkBT)−1 the isothermal compressibility of the ideal gas. The
red curve is a guide to the eye.

The isothermal compressibility as a function of the density allows one to investigate more
interesting thermodynamic properties, as has been recently demonstrated [6,7]. For example,
the isothermal compressibility can be written as:

κT =
1
ρ2

∂ρ

∂µ

∣∣∣∣
T

, (8)

which can be rearranged, in terms of the chemical potential µ, as:

δµ =
∫ ρ

ρ0

dρ′

ρ′2κT
(9)

with δµ = µ− µ0 and µ0 the chemical potential of the system at the reference density ρ0. In practice,
one usually is interested in the excess chemical potential (In this context, the word excess should
be replaced with residual. The residual chemical potential is the difference between the chemical
potential of the target system and that of an ideal gas at the same density, temperature and composition.
We misuse the expression excess chemical potential to match the modern literature.):

δµex = δµ− kBT ln ρ, (10)

obtained by subtracting from δµ the density-dependent part of the chemical potential of the ideal gas.
To validate the results obtained using Equation (10), it is necessary to use a different computational

method to evaluate µ0. For that purpose, any computational method aiming at calculating chemical
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potentials could be used. In particular, we use the spatially-resolved thermodynamic integration
(SPARTIAN) method [36], recently implemented by us. In SPARTIAN, the target system, described
with atomistic resolution, is embedded in a reservoir of ideal gas particles. An interface between the
two subdomains is defined such that molecules are free to diffuse, adapting their resolution on the
fly. A uniform density across the simulation box is guaranteed by applying a single-molecule external
potential that is identified with the difference in chemical potential between the two resolutions,
i.e., the excess chemical potential of the target system. This method has been validated by calculating
excess chemical potentials for Lennard–Jones liquids, mixtures, as well as for simple point-charge (SPC)
and extended simple point-charge (SPC/E) water models and aqueous sodium chloride solutions, all
in good agreement with state-of-the-art computational methods.

For the comparison, we consider the same system at the same temperature with densities ρσ3 = 0.2,
0.4, 0.6, 0.8 and 1.0. Results for the excess chemical potential as a function of the density are presented
in Figure 7 where the value of ρ0σ = 0.6 has been used as the reference value. Once δµex is rescaled,
it becomes clear that the agreement between the two methods is remarkable. This result suggests
that the simple calculation of the fluctuations of the number of particles, used in combination with
Equation (7), provides us with an efficient and accurate method to compute the chemical potential of
simple liquids, which can be extended to more complex fluids [6].

0.0 0.2 0.4 0.6 0.8 1.0

ρσ3

0

5

10

15

20

25

µ
e
x
/
ǫ

SPARTIAN
This work

Figure 7. Excess chemical potential µex/ε at kBT = 1.2ε as a function of the density for systems
described by a TSLJ potential with rc/σ = 21/6. Red squares indicate the data obtained with the
spatially-resolved thermodynamic integration (SPARTIAN) method [36], and the blue triangles are the
data points obtained with the method outlined in the text.

In this section, Equation (7) has been introduced in a rather intuitive manner. However,
the presented results suggest that it encompasses the relevant finite-size effects of the system and
allows one to compute bulk thermodynamic quantities. In the following section, we derive Equation (7)
more rigorously and explore, using a different example, its range of validity.

3. Finite-Size Ornstein–Zernike Integral Equation

Fluctuations of the number of particles are related to the local structure of a liquid. Let us consider
a molecular liquid of average density ρ at temperature T in equilibrium with a reservoir of particles,
i.e., an open system. The fluctuations of the number of molecules are related to the local structure of
the liquid via the Ornstein–Zernike integral equation [1,37]:

∆2(N)

〈N〉 = 1 +
ρ

V

∫
V

∫
V
[go(r1, r2)− 1] dr1 dr2 , (11)
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where ∆2(N)/〈N〉 are the fluctuations of the number of particles, ∆2(N) = 〈N2〉 − 〈N〉2 and go(r1, r2)

is the pair correlation function of the open system and r1, r2 the position vectors of a pair of fluid
particles. To solve the integral in Equation (11), one assumes that the fluid is homogeneous, isotropic
and that the system is in the thermodynamic limit (TL), i.e., V → ∞, 〈N〉 → ∞ with ρ = 〈N〉/V =

constant. An infinite, homogeneous and isotropic system is translationally invariant; therefore,
we rewrite Equation (11) as [1]:

χ∞
T =

∆2(N)

〈N〉 = 1 + 4πρ
∫ ∞

0
(go(r)− 1) r2 dr , (12)

with χ∞
T = ρkBTκT , κT being the isothermal compressibility of the bulk system. We have replaced

go(r1, r2) with go(r) the radial distribution function (RDF) of the open system, with r = |r2 − r1|.
An alternative version of the OZ integral equation for finite systems has been introduced [25].

For a finite system with total volume V0 with PBCs we have:

χT(V, V0) =
∆2(N; V, V0)

〈N〉V,V0

= 1 +
ρ

V

∫
V

∫
V
[gc(r12)− 1] dr1 dr2 , (13)

where gc(r12), r12 = |r2 − r1|, is the pair correlation function of the closed system with total number of
particles N0, and ∆2(N; V, V0) = 〈N2〉V,V0 − 〈N〉2V,V0

. The fluctuations of the number of particles thus
depend on both subdomain and simulation box volumes.

For a single component fluid of density ρ at temperature T with fixed number of particles N0 and
volume V0, its RDF can be written in terms of an expansion around N0 as [23–26,33]:

gc(r) =go(r)− χ∞
T

N0
. (14)

As a matter of fact, the expansion includes terms that depend on the partial derivative of go(r)
with respect to the density. However, we anticipate here that for the present analysis, their contribution
is negligible [6]. By replacing gc(r) in the integral on the r.h.s of Equation (13), we obtain:

ρ

V

∫
V

∫
V
(gc(r12)− 1) dr1 dr2 = IV,V −

V
V0

χ∞
T , (15)

where:

IV,V =
ρ

V

∫
V

∫
V
(go(r12)− 1) dr1 dr2 , (16)

and we use that ρ = N0/V0.
Next, we include explicitly the second finite-size effect, i.e., the fact that the volume V is finite

and embedded into a finite volume V0 with PBCs. For this, we rewrite IV,V as [17]:

IV,V0−V = IV,V0 − IV,V ,

with:

IV,V0 =
ρ

V

∫
V

∫
V0

(go(r12)− 1) dr1 dr2

IV,V0−V =
ρ

V

∫
V

∫
V0−V

(go(r12)− 1) dr1 dr2 .

As pointed out by Rovere, Heermann and Binder [17], the two integrals IV,V and IV,V0 are equal
when r1 and r2 are both within the volume V. When r12 > ζ, the integrand (go(r12)− 1) = 0, and it
does not contribute to the integrals. Close to the boundary of the subdomain V, for r12 < ζ, and in
particular when r1 lies inside and r2 outside the volume V, there are contributions missing in IV,V ,
which are present in IV,V0 . Therefore, the difference between the two integrals IV,V0−V = IV,V0 − IV,V
must be proportional to the surface volume ratio of the subdomain V [17], i.e.,
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IV,V0−V =
c1

L
+
( c2

L

)2
+ O

(
1
L3

)
, (17)

with c1, c2 proportionality constants with units of length that, at this point, we assume to be intensive.
To compute IV,V0 , we require that ζ < L < L0. Since we assume PBCs, the system is translationally

invariant. Hence, upon applying the transformation r12 → r = r2 − r1, the expression:
IV,V0 = ρ

∫
V0

(go(r)− 1) dr = χ∞
T − 1 (18)

is obtained, where we assume that go(r > ζ) = 1, thus ignoring fluctuations of the RDF beyond the
volume V. By combining these two results, we obtain:

IV,V = χ∞
T − 1 +

c1

L
+
( c2

L

)2
, (19)

and by including this result in Equation (15), we arrive at the following expression:
ρ

V

∫
V

∫
V
(gc(r12)− 1) dr1 dr2 = χ∞

T

(
1−

(
L
L0

)3
)
− 1 +

c1

L
+
( c2

L

)2
. (20)

Finally, this expression becomes:

χT(L, L0) = χ∞
T

(
1−

(
L
L0

)3
)
+

c1

L
+
( c2

L

)2
, (21)

and by defining λ = L/L0, we write:

λχT(λ) = λχ∞
T

(
1− λ3

)
+

c1

L0
+

(
c2

L0

)2 1
λ

. (22)

Equations (7) and (22) differ in the c2
2/L2

0λ term that appears from considering the boundary
finite-size effects. One possible scenario in which this difference might play a role is in the case of
simulations near critical conditions where the correlation length of the system tends to infinity.

To test this expression, we perform simulations of systems with potential energy described by
the truncated, at rc/σ = 2.5, and shifted 12–6 Lennard–Jones potential. We consider systems with
N0 = 24, 000 particles, with densities spanning the range 0.05 < ρσ3 < 0.70. Two temperatures were
considered, kBT = 2.00ε and 1.15ε. The critical point of this system has been reported at ρcσ3 = 0.319
and kBTc = 1.086ε [38].

We report the reduced fluctuations λχT(λ) as a function of λ for ρσ3 = 0.3 in Figure 8. In the
case kBT = 2.00ε, the effect of the λ−1 term in Equation (22) is negligible, and a linear approximation
in the region λ < 0.3 seems to be well justified. However, for the case close to the critical point,
i.e., kBT = 1.15ε, the effect of this term is evident and should be included in the extrapolation to χ∞

T .
Finally, upon extrapolating to χ∞

T , an interesting behavior is observed for the bulk isothermal
compressibility κT as a function of density (Figure 9). In the case kBT = 2.00ε, as expected,
a monotonically-decreasing behavior with increasing density is observed. More interestingly, in the
case kBT = 1.15ε, the monotonically-decreasing behavior is interrupted by a singularity in the
isothermal compressibility in the vicinity of the critical density. This cusp in the curve is expected since
the isothermal compressibility of a fluid at the critical point is infinite.
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Figure 8. Reduced fluctuations as a function of λ for systems described by a TSLJ potential with
rc/σ = 2.5 with density ρσ3 = 0.3 at temperatures kBT = 2.00ε and 1.15ε. For the latter case, it is
apparent that the contribution proportional to λ−1 is not negligible. The inset shows the full range
0 < λ < 1. The black curves are the result of fitting the data to Equation (22).
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Figure 9. Bulk isothermal compressibility κT as a function of the density ρ at kBT = 1.15ε (red circles)
and kBT = 2.00ε (green squares) for systems described by a TSLJ potential with rc/σ = 2.5. The vertical
black line indicates the location of the critical density ρσ3 = 0.319 [38].

The use of finite-size integral equations is general enough to admit generalizations of other
systems of interest. In the next section, we describe one of such possible extensions: the study of
binary mixtures.

4. Mixtures

Kirkwood–Buff (KB) theory [39] is arguably the most successful framework to investigate the
properties of liquid mixtures that relates the local structure of a system to density fluctuations in
the grand canonical ensemble. These quantities are in turn related to equilibrium thermodynamic
quantities such as the compressibility, the partial molar volumes and the derivatives of the chemical
potentials [2]. Formulated more than sixty years ago, KB enjoys renewed interest in the computational
soft-matter and statistical physics communities [6,7,9–13]. Recent works have shown promising
applications related to solvation of biomolecules [40] and potential uses to compute multicomponent
diffusion in liquids [41] and to study complex phenomena such as self-assembly of proteins [42] and
polymer conformation in complex mixtures [4,43].
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For a multicomponent fluid of species i, j in equilibrium at temperature T, the Kirkwood–Buff
integral (KBI) is defined as:

Go
ij = V

(
〈Ni Nj〉 − 〈Ni〉〈Nj〉

〈Ni〉〈Nj〉
− δij

〈Ni〉

)
=

1
V

∫
V

∫
V
[go

ij(r12)− 1] dr1 dr2 , (23)

with δij the Kronecker delta. The superscript (o) indicates that this definition holds for an open system,
i.e., a system in the grand canonical ensemble. In practice, we compute fluctuations of the number of
particles in a subdomain of volume V embedded in a reservoir whose size goes to infinity. Thus, 〈Ni〉
is the average number of i-particles inside V, or ρi = 〈Ni〉/V. go

ij(r12) is the multicomponent radial
distribution function (RDF) of the infinite system, with r12 = r2 − r1.

Let us recall that in computer simulations one considers systems with total fixed number of
particles N0 and volume V0 with PBCs. In this case, we have [35]:

Gij(L, L0) = V

(
〈Ni Nj〉′ − 〈Ni〉′〈Nj〉′

〈Ni〉′〈Nj〉′
− δij

〈Ni〉′

)
=

1
V

∫
V

∫
V
[gc

ij(r12)− 1] dr1 dr2 . (24)

The finite-size KBI Gij(L, L0) is evaluated by computing fluctuations of the number of particles
in finite subdomains of volume V inside a simulation box of volume V0. The average number of
i-particles 〈Ni〉′ ≡ 〈Ni〉V,V0 depends on both subdomain and simulation box volumes. Moreover,
the integral on the r.h.s. of Equation (24) should be evaluated for the RDF of the finite system gc

ij(r12)

with volume V0 by using a finite integration domain V.
As has been done for the single component case, we include in this example both, ensemble and

boundary, finite-size effects. For the former, the following correction has been suggested [44]:

gc
ij(r) = go

ij(r)−
1

V0

(
δij

ρi
+ G∞

ij

)
, (25)

based on the asymptotic limit gc
ij(r � ζ) = 1− (δij/ρi + G∞

ij )/V0 discussed in [2]. As expected, when
the total volume V0 → ∞, we recover gc

ij(r) = go
ij(r). By including Equation (25) in the integral on

the r.h.s. of Equation (24) and evaluating the finite-size integral as for the single component case,
we finally obtain:

λGij(λ) = λG∞
ij

(
1− λ3

)
− λ4 δij

ρi
+

αij

L0
, (26)

with λ ≡ L/L0 and αij an intensive parameter with units of length. In the limit L0 → ∞, the following
expression is obtained:

Gij(L, L0 → ∞) = G∞
ij +

αij

L
, (27)

that describes the finite-size effects on the KBIs for a system in the grand canonical ensemble. Consistent
with this limiting case in Equation (26), Equation (27) has been obtained from the thermodynamics of
small systems [45,46].

For the investigation of Equation (26), we perform simulations for binary mixtures (A, B) of
Lennard–Jones (LJ) fluids. We use a purely repulsive 12-6 LJ potential truncated and shifted with
cutoff radius 21/6σ. The potential parameters are chosen as σAA = σBB = σAB = σ, and εAA = 1.2ε,
εBB = 1.0ε with εAB = (εAA + εBB)/2 = 1.1ε. All the results are expressed in LJ units with energy ε,
length σ, mass mA = mB = m, time σ(m/ε)1/2, temperature ε/kB and pressure ε/σ3. As before,
simulations are carried out using ESPResSo++ [32] with a time step of δt/(σ(m/ε)1/2) = 10−3.
Constant temperature kBT = 1.2ε is enforced through a Langevin thermostat with damping coefficient
γ(σ(m/ε)1/2) = 1.0. The size of the system is N0 = 23, 328 in the range of mole fractions of
A-molecules xA = 0.1, · · · , 1.0. The pressure is fixed at Pσ3/ε = 9.8 by adjusting the number
density of the system at values around ρσ3 ≈ 0.86 (or L0/σ ≈ 30). We perform equilibration runs of
64× 106 MD steps and production runs of 2× 106 MD steps. To compute Gij(λ), we select 800 frames
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per trajectory and for each frame identify 1000 randomly-positioned subdomains with linear sizes
ranging from 2 < L/σ < L0/σ.

In Figure 10, results for finite-size KBIs are presented for four mole fractions, namely (a) xA = 0.20;
(b) xA = 0.30; (c) xA = 0.50 and (d) xA = 0.80. Plots of GAB (green circles) tend to zero when λ→ 1, as
indicated by the horizontal green lines. By contrast, GAA → 1/ρA (indicated by horizontal red lines)
when λ→ 1. The region λ < 3, indicated by vertical black lines, is where simple linear regression is
used to find G∞

ij and αij. By replacing such values in Equation (26), we obtained the black curves that,
in all cases, superimpose on the simulation data for the full interval 0 < λ < 1.
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Figure 10. Scaled finite-size Kirkwood–Buff integrals λGij(λ) as a function of λ for different mole
fractions: (a) xA = 0.20; (b) xA = 0.30; (c) xA = 0.50 and (d) xA = 0.80, for mixtures described
by a TSLJ potential with rc/σ = 21/6. For clarity, only the cases GAA (red squares) and GAB (green
circles) are plotted. In the asymptotic case λ → 1, GAB → 0 and GAA → 1/ρA, as indicated by the
horizontal green and red lines, respectively. The black curves correspond to Equation (26) with G∞

ij and
αij obtained from a simple regression analysis in the interval λ < 0.3.

The bulk KBIs are related to various thermodynamic quantities. For example, the isothermal
compressibility is given by [39]:

κT =
1 + ρAGAA + ρBGBB + ρAρB(GAAGBB − G2

AB)

kBT(ρA + ρB + ρAρB(GAA + GBB − 2GAB))
, (28)

with ρA,B the number density of the corresponding species.
Results for the isothermal compressibility obtained from the G∞

ij values are presented in Figure 11.
Single component cases corresponding to systems composed by only type-A and type-B particles are
indicated by the horizontal black lines. As expected, the system composed by strongly interacting
particles, i.e., the type-A, has a lower compressibility. The behavior of the isothermal compressibility is
nearly ideal since it follows closely the relation κT = (1− xA)κ

B
T + xAκA

T , with κA
T ε/σ3 = 0.012(1) and

κB
Tε/σ3 = 0.0281(8), as indicated by the solid black line.
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Figure 11. Isothermal compressibility at kBT = 1.20ε and Pσ3/ε = 9.8 as a function of the mole fraction
of type-A particles xA for mixtures described by a TSLJ potential with rc/σ = 21/6. The horizontal
black lines indicate the compressibility for a pure system of type-A particles κA

T ε/σ3 = 0.012(1) and
for a pure system of type-B particles κB

Tε/σ3 = 0.0281(8). The red line is a guide to the eye. The ideal
case corresponds to κT = (1− xA)κ

B
T + xAκA

T .

Finally, the extrapolated KBIs have been used to compute the derivative of the chemical potential
of type-A particles with respect to the number density ρA using the expression [39]:

1
kBT

(
∂µA
∂ρA

)
P,T

=
1

ρA
+

GAB − GAA
1 + ρA(GAA − GAB)

, (29)

that, as has been done for the single component case, can be integrated to obtain [6]:

δµA = kBT
∫ ρA

ρ0
A

[
1

ρ′A
+

GAB − GAA
1 + ρ′A(GAA − GAB)

]
dρ′A . (30)

This is the chemical potential shifted by a reference chemical potential computed at density
ρ0

A [4,43]. By removing the density and concentration terms of the chemical potential of an ideal
mixture, the excess chemical potential can be written as:

δµex
A = δµA − kBT ln(xA)− kBT ln(ρA) . (31)

We compare the results obtained using Equations (30) and (31) with the results obtained with
the SPARTIAN method [36] and use the excess chemical potential result from xA = 0.3 to find
the reference value. We present the results in Figure 12 where a good agreement between the two
datasets is apparent. To conclude this section, it has been shown that the block analysis method
constitutes a robust strategy to compute chemical potentials of liquids and mixtures in a wide range of
density/concentration conditions.
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Figure 12. Excess chemical potential of type-A particles as a function of the mole fraction xA for
mixtures described by a TSLJ potential with rc/σ = 21/6 at kBT = 1.2ε and Pσ3/ε = 9.8. Data points
obtained with the method in [36], in particular for xA = 0.3, are used as a reference for the data points
obtained with Equations (30) and (31).

5. Summary and Concluding Remarks

In general, a direct comparison between a real system and a finite-size simulation is prevented
by the fixed and relatively small number of particles used in the latter. As has been encoded in the
title of the paper, the spatial block analysis method employs a clever combination of finite-size effects,
ensemble and boundary, and density fluctuations to extrapolate bulk isothermal compressibilities and
Kirkwood–Buff integrals in the thermodynamic limit.

In this work, we have illustrated with prototypical Lennard–Jones liquids and liquid mixtures the
working mechanisms of the method. Upon identifying the relevant finite-size effects and assessing their
impact on the simulation results, we have intuitively introduced an analytical expression connecting
the fluctuations measured in a small subdomain of the simulation box with the bulk isothermal
compressibility for a single component fluid.

Subsequently, the same analytical expression has been rigorously obtained from a finite-size
version of the Ornstein–Zernike integral equation. Using a challenging system close to critical point
conditions, we have tested the range of validity of the method and obtained results in line with
theoretical expectations.

Then, for a multicomponent system, we have applied the same protocol to the Kirkwood–Buff
integrals. Using the corresponding analytical expression, it is possible to obtain the Kirkwood–Buff
integrals in the thermodynamic limit. In both single and multicomponent systems, the method allows
one to compute the chemical potential of a liquid/mixture for a wide range of density/concentration
conditions, provided a single reference chemical potential has been determined using a different
computational method. These results contribute to establishing the spatial block analysis method as a
powerful tool to investigate systems where the accurate computation of the chemical potential is of
paramount importance.
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