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SUMMARY

Human subjects are proficient at tracking the mean
and variance of rewards and updating these via
prediction errors. Here, we addressed whether hu-
mans can also learn about higher-order relationships
between distinct environmental outcomes, a defining
ecological feature of contextswheremultiple sources
of rewards are available. By manipulating the degree
to which distinct outcomes are correlated, we show
that subjects implemented an explicit model-based
strategy to learn the associatedoutcomecorrelations
and were adept in using that information to dynami-
cally adjust their choices in a task that required
a minimization of outcome variance. Importantly,
the experimentally generated outcome correlations
were explicitly represented neuronally in right midin-
sula with a learning prediction error signal expressed
in rostral anterior cingulate cortex. Thus, our data
show that the human brain represents higher-order
correlation structures between rewards, a core adap-
tive ability whose immediate benefit is optimized
sampling.

INTRODUCTION

Risk is ubiquitous in nature with predation, starvation, adverse

environmental change, or lack of reproductive opportunity acting

as constant background variables that shape an animal’s

behavior. Animals evolved a variety of strategies to minimize risk

suchasdiversifyingmatingbehavior (Fox,2003)or ‘‘bet-hedging.’’

For example, desert bees mitigate against large temporal vari-

ability in rainfall by stabilizing their birth rate (Danforth, 1999;

Hopper, 1999). These risk-spreading strategies act to minimize

between-year variance in reproductive success in a similar way

to cost averaging, where financial investors periodically purchase

risky assets to reduce the overall risk of an investment portfolio

(Dodson, 1989). Our concern here is with risk as defined by

outcome variability, measured from the variance of an outcome

distribution. This is a first-order approximation of risk commonly

used as a critical decision variable in ecological (Stephens,

1981) and financial (Markowitz, 1952) decision analysis.
Neu
Although the aforementioned strategies are naive with respect

to higher-order structure in the environment, organisms can

reduce risk even more effectively if they deploy knowledge of

how different environmental states occur in relation to each other

by representing correlations (Yoshimura and Clark, 1991). Thus,

a lion learning that buffalo congregate at water holes on hotter

days can reduce the chance of starvation by allocating more

predation time to this food source by simply registering that

the weather on a particular day is hot. In effect, knowledge of

a covariance structure between discrete events allows infer-

ences as to the presence, or in many instances quantity, of

one outcome merely by observing a complementary event

without actually having to sample on the inferred one.

Risk minimization is also a key concept in financial and insur-

ance markets. Hedging, the process of combining multiple

positions in different assets to reduce total risk in a portfolio is

a common risk minimization strategy in financial investments

(Jorion, 2009). Modern portfolio theory (MPT) (Markowitz, 1952)

formalizes the concept of risk-spreading and relies upon correla-

tions between multiple assets to specify how they can be most

efficiently combined to maximize returns and minimize risk.

Research in decision neuroscience provides extensive evidence

for a neural representation of key decision variables (Doya, 2008)

with a focus heretofore on value signals, putative inputs to the

decision process such as action or goal values, and representa-

tions of expected outcome after a choice (Hampton et al., 2006;

Knutson et al., 2005; Lau and Glimcher, 2007; Padoa-Schioppa

and Assad, 2006; Plassmann et al., 2007; Samejima et al., 2005;

Wunderlich et al., 2009, 2010). There is now good evidence

that fundamental computational mechanisms underlying value-

based learning and decision-making are well captured by rein-

forcement learning algorithms (Sutton and Barto, 1998) where

option values are updated on a trial by trial basis via prediction

errors (PE) (Knutson and Cooper, 2005; Montague and Berns,

2002; O’Doherty et al., 2004; Schultz et al., 1997). More recently,

there is an emergent literature that suggests the brain not only

tracks outcome value, but also uncertainty (Huettel et al., 2006;

Platt and Huettel, 2008) and higher statistical moments of

outcomes such as variance (Christopoulos et al., 2009; Mohr

et al., 2010; Preuschoff et al., 2006, 2008; Tobler et al., 2009)

and skewness (Symmonds et al., 2010).

An important component of outcomes, namely the statistical

relationship between multiple outcomes, and what neural mech-

anisms might support acquisition of this higher-order structure

has remained unexplored. In principle, there are several plausible
ron 71, 1141–1152, September 22, 2011 ª2011 Elsevier Inc. 1141
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Figure 1. Experimental Design

(A) Subjects were presented with a slider to set portfolio weights that determine the fraction of each resource (wind or solar power) in the energy mix (screen 1).

The weights could be set within the range from �1 to 2, with a fixed relationship that both weights always add up to 1, i.e., wwind = 1 � wsun. The trial outcome

(screen 2) displayed the individual resource values for sun and wind, and the portfolio value of the combined mix (calculated by the weights from screen 1).

(B) Optimal portfolio weight wsun (wwind = 1 – wsun) increases as a function of the correlation coefficient between sun and wind outcomes. The background color

indicates portfolio standard deviation (blue = small SD, red = large SD). Optimal portfolio weights (for variance minimization) are displayed as white line, the gray

lines indicate the 10% interval around the optimal choice (a deviation of that amount from the optimal weights would result in a 10% higher SD).

(C) The correlation estimate r (red line) is updated from trial to trial (x axis) via a correlation prediction error z (green stems) and then in a second step used to

allocate weights in every trial. Zeta is calculated as the cross-product between the two resource outcome prediction errors (gray bars). The correlation coefficient

that was used to generate the data in this illustration is �0.60 during the first ten trials and afterward changes to +0.80 (dashed line). Learning of r from z is

depicted here for a learning rate of 0.2.
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mechanisms including the deployment of simple reinforcement

learning to form individual associative links (Thorndike, 1911),

or a more sophisticated approach that generates decisions

based upon estimates of outcome correlation strengths. If the

latter strategy is indeed the one implemented by the brain then

this entails a separate encoding of correlations and correspond-

ing prediction errors beyond that of action values and outcomes.

Here, we address the question of how humans learn the rela-

tionship between multiple rewards when making choices. We

fitted a series of computational models to subjects’ behavior

and found that a model based on correlation learning best

explained subjects’ responses. Furthermore, we found evidence

for a neural representation of correlation learning evident in the

expression of functional magnetic resonance imaging (fMRI)

signals in right medial insula that increased linearly with the

correlation coefficient between two resources, a normalized

measure of the strength of their statistical relationship. A corre-

lation prediction error signal, needed to provide an update on

those estimates, was represented in rostral anterior cingulate

cortex and superior temporal sulcus. These behavioral and

neural data provide evidence that subjects learn the correlative

strength between rewards and are able to use this information

to make risk-optimal choices.
1142 Neuron 71, 1141–1152, September 22, 2011 ª2011 Elsevier Inc
RESULTS

To investigate how humans learn correlations between

outcomes we scanned 16 subjects using fMRI while they per-

formed a ‘‘resource management’’ game. This task invoked a

scenario whereby a power company generates fluctuating

amounts of electricity from two renewable energy sources, a

solar plant and a wind park. We instructed subjects to create

an energy portfolio under a specific goal constraint necessitating

keeping the total energy output as constant as possible (Fig-

ure 1A). Subjects accomplished this by adjusting weights that

determined how the two resources were linearly combined. A

normative best performance is achievable by finding a solution

that exploits knowledge of the covariance structure of these

resources (Figure 1B), a task design that approximates a simple

portfolio problem in finance. Importantly, the outcomes of the

two resources covaried with each other and this correlation

between the two outcomes changed probabilistically over

time, requiring subjects to continuously update their estimate

of the current correlation structure. This task is well suited for as-

sessing subjects’ estimate of the correlation strength because

a good performance is only accomplished if subjects learn

both the distribution of returns for each resource as well as their
.
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Figure 2. Model Fit and Behavior

(A) The correlation learning model explained subjects’ behavior best. Plotted

are the Bayesian information criterions, which are corrected for the different

levels of complexity in the models (smaller values are better). The r2 value

represents the proportion of behavioral variance explained by each model.

(B) Regression of actual weights on model predicted weights. Data is pooled

over all subjects; for single subject results see Table 1. Note that the deviations

at the extremes are a result from bounding the possible weight range at�1 and

2; any behavioral errors at the boundary could therefore happen only in one

direction. Error bars = SEM.

(C) Both the response of a representative subject (blue) and the model pre-

dicted weights (red) approach the normative best response under full knowl-

edge of the generative correlation (black line) with some lag, which results from

the time necessary to observe changes in correlation. Subjects responded

after a 20-trial long observation-only phase (not shown).

Neuron

Learning Reward Correlations
correlation. We rewarded participants according to how stable

they kept the total output of their mixed energy portfolio relative

to the variance resulting from an optimal strategy (specified by

MPT-calculated optimal weights).

Behavioral Model Comparison
We speculated that subjects might solve the task by learning the

correlative strength between the resources via a correlation

prediction error, calculated from the cross-product of the indi-

vidual resources’ outcome prediction errors (Figure 1C). This

envisages that subjects represent a continuous measure of

outcome correlation and update this metric on a trial-by-trial

basis. To rule out alternative strategies we examined other

computational models that could be used to guide choice in

our task, and fitted the free parameters of each model to get

model predicted portfolio weights that most closely resembled

the actual responses for each subject.

One such alternative model-based strategy is to exploit trial-

by-trial evidence to update a representation of the portfolio

weights directly instead of first estimating the correlation coeffi-

cient. Similar to correlation learning, this model makes assump-

tions about the structure of the task and uses individual resource

outcomes as a basis for learning. The main difference between

the covariance based model and this model is that in the former,
Neu
subjects update an estimate of the correlation via a prediction

error and then translate this correlation strength into task-

specific weights on every trial, whereas in the latter the estimates

of task-dependent weights (i.e., the position on the response

slider) are learned directly. This differentiation is important

because the correlation coefficient is a normalized and therefore

universal measure of the interdependence between the two

outcomes, whereas appropriate mixing weights are task-

specific and would need to be relearned if the variances of the

individual outcome change or the goal of the task changes

from risk minimization to maximization. Both of these strategies

are model-based as they require an understanding of how the

two individual outcomes interact. There are other potential

modes of learning that we also consider. For example, subjects

might implement a more simple model-free reinforcement

learning based on Q-learning of action values for increasing or

decreasing the weights. In contrast to the former approaches

requiring subjects to attend to the individual resource outcomes,

a subject who updates action values in this model-free way

would instead consider the mixed portfolio outcome in every trial

and try tominimize its temporal fluctuation using simple outcome

based updating. Any change in behavior following a change in

correlation between resources would then be due to a relearning

of a new optimal mix of actions rather than a more complete

knowledge of the structure of the environment. Finally, subjects

might use a heuristic of detecting coincidences in the occur-

rence between outcomes, without a full representation of the

strength of correlation.

Out of all tested models, the model based on tracking the

correlation coefficient best predicted subjects’ behavior (Fig-

ure 2A and Table 1). The weights estimated by this model match

subjects’ behavior very well, as shown by a comparison ofmodel

predictions and subjects’ actual choices (Figure 2B) with the

regression of actual observed weights on model predicted

weights being highly significant in every individual subject (p <

0.0001; average R2 [standard coefficient of determination]

across subjects = 0.77; see Table S1 available online). In fact,

subjects’ responses approximated normatively optimal portfolio

weights while subjects attempted to keep the total energy output

stable (minimize variance) (Figure 2C). Both model predicted

and subjects’ actual responses approach normatively optimal

weights with some lag, the latter resulting from a need to have

multiple observations to reliably detect any change in correlation

strength. In effect, subjects’ strategy of determining the correla-

tion approximately compared to a normative calculation of the

correlation coefficient over the outcomes of the past ten trials.

Neural Representation of the Correlation Strength
If the brain learns the relationship between two rewards by

estimating their covariance then this predicts that we should

observe a neural representation of the computations that

support this process. Consequently, we tested for fMRI signals

that track the covariance or correlation strength, and because

the outputs vary, there should also be a signal that updates

this information. Based on prior evidence, we predicted activity

related to covariance would be seen in insular cortex or striatum,

areas implicated in encoding the risk or variance of individual

outcomes (Preuschoff et al., 2006, 2008). Consequently, we
ron 71, 1141–1152, September 22, 2011 ª2011 Elsevier Inc. 1143



Table 1. Model Comparison and Model Fit

Model/Parameters

Correlation

(var/cov)

Correlation

(val/var/cov) Q-Learning Coincidence

Sliding

Window 1/N

Random

Choice

a-Val 0.08 0.08

a-Risk 0.25 0.25 0.16

a-Cov 0.25 0.26 0.34

Learning rate 0.23

W step width 0.10

Window length 9.93

N parameters 2 3 2 2 1 0 0

NLL 87.92 86.20 197.20 142.93 110.96 283.85 384.67

r2 0.77 0.78 0.49 0.61 0.71 0.26 0

BIC 186.90 188.99 405.45 296.92 227.44 567.69 769.35

r2 forecast 0.77 0.77 0.40 0.56 0.70 0.26 0

Medians of best-fitting parameters for the compared learning algorithms. Parameters were fit to individual subjects across the three scanning blocks.

The (pseudo) r2 value measures how well the model can capture subjects’ behavior (see Experimental Procedures). The r2-forecast measure uses

a similar normalization to quantify how well the model could estimate the ground truth correlation. To estimate this value, we refit the parameters

of each model to estimate ground truth correlations, pooled over all sessions and subjects. BIC, model evidence corrected for complexity (Bayesian

information criterion); Cov, covariance; NLL, model evidence (negative log likelihood, smaller is better); Val, value; Var, variance.
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modeled subjects’ trial-by-trial estimates of the correlation coef-

ficient and regressed those model-predicted time series against

simultaneously acquired fMRI data. We found BOLD activity in

right midinsula varied with the correlation strength between the

outputs of the solar and wind power plants (xyz = 48, 5, �5;

Z = 4.12; p < 0.001 familywise error (FWE) corrected; Figure 3A).

Right insula was the only region to survive cluster level whole

brain correction and we provide a comprehensive list of all

activated areas at a lower threshold (p < 0.001 uncorrected) in

Table 2.

We next determined whether the correlation strength is repre-

sented either as covariance, a rawmeasure of howmuch the two

variables fluctuate together, or as the correlation coefficient,

a scale invariant metric of the covariance normalized by the stan-

dard deviation of each resource. We estimated two additional

models using Bayesian estimation, with either the covariance

or the correlation coefficient as parametric modulator, and

compared the ensuing log-evidence maps in a random effects

analysis. Activity in right midinsula was better described by the

correlation coefficient than by covariance (exceedance proba-

bility of p > 0.999). The linear relationship between correlation

coefficient and BOLD is visualized in a binned effect size plot

(Figure 3B).

We then verified whether this signal was more strongly repre-

sented at the time of outcome, when new evidence is available

to update estimates, or at choice when subjects actively read-

just their allocated weights for the two resources (Figure 3C). In

addition to plotting the effect time course we tested these

neural hypotheses by estimating a design where the correlation

coefficient acted as an unorthogonalized parametric modulator

of activity at both the time of outcome and time of choice. In

this analysis we observed significant effects of correlation

strength solely at the outcome time (Z = 3.60, p = 0.01 FWE

corrected) but not at the time of choice (Z = 2.40, p = 0.02

uncorrected).
1144 Neuron 71, 1141–1152, September 22, 2011 ª2011 Elsevier Inc
If our behavioral model explains subject’s choices and

subjects’ brain activity represents crucial decision variables in

this process then we would expect that brain activity should be

particularly well explained in those subjects in whom our model

also provides a good choice prediction. This would be ex-

pressed in a relationship between the behavioral model fit and

the model fit in the general linear model (GLM) against BOLD

data. Consistent with our conjecture, we found a significant posi-

tive correlation between R2 in the behavioral model and R2 in the

MRI analysis (r = 0.50, p < 0.03; Figure 3D). In effect, this

confirms that our model explains a larger proportion of the fluc-

tuation in the neuronal data in those subjects in which the model

can also well explain choices.

Neural Correlates of Correlation Prediction Errors
A neural representation of correlation strength in our task entails

that this estimate is updated over time, a process ascribed to

a prediction error signal. Analogous to risk prediction errors for

individual rewards (Preuschoff et al., 2008), the cross-products

of the two outcome prediction errors provide a trial-by-trial esti-

mate of the covariance strength. Using this regressor we found

that a correlation prediction error was tracked in fMRI activity

in left rostral cingulate cortex (xyz = �15, 44, 7; Z = 4.87; p <

0.003 FWE corrected; Figure 4 and Table 2).

From Correlation to Portfolio Weights
After observing an outcome, participants may have an impera-

tive to change the slider position if their currently set weights

deviate from the estimated new best weights, in other words if

they are suboptimal. We tested for a signal corresponding to

the absolute (i.e., unsigned) deviation between current and

new weights on the next trial and found corresponding BOLD

activity in a region encompassing anterior cingulate (ACC)/dor-

somedial prefrontal cortex (DMPFC) (xyz = 6, 26, 34; Z = 4.22;

p < 0.001 FWE corrected) and in right anterior insula (xyz = 42,
.
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Figure 3. Neural Representation of Correlation Strength

(A) Neural activity inmidinsular cortex correlated with the trial-by-trial model predicted correlation strength between the two resource values at the presentation of

the outcome screen.

(B) Effect size plots (average percent signal change across subjects). Data plotted separately for trials in which the model predicted correlation strength was low

and high in four bins (25/50/75/100 percentile of correlation range, errors bars = SEM). Activity in insula increased linearly with the correlation coefficient (that is, in

contrast to the covariance, normalized by the standard deviations of the resources). Data were extracted using a cross-validation (leave-one-out) procedure to

ensure independence of data used for localization and effect measure.

(C) Time course plot of effect size for the correlation coefficient regressor. The correlation coefficient is represented at the time of the outcome screen, when new

evidence becomes available, but not during the choice period. Thin lines = SEM.

(D) Comparison of explained variance in the behavioral model with the explained variance in the fMRI analysis. Fluctuations in BOLD activity in midinsula can be

particularly well explained within those subjects whose behavior is also well explained by the model (r = 0.50, p = 0.03). Each dot represents one subject and the

line is the regression slope.
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23, �5; Z = 4.04; p < 0.04 FWE corrected) at the time of the

outcome (Figure 5 and Table 2). In contrast, no areas corre-

sponded directly to the portfolio weight values or a signed updat-

ing of weights, signals one would expect if subjects performed

learning over task-specific weights instead of the correlation

structure between outcomes.

Finally, an optimal solution to our task requires learning of the

individual outcome variances in addition to learning the covari-

ance structure. When we tested for neural activity coupled to

local temporal fluctuations in the individual outcome variances

we replicated previous findings in highlighting a neural represen-

tations of outcome risk in striatum (xyz = �18, 5, 10; Z = 3.81;

p = 0.04 small volume corrected; Figure S3).

Alternative Model Considerations
As an alternative to learning the correlation coefficient subjects

might directly learn the weight representation and perform RL

over the weights instead of the correlation coefficient. If that

were the case then one would also expect to find a neuronal

representation of theweights andweight prediction errors, which

were conspicuously absent in our data. Another possibility could

be that subjects simplified the problem to detecting outcome

coincidences (both outcomes either aboveor belowmean versus

one outcome above and the other below mean) instead of fully

quantifying the trial-by-trial covariance. In that case we would

expect to find a neural signal pertaining to mere outcome coinci-

dences. We found no activations coupled to either the weight or

the weight prediction errors, or the trial-by-trial coincidences

anywhere in the brain at our omnibus cluster level threshold

of p < 0.05. Together with the inferior behavioral fit of the coinci-

dence model this suggests that subjects quantified the trial-
Neu
by-trial relationship between outcomes. We also implemented

a model-free Q-learning algorithm as further alternative strategy,

which was clearly outperformed by the correlation model.

DISCUSSION

We show that human subjects are adept at learning correlations

between two dynamic variables, a process also represented

neurally. Subjects were highly effective at exploiting this key

metric of the statistical relationship between the two individual

resources to guide choice in a task requiring minimization of

outcome fluctuations. This finding is in contrast to an often-

proposed model in behavioral finance, which suggests

disregarding environmental structure and using fixed weights

according to the 1/N rule (Benartzi and Thaler, 2001). Our

subjects performed better than this simple heuristic and learned

a more optimal strategy through repeated observations. At a

neural level, fMRI signals in right midinsula were coupled to the

current correlation coefficient, whereas activity in rostral anterior

cingulate encoded a correlation prediction error, a signal used to

update an estimate of the correlation strength based on new

evidence in every trial.

Although learning individual outcomes is a central part of

decision making, the availabilities of different rewards are rarely

independent of each other in a natural environment. Our results

provide evidence that subjects also learn the relationship

between multiple outcomes by tracking their correlation, and

this information can be used to decrease overall sampling risk.

Commonly observed risk aversion in animals (Kacelnik and

Bateson, 1996) and humans (Tversky and Kahneman, 1981) is

rational in an evolutionary context, as a small but constant supply
ron 71, 1141–1152, September 22, 2011 ª2011 Elsevier Inc. 1145



Table 2. Significant Activations in Statistical Parametric Analysis

x y z Z Voxels p (FWE) Region Hemi

Correlation coefficient (r) 48 5 �5 4.12 59 0.001a Midinsula R

60 �1 �5 3.87 ‘‘ ‘‘ Midinsula (extending into

superior temporal sulcus)

‘‘

48 �7 �2 3.77 ‘‘ ‘‘ ‘‘ ‘‘

�60 �1 �17 3.85 18 0.61 Superior temporal sulcus L

�51 �10 �17 3.20 ‘‘ ‘‘ ‘‘ ‘‘

�18 �16 1 3.56 19 0.44 Thalamus L

9 �55 37 4.50 8 0.96 Precuneus R

12 �61 �5 3.33 5 0.90 Occipital cortex L

�54 �40 4 3.31 4 0.96 Superior temporal sulcus L

Correlation prediction error (z) �15 44 7 4.87 36 0.003a Rostral ACC L

�54 �25 �5 4.01 43 0.14 Superior temporal sulcus L

�57 8 �23 3.95 4 0.99 Anterior superior

temporal sulcus

L

�42 �61 37 3.63 17 0.80 Inferior parietal lobe L

�60 �1 �14 3.61 10 0.93 Superior temporal sulcus L

�63 �7 �8 3.48 ‘‘ ‘‘ ‘‘ ‘‘

12 �13 52 3.57 3 0.91 Medial cingulate gyrus R

36 �10 7 3.23 3 0.99 Posterior insula R

Absolute weight update 6 26 34 4.22 135 0.001a ACC/DMPFC R

�9 29 25 3.50 ‘‘ ‘‘ ‘‘ L

42 23 �5 4.04 55 0.04a Anterior insula R

15 �64 34 3.95 40 0.04a Precuneus R

51 26 22 3.81 7 0.73 DLPFC R

15 �31 26 3.73 15 0.38 Cerebellum R

0 �19 �2 3.71 29 0.20 VTA vicinity

�33 17 �5 3.57 21 0.69 Anterior insula L

�12 2 58 3.37 7 0.88 SMA L

0 �52 �35 3.18 6 0.97 Cerebellum

Risk (average contrast over individual

risk from both outcomes, h1/h2)

45 �4 �14 3.69 7 0.76 Posterior insula R

45 �76 34 3.67 3 0.98 Posterior parietal cortex R

18 �28 4 3.60 3 0.86 Thalamus R

�21 2 7 3.55 7 0.85 Striatum L

�42 �55 �35 3.38 3 0.99 Cerebellum L

Risk prediction errors (average contrast

over individual risk PE from both

outcomes, ε1/ε2)

�24 23 �8 3.13 3 0.98 Anterior insula L

ACC, anterior cingulate; DMPFC, dorsomedial prefrontal cortex; FWE, familywise error; Hemi, hemisphere; L, left; MNI, Montreal Neurological Institute;

R, right. All peaks are thresholded p < 0.001 uncorrected; listed are all clusters with an extent R3 voxels.
a Significant at p < 0.05 FWE cluster level correction in entire brain. Coordinates in MNI space.
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of food that always exceeds the critical minimum for survival is

far more beneficial to viability than periods of alternating defi-

ciency and extreme excess. In some other instances, risk-

seeking behavior may occur, such as in gamblers, and may

promote exploration and learning. Note, however, that also in

that case a representation of the correlation in the environmental

structure is beneficial, as this information can be used both for

risk minimization or maximization.

To generalize our results to more natural situations, we have

to ascertain that the findings reflect a specific mechanism of
1146 Neuron 71, 1141–1152, September 22, 2011 ª2011 Elsevier Inc
correlation learning instead of incidental task variables. Plausible

possibilities include shortcuts such as learning the position on

the response slider by a model-free gradient descent mecha-

nism or using a model-based strategy, but without representing

individual outcome variances and normalized correlation coeffi-

cients and instead directly learning a representation of the port-

folio weights. Our behavioral and neural data render all these

explanations very unlikely. The best-fitting learning rate for

outcome variance is similar to the learning rate for correlation

and significantly above the one for value for each individual
.
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Figure 4. Neural Representation of Correlation Prediction Errors

(A) Activity in rostral cingulate cortex correlated with the correlation prediction

error.

(B) Effect size plots (similar to Figure 3B) for the cluster confirm a linear effect.
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Figure 5. Absolute Weight Updates

Activity in ACC/DMPFC and anterior insula correlated, at the time of the

outcome screen, with the absolute amount that subjects update the resource

allocation weights during the following choice.
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subject. Importantly, we ensured that the signals in our study

were not spurious reflections of the individual variances of solar

and wind plant outputs by explicitly modeling these signals

with additional (unorthogonalized) parametric regressors. A fluc-

tuating trial-by-trial estimate of the outcome variance is also

represented neurally in striatum (Figure S3), an area previously

implicated in variance learning (Preuschoff et al., 2006). Although

these neural signatures of risk and risk prediction errors were

somewhat weaker compared to covariance signals, we suggest

this observation is due to an amalgamation of signals tracking

the two separate resource variances within the same area, and

because the variance of the two outcomes fluctuated only

slightly over the course of each experimental block. Importantly,

we found no significant correlations with signals pertaining to

alternative decision models anywhere in the brain at p < 0.05

corrected. Specifically, we examined if there was evidence for

a direct representation of desired resource weights, or weight

prediction errors, signals one would expect instead of the corre-

lation coefficient if subjects used a more task-specific strategy.

We also did not find significant correlations with a more qualita-

tive measure of coincidences instead of fully quantified correla-

tions. Together with a superior behavioral fit of the correlation

learning model, this strongly supports the specificity of our

neural results and effectively discounts the possibility that the

observed activations here relate to incidental task related

learning processes instead of learning the correlation between

outcomes.

We found that anterior insula tracked the correlation strength

between the outputs in a site slightly posterior to regions previ-

ously implicated in tracking variance (Mohr et al., 2010; Preusch-

off et al., 2008). Combined, these findings suggest that insular

cortex may support a general role in processing statistical infor-

mation about the environment. At the same time, anterior insula

has been implicated in representing bodily states and their

translation into feelings and possibly awareness (Craig, 2009).

Note that the calculus-like role proposed here does not contra-

dict the idea that anterior insula represents subjective aspects

of experience. Indeed, the somatic marker hypothesis postu-
Neu
lates that rational decision theory requires emotional anticipation

of outcomes (Bechara et al., 1997), such that seemingly prudent

behavior and emotional decision making are intertwined (Paulus

et al., 2003). The finding of a slightly posterior encoding of corre-

lation relative to risk also tallies with a structural model for how

unconscious state representations might be integrated into

a sentient self along a posterior to anterior insula (Craig, 2009).

Adequate emotional risk assessment is immediately relevant

for fight or flight responses and might therefore require a more

direct link to awareness then the meta parameters of how

multiple such variables relate to each other (Bossaerts, 2010).

The latter assessment is largely subconscious and may, as

implicit function, also be enacted during low-level processing

of multidimensional stimuli such as music and rhythm. Interest-

ingly, such tasks have previously been associated with insula

activation (Koelsch et al., 2006; Platel et al., 1997). Our data

show that the brain encodes the correlation coefficient of two

outcomes, a normalized value, instead of the covariance itself.

In light of previous data (Bunzeck et al., 2010; Padoa-Schioppa,

2009; Seymour and McClure, 2008), this hints that scale invari-

ance is a ubiquitous concept in encoding decision variables in

the brain.

The representation of a prediction error in anterior cingulate

fits neatly with mounting evidence that this area is involved in

learning and behavioral control. Several previous studies report

a role for anterior cingulate in an error-driven reinforcement

learning system (Kennerley et al., 2006), and in prediction errors

for actions (Matsumoto et al., 2007) or social value (Behrens

et al., 2008). Together with risk prediction errors in anterior insula

(Preuschoff et al., 2008), this teaching signal for correlation

strength might belong to a broader system involved in learning

the statistical properties of the environment.

We also observed an anticipatory signal reflecting an impetus

to shift resource allocations on the next trial in order to keep

the total energy output stable. Interestingly, this signal was ex-

pressed in a DMPFC cluster previously linked to updating

learning in relation to environmental volatility (Behrens et al.,

2007), implying a more general role for this region in adapting

behavior to fluctuations in the statistical characteristics of the

environment. Most task-modulated activity, including correlation

strength, its prediction error, and a signal reflecting the need to
ron 71, 1141–1152, September 22, 2011 ª2011 Elsevier Inc. 1147
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alter responses, occurred at the time of outcome rather than at

choice. This suggests that task-relevant computations, including

an evaluation of the appropriate action to take after each

outcome, occur at the point when individuals can best harvest

new evidence. As we focused on the mechanism of learning

the correlation strength, rather than on how subjects use this

information, this raises the question of how exactly information

about a covariance structure is applied in a natural sampling

environment. Here, we instantiated this mapping of correlation

coefficients into energy resource weights by using the normative

function derived from MPT. We assume subjects learned the

form of this nonlinear transformation during initial training, but

it remains a question for future research how this translation is

applied. Based on our present results and previous findings

that the brain encodes other statistical parameters such as

variance and skewness of outcomes (Preuschoff et al., 2008;

Symmonds et al., 2010), we speculate that in more naturalistic

environments subjects form structural representations of the

world by encoding summary statistical parameters. Such a

parameterized representation is both efficient and flexible: the

optimal response is dependent upon three parameters—the

magnitude, variance and correlation of the available

resources—and knowledge of the individual parameters allows

fast adaptation in light of changes to any one of them. One

way to expand our research to more natural situations could

be by changing the cost function to mimic an ecological survival

game with perishable outcomes. Such a paradigm would allow

one to determine if subjects indeed follow a variance minimizing

strategy and incorporate information about reward correlations.

The recent financial crisis has amply demonstrated that even

experts have difficulties regulating correlated risks in the finan-

cial domain and investors often deviate from rationality when

making financial decisions (Daniel et al., 2002; Kuhnen and

Knutson, 2005). In contrast, we show here that individuals are

adept at detecting and responding to correlations and appropri-

ately selecting actions to minimize risk in an intricate learning

task. Indeed, this exquisite sensitivity taps into an adaptive and

evolutionary conserved ability of implicit neurobiological

systems to learn environmental reward structure through trial-

by-trial sampling; intrinsic behavior that might even supersede

that of financial experts deciding about explicitly described

statistics.

EXPERIMENTAL PROCEDURES

Subjects

Sixteen healthy subjects (7 female; 18–35 years old) with no history of neuro-

logical or psychiatric illness participated in the study. Two additional pilot

subjects from the lab were excluded from the final analysis, as they were

already familiar with the hypotheses in the experiment. The study was

approved by the Institute of Neurology (University College London) Research

Ethics Committee.

Task

To investigate whether and how subjects learn the reward structure in the

environment we designed a portfolio-mixing task in which knowledge of the

correlation between two resource outcomes could improve performance.

Subjects’ task was to keep the combined output of two power stations as

stable as possible (i.e., minimize the variance of an energy portfolio) by mixing

the fluctuating outcomes of these two individual resources. They accom-
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plished this by adjusting weights that determined how the resources were

linearly combined. A normative best performance is achievable in this task

by finding a solution that directly depends on knowledge of the covariance

structure of these resources, a task design that approximates a simple port-

folio problem in finance (Markowitz, 1952).

We presented the task to subjects as a resource management game that

invoked a scenario whereby a power company generates fluctuating amounts

of electricity from two renewable energy sources, a solar plant and awind park.

The resource outputs rsun and rwind were drawn as random numbers in every

trial from distributions with a common mean M and variances s2
sun and

s2
wind. Importantly, the two outcomes covaried with each other, and the

strength of this correlation changed probabilistically over time. This feature

encouraged subjects to form an estimate about the mean and variance of

the individual outcomes and continually update their assumption about the

correlation strength.

Subjects participated in three consecutive experimental blocks, each corre-

sponding to a 21 min long session in an fMRI scanner (Siemens Trio 3T). They

were instructed that the correlation would probabilistically change over the

course of the study but were not given further details about specific parame-

ters used. We also told subjects that the mean and variance of the two

resources would remain constant over one block of the experiment, a simplifi-

cation to an otherwise quite complex task that enabled subjects to perform

well within the settings of this experiment. As our goal was to assess covari-

ance learning (in contrast to learning the values and risk) this did not adversely

impact on any mechanism we wanted to observe. However, mean and vari-

ance values were different for each block. To give subjects the opportunity

to learn these basic statistical parameters (mean and variance) before making

portfolio choices, we presented them with a 20-trial observation phase at the

beginning of each session. In this phase, which immediately preceded the start

of fMRI data acquisition, subjects only observed the individual outcomes of the

two resources and did not make any choices. There was no change in the

ground truth correlation during this phase. Data from pilot studies and model

simulations confirmed that 20 observations of a time series were sufficient

to form an estimate of its mean and variance. The observation phase was

followed by 84 choice trials, consisting of a 5 s choice period and a 3 s

outcome period, separated by a blank gray screen of 1–6 s duration (uniform

distribution). The intertrial-interval was also 1–6 s (Figure 1A).

The portfolio weights (wsun, wwind) indicate how much of a fraction the port-

folio contains from both resources rsun and rwind (portfolio outcome value Vp =

wsun*rsun + wwind*rwind). Subjects were allowed to set the portfolio weight wsun

within a range between�1 and 2. Setting negative weights allowed subjects to

trade-in a fraction of the trials output from one resource in exchange for multi-

plying the other output by the same fraction. This concept echoes the possi-

bility of short selling in financial markets and is important for this task as it

permits risk minimizing for positively correlated resources (see the section

on variance minimizing strategies in the Supplemental Information for further

details). The constraint that both weights always add up to 1 automatically

determined the weight of the other resource (wwind = 1 � wsun). A horizontal

line on the choice screen represented the slider during the choice period

and icons of a solar and wind plant on both ends indicated which resources

were mixed in the portfolio. The parts of the slider involving a negative weight

were red and the middle part with both positive weights was shown in white

with the center position corresponding to a mix with equal weights. A yellow

dot on the slider indicated the current position and portfolio weights were addi-

tionally shown numerically next to the resource icon. Subjects were able to

make responses during the entire 5 s choice period by pressing two buttons

on a button box with their right hand. Each button press moved the current

slider position a discrete step of 0.1 units in either direction. Moving the slider

a step toward the right always increased the weight for sun and decreased the

weight for wind. A new choice period started with the portfolio weights from the

last trial and subjects were allowed to freely move the slider as many steps in

either direction as they wished during the choice period. Importantly, subjects

always had to determine the weights for the current trial prior to seeing the

actual outcome. Due to inherent stochastic outcomes, and because serial

outcomes were independently drawn, the only rational strategy was to set

the weights in a way that would yield the least portfolio variance in the long

run and this measure depended on the current correlation.
.
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To determine subjects’ performance we benchmarked their portfolio fluctu-

ation against the fluctuation of a portfolio with optimal weights. The normative

solution was calculated by the risk minimizing formula of portfolio theory (see

Supplemental Information for details). This ensured that subjects were fairly

scored given the stochastic outcomes on a trial-by-trial basis (i.e., even if

subjects played optimally the portfolio outcome would fluctuate around the

target with the amount of fluctuation dependent on the current covariance).

Subjects received reimbursement of 10» flat plus a fraction of the maximum

bonus of 45» in relation to task performance (Table S1). All participants

received basic instructive information about hedging strategies (similar to

the Supplemental Information variance minimization strategies and Figure S2)

and practiced the task (same number of trials than in the fMRI study but with

different parameters for outcome mean and variance) on a separate day prior

to scanning. Note, however, that all instructions concerned exclusively how to

set portfolio weights (i.e., how to respond) but not how to learn correlations

itself. Therefore this latter process cannot be confounded by the explicit infor-

mation given here. The reason for using a seemingly intricate portfolio task

over having subjects merely report the correlation directly is that explicit

assessments of decision variables by self-report are often biased (Kagel and

Roth, 1997). Our procedure is in this respect very similar to other commonly

used behavioral measures such as auction bidding (Becker et al., 1964; Plass-

mann et al., 2007) to identify subjects’ unbiased value preference. Another

advantage of our task is that response behavior does not depend on individu-

ally subjective valuation or risk preference. Performance and payout were only

related to how close subjects’ behavior matched the normative optimal

solution (thereby incentivizing an accurate correlation representation) but

was independent of the actual amount or variance of the produced energymix.

Importantly, during the experiment subjects never received direct feedback

on their performance at minimizing energy fluctuations (i.e., only saw trial-by-

trial outcomes) and the bonus and optimal weights were only revealed after the

experiment. We omitted feedback during the task to prevent subjects from

using a strategy that is based on optimizing the performance feedback instead

of learning the correlation of the individual outcomes. Although the portfolio

value is shown on every trial, and the deviance of this value from its mean gives

some hints to performance, this is only a crudemeasure of whether the current

weights are good because even with optimal weights the amount of portfolio

fluctuation depends on the current correlation.

Because the optimal mixing weights (portfolio weights) in our task depend

on individual variance from solar and wind power plants and their correlation

strength, the best strategy is to learn the variances and correlations by obser-

vation of individual outcomes and then translate these estimates into an

optimal resource allocation (i.e., weightings). Although subjects could learn

the statistical properties underlying outcome generation by observation, the

outcomes of individual trials were unpredictable. Their task was then to contin-

uously mix the two resources into an energy portfolio and therebyminimize the

fluctuation of the portfolio value from trial to trial.

Generation of Outcome Values

Both resources fluctuated around a commonmean,with outcomes drawn from

a rectangular distribution with a specific variance. In our task the standard

deviation of one resource was always twice that of the other because this

maximized the influence of the correlation on the portfolio weights (see Fig-

ure S1 for details). The sequence of correlated random numbers for the two

resources were generated by the Cholesky decomposition method (Gentle,

1998). This was realized by first drawing random numbers xA and xB for

resources A, B from a rectangular distribution. The outcome of the second

resource xB was then modified as xB = xA * r + xB* sqrt(1 � r2), whereby r is

the generative correlation coefficient. Finally, xA and xBwere normalized to their

desired standard deviations (in the three blocks: 20/10, 15/30, 10/20) and

common means (30, 50, 40). We chose a rectangular distribution to increase

the sensitivity of our fMRI experiment in finding neural correlates of covariance

and covariance prediction errors as the linear regression against BOLD activity

ismost sensitive if the valuesof theparametricmodulators are distributed along

their entire range. This is not true for normal distributed outcomes, which have

proportionally the largest amounts of data close to the mean.

We varied the generative correlation strength in discrete steps of �0.99,

�0.3, 0.4, 0.7, 0.95, and 0.999. The observable correlation through sampling
Neu
by the subject will, however, very on a continuous scale also between these

steps due to Stochasticity in the outcomes. A change from the current to a

new correlation was determined probabilistically in every trial with a p = 0.3

transition probability, under the constraint that a change would only occur after

the new correlation became theoretically detectable by an ideal observer that

was tracking the correlation coefficient in a sliding window over the past five

trials. In detail, after the normatively estimated correlation based on the last

five trials (similar to the sliding window model below) approached the new

generative correlation (with a deviation <0.2), the correlation was allowed to

change on all further trials. This prevented overly rapid changes in the genera-

tive correlation before subjects could have possibly detected the new correla-

tion coefficient from outcome observations. On average (across subjects and

sessions) the correlations changed every ten trials. To discourage subjects

from persevering on a more favorable spot of the response scale that would

give a reasonable result over a wider range of correlations, and instead be

forced to track the correlation explicitly, we further implemented an adaptive

rule that if subjects’ response was both suboptimal (farther from the optimum

than 0.2) and they did not change their response within the past five trials

then the correlation would jump to the farthest extreme (either �0.99 or

+0.999). This increased the penalty on subjects payout at their current weights

and encouraged them to find a better weight allocation. In practice, this

constraint came rarely (never for 10 subjects, one or two occurrences in five,

and three occurrences in one subject) into use during the fMRI experiment.

Correlation Learning Model

We modeled trial-by-trial values of the correlation strength by using principles

of reinforcement learning (Sutton and Barto, 1998). Reinforcement learning

generates in every trial a prediction error as the deviation of the experienced

outcome R from the predicted outcome. Those prediction errors, multiplied

by the learning rate, are then used to update predictions in future trials:

resource value: Vi;t+ 1 =Vi;t +aVdi;t; (1)

and

value prediction error: di;t =R� Vi;t: (2)

The squared prediction error is also a measure of the outcome fluctuation

and thereby a quantifier of risk. A sequence of continuously large prediction

errors indicates that the outcomes greatly fluctuate, whereby a sequence of

small prediction errors indicate that prediction is precise with little deviation.

We used this to model the risk h for both resources:

resource variance: hi;t+1 = hi;t +aR
εi;t; (3)

and

variance prediction error: εi;t = d2i;t � hi;t: (4)

We then extended this model from independent outcomes to the interaction

of outcomes, whereby the product of the individual prediction errors measures

the covariation of two outcomes:

resource covariance: covt+ 1 =covt +aCzt; (5)

and

covariance prediction error: zt = hs1;t hs2;t � covt: (6)

The correlation coefficient r was then defined as the covariance normalized

by the individual standard deviations of the two involved outcomes:

resource correlation : rt =
covt

ðsqrtðhs1;tÞ � sqrtðhs2;tÞÞ: (7)

In every trial the correlation coefficient was finally translated into a position

on the response slider using the normative function (h2,t – covt)/(h1,t + h2,t – 2 *

covt), which is derived in the Supplemental Information. This relationship (Fig-

ure S1) did not change over the entire course of the experiment (because we

always used the same ratio of 1:2 between outcome s).

We kept the mean of the resource outcomes constant during each session

and therefore the optimal strategy was indeed to not update those variables
ron 71, 1141–1152, September 22, 2011 ª2011 Elsevier Inc. 1149
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once a reliable estimate had been formed during the observation phase of

each block. In fact, the best-fitting learning rate for resource values was

consistently very small across subjects (average 0.08), confirming that, as in-

tended by the design, subjects indeed treated the mean as a stable value after

the initial observation period and adjusted their learning rate downward to

reflect this steady nature (Behrens et al., 2007).

We investigated whether subjects used different learning rates for variance

and covariance learning or whether these processes could be described by

a single parameter. We did this by comparing a model with separate parame-

ters for variance and covariance learning with a model that used a common

parameter for both learning processes. We found that the reduced model

could describe learning as well as the full model if model complexity is consid-

ered (Table 1). Note that both overall mean value and variance were constant

during the experiment but the best-fitting learning rate for variance was higher

than for value. This suggests that, in contrast tomean outcome value, subjects

continuously updated their estimate of individual risk in response to local

temporal fluctuations in the individual variances.

We therefore used the reduced model with a common risk/covariance

learning parameter to generate fMRI regressors. Parameter estimates were

fit for every individual subject using least-squaresminimization betweenmodel

predicted weights and actual weights set by the subject (see below).

Alternative Models

We created several alternative models that do not require learning of covari-

ance information. Those models are described in the Supplemental Experi-

mental Procedures.

Model Comparison

We compared how well each model predicted subjects’ behavior by fitting the

free parameters of each model such that the mean squared sum of the devia-

tion between model predicted (wm) and subjects’ weights (ws) was minimized.

As measure of model fit we then calculated the Bayesian information criterion

(BIC) (Schwarz, 1978) as

BIC= 2L+ k lnðnÞ; (8)

and

L=
1

2
n

0
BB@logð2pÞ+ log

0
BB@

Pn
i

�
ws

i �wm
i

�2

n

1
CCA+ 1

1
CCA; (9)

where L is the negative log likelihood function, n = 252 trials and k the number

of free model parameters (Table 1). We also calculated a generalized r2-statis-

tics for eachmodel, which is a standardized measure of model fit analogous to

accounted variance (Nagelkerke, 1991). It is computed as r2 = 1� L=Lrandom.

Stimuli

Stimuli were presented on a gray background using Cogent 2000 (http://www.

vislab.ucl.ac.uk/cogent.php) running in MATLAB. Stimuli were presented

using an LCD projector running at a refresh rate of 60 Hz, viewed by subjects

via an adjustable mirror.

FMRI Data Acquisition

Data were acquired with a 3T scanner (Trio, Siemens, Erlangen, Germany)

using a 12-channel phased array head coil. Functional images were taken

with a gradient echo T2*-weighted echo-planar sequence (TR = 3.128 s, flip

angle = 90�, TE = 30 ms, 643 64 matrix). Whole brain coverage was achieved

by taking 46 slices in ascending order (2 mm thickness, 1 mm gap, in-plane

resolution 33 3 mm), tilted in an oblique orientation at�30� to minimize signal

dropout in ventrolateral and medial frontal cortex (Weiskopf et al., 2006).

Subjects’ head was restrained with foam pads to limit head movement

during acquisition. Functional imaging data were acquired in three separate

415-volume runs, each lasting about 21 min. The first five volumes of each

run were discarded to allow for T1 equilibration. A B0-fieldmap (double-echo

FLASH, TE1 = 10 ms, TE2 = 12.46 ms, 3 3 3 3 2 mm resolution) and a high-

resolution T1-weighted anatomical scan of the whole brain (MDEFT sequence,

1 3 1 3 1 mm resolution) were also acquired for each subject.
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FMRI Data Analysis

Image analysis was performed using SPM8 (rev. 3911; http://www.fil.ion.ucl.

ac.uk/spm). EPI images were realigned and unwarped using field maps

(Andersson et al., 2001). Each subject’s T1 image was segmented into gray

matter, white matter, and cerebrospinal fluid, and the segmentation parame-

ters were used to warp the T1 image to the SPM Montreal Neurological Insti-

tute (MNI) template. These normalization parameters were then applied to the

functional data. Finally, the normalized images were spatially smoothed using

an isotropic 8-mm full-width half-maximum Gaussian kernel.

FMRI time series were regressed onto a composite general linear model

(GLM) containing regressors representing the time of the choice, the time of

the outcome screen, and any button presses during the choice period. The

outcome regressor was modulated by a number of model derived decision

variables. Modulators for outcome were: prediction errors for the individual

resource outcomes and the portfolio outcome (d1, d2, dp), the absolute devia-

tion of the portfolio outcome from the target (jdpj), resource risk (h1, h2), risk

prediction errors (ε1, ε2), the correlation strength of the resources (r), and the

correlation prediction error (z). A further modulator captured the anticipated

magnitude of actual weight updating in the next trial (jwt � wt+1j). In contrast

to the default procedure in SPM, we entered all regressors and modulators

independently (without serial orthogonalization) into the design matrix.

Thereby only the additional variance that cannot be explained by any other

regressor is assigned to the effect, preventing spurious confounds between

regressors (Andrade et al., 1999; Draper and Smith, 1998). Specifically, this

ensured that the observed effects of correlation strength and correlation

prediction error are solely accountable by effects not explained by signals

relating to the variance of individual outcomes.

The regressors were convolved with the canonical HRF, and low frequency

drifts were excluded with a high-pass filter (128 s cutoff). Short-term temporal

autocorrelations were modeled using an AR(1) process. Motion correction

regressors estimated from the realignment procedure were entered as

covariates of no interest. Statistical significance was assessed using linear

compounds of the regressors in the GLM, generating statistical parametric

maps (SPM) of t values across the brain for each subject and contrast of

interest. These contrast images were then entered into a second-level

random-effects analysis using a one-sample t test against zero.

Anatomical localization was carried out by overlaying the t-maps on

a normalized structural image averaged across subjects, and with reference

to an anatomical atlas (Duvernoy, 1999). All coordinates are reported in MNI

space (Mazziotta et al., 2001). Unless otherwise noted, all statistics are FWE

corrected at the cluster level for multiple comparisons at p < 0.05 with a height

threshold of p < 0.001 (using the cluster level statistics implementation within

SPM). Small volume correction in the outcome variance contrast for striatum

was performed within a 12 mm sphere around the seed voxel coordinates

(xyz = �10, 3, 3), which were taken from Preuschoff et al. (2006).

Region of Interest Analysis

We extracted data for all region of interest analyses using a cross-validation

leave-one-out procedure: we re-estimated our main second-level analysis 16

times, always leaving out one subject. Starting at the peak voxel for the corre-

lation signal in right insula and for the correlation prediction error in rACC we

selected the nearest maximum in these cross-validation second-level anal-

yses. Using that new peak voxel, we then extracted the data from the left-out

subject and averaged across voxels within an 8 mm sphere around that peak.

Binned Effect Size Plots

To create the effect size plots of the parametric decision variables we first

divided the values in our parametric modulator into quartiles and estimating

the average BOLD response in relation to each bin. We did this by sorting all

trials into four bins according to the magnitude of the model predicted signal

and defined the 25th, 50th, 75th, and 100th percentile of the range. Then we

created and estimated for each subject a newGLMwith four new onset regres-

sors containing the trials of each bin. The parameter estimates of these onset

regressors represent the average height of the BOLD response for all trials in

that bin. The data plots in Figures 2B and 3B are the average parameter esti-

mates (across all subjects in the cross-validation analyses) converted to

percent signal change. This analysis was performed using algorithms in the

rfxplot toolbox for SPM (Gläscher, 2009).
.
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Covariance/Correlation Comparison

For the test whether bold activity in right insula is better explained by a linear

relationship with covariance or correlation we estimated two additional GLMs

onBOLDdata, eachwith onlyone regressor (eithermodel predictedcovariance

or the correlation coefficient) using Bayesian estimation (Friston et al., 2002).

This produced a log-evidence map for each model and we calculated average

log evidences across all voxels within our region of interest for every subject

and performed a random effects model comparison (Stephan et al., 2009).

This analysis suggests that the correlation coefficient can explain BOLD

activity in midinsula better than covariance (Dirichlet a = 16.9 for correlation

versus 1.1 for covariance; posterior probability [correlation] p = 0.94, exceed-

ance probability ]probability that the correlation model is more likely] z1.0).

Effect Size Time Course Plots

To visualize the nature of the BOLD response to the correlation coefficient as

time course plot over the entire trial we upsampled the entire extracted bold

signal to 100 ms (the effective temporal resolution of the averaged time course

is higher than the TR because our stimulus presentation was jittered relative to

slice acquisition), split the signal into trials and resampled such that the onset

of the choice screen is at time 0 and the onset of the outcome screen at 8.5 s in

every trial. We then estimated a GLM across trials for every time point in each

subject independently. Lastly, we calculated group average effect sizes at

each time point, and their standard errors. The graph in Figure 2C shows the

time series of effect sizes throughout the trial for the regressor of interest.

This method for plotting the effect size time course of a parametrically modu-

lated regressor is also described in detail elsewhere (Behrens et al., 2008).

Timing of Correlation Representations

To investigate whether subjects carried out task related computations at the

time of the outcome or at the time of choice, we estimated a separate GLM

that was similar to the main GLM described above except for an additional

parametric modulator at the time of choice for the correlation coefficient,

i.e., the correlation coefficient modulated both the regressor at the time of

the choice screen and the outcome screen.

Representation of Portfolio Weights

We investigated the questions if subjects might learn task-specific portfolio

weights instead of the more universal correlation between outcomes by esti-

mating a separate GLM. This was similar to the main GLM except that the

parametric modulator r was replaced by the portfolio weight w and the corre-

lation prediction error z was replaced by the signed weight prediction error

(wt+1 – wt). The nonlinear relationship between r and w allows us to differen-

tiate between representations of correlation and weights on the neural level.

Representation of Outcome Coincidences

To test for a neural representation of more qualitative coincidences instead of

the correlation coefficient with estimated another GLM, similar to the main

GLM except that the parametric modulators r and zwere replaced by a binary

parametric modulator with a coincidence value of sign(td1)*sign(td2).

Relationship between Explained Variance in Behavioral Model and

BOLD Data

To test for a relationship between behavior and neural model fit we compared

R2 (explained variance) in the behavioral model with the R2 in the fMRI GLM. An

R2 value for the behavioral model was calculated for every subject by regress-

ing trial-by-trial model predicted choice on subject’s actual choices.We calcu-

lated the R2 value for the fMRI regression as the proportion of variance in BOLD

that was explained by our interest regressors in relation to the total variance

(R2 = RSSreg/RSStot), where RSSreg equals the explained variance (variance

of the predicted time course ypred = Xb, X = design matrix and b the regression

coefficient) and RSStot is the variance of the bold signal after adjusting for

block and nuisance effects.

We also tested the influence of potential confounding variables on this rela-

tionship, namely the fitted learning rate and the average absolute amount of

weight updating per trial, by calculating partial correlations. This analysis

confirmed a significant correlation between behavioral and neural fit (rxy =

0.54, p = 0.04) after accounting for potential confounds. Furthermore, there

was no relationship between these potential confounds and neural fit (ray =

0.12, p = 0.66; rjwjy = �0.14, p = 0.63).

Psychophysiological Interaction (PPI) Analysis

We performed posthoc an exploratory PPI analysis (Friston et al., 1997) to

investigate changes in functional connectivity with right midinsula at the time
Neu
of outcome (when almost all task related activity was observed). The PPI

term was Y 3 P, with Y being the BOLD time courses in the insula region of

interest analysis and P indicating the time during the outcome screen. We

then entered the seed region BOLD Y, the psychological variable P, and the

PPI interaction term into a new GLM. Findings from this analysis are reported

in Figure S4.
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