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Risky choice entails a need to appraise all possible outcomes and integrate this information with individual
risk preference. Risk is frequently quantified solely by statistical variance of outcomes, but here we provide
evidence that individuals’ choice behaviour is sensitive to both dispersion (variance) and asymmetry
(skewness) of outcomes. Using a novel behavioural paradigm in humans, we independently manipulated
these ‘summary statistics’ while scanning subjects with fMRI. We show that a behavioural sensitivity to
variance and skewness is mirrored in neuroanatomically dissociable representations of these quantities, with
parietal cortex showing sensitivity to the former and prefrontal cortex and ventral striatum to the latter.
Furthermore, integration of these objective risk metrics with subjective risk preference is expressed in a
subject-specific coupling between neural activity and choice behaviour in anterior insula. Our findings show
that risk is neither monolithic from a behavioural nor neural perspective and its decomposition is evident
both in distinct behavioural preferences and in segregated underlying brain representations.
ymmonds).
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Introduction

When foraging animals, or humans in a modern economy, make a
decision they must evaluate potential outcomes of a choice and the
chance of each outcome occurring. For example, imagine purchasing
house A, whose market value 5 years hence could be either £115 k
(with a 70% chance), £100 k (15% chance), or £30 k (15% chance).
How much is this house worth? Alternatively, house B that might be
worth £170 k (with a 15% chance), 100 k (15% chance), or £85 k (70%
chance). Which house is preferred? Considering only the expected
value (i.e. mean) we should be indifferent because both are worth
exactly £100 k. However, the price one is willing to pay may also
depend upon individuals’ taste for the risk involved with each option
(their “risk preference”).

Risk is psychologically multi-faceted and, in our example, could
relate to the spread of outcomes (variance) or asymmetry between
better or worse than average outcomes (skewness). A taste for variance
dictates both houses are equally valued (both sets of outcomes have
equal variance). Preferring one of the houses suggests an additional
predilection for negatively skewed (house A—small chance of a poor
outcome), or positively skewed (house B—small chance of a good
outcome) distributions. Here, we aimed to identify neural mechanisms
that evaluate these different aspects of risk and determine how they are
integrated with individuals’ preferences for each.
There are two dominant theories of risk evaluation. In microeco-
nomics, Expected Utility Theory (Von Neumann and Morgenstern,
1944) proposes that decision-makers’ subjective values for each
possible outcome are determined by an implicit utility function, with
‘utilities’ weighted by outcome probabilities and risk preference
emerging as a by-product of this framework (Pratt, 1964). Alternative
theories infinance (Markowitz, 1952), psychology (Coombs andHuang,
1970), and ecology (Stephens, 1981) propose that outcome distribu-
tions are decomposed into “summary statistics” (e.g. mean, variance,
skewness), with risk preference directly generated by preference for
each component. Observations of behaviour alone cannot distinguish
Expected Utility from summary statistic models since both theories
make identical choice predictions, as any utility function can be
approximated by preferences for summary statistics using a polynomial
expansion (Scott and Horvath, 1980). Critically, choice-generated
neural data can provide important evidence in adjudicating between
behavioural models. Thus, we used model-based fMRI analysis
(O'Doherty et al., 2007) to determine whether the brain encodes the
summary statistics (variance and skewness) of a decision.

Previous studies suggest involvement of dorsomedial prefrontal
cortex (DMPFC), anterior insula, posterior parietal cortex (PPC), and
ventral striatum in risk-related decision making (Mohr et al., 2010a).
Several of these studies focus on variance (Christopoulos et al., 2009;
Preuschoff et al., 2006; Tobler et al., 2007, 2009), but this measure
ignores the possible influence of positive or negative skewness. We
hypothesised that variance and positive/negative skewness would be
distinctly represented within these regions. As these summary
statistics need to be integrated with an individuals’ taste for risk, we
were also interested in identifying where in the brain objective (task-
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based) and subjective (disposition to risk) variables are assimilated
prior to a decision.
Materials and methods

The study was approved by the Institute of Neurology (University
College London) Ethics Committee. 24 subjects (mean age: 24; age
range: 19–34; male: 12) participated in the experiment. 1 (female)
subject was excluded because they used a fixed strategy (always chose
sure amount), hence behavioural preferences could not be estimated.
We provided a 5-minute practice tutorial to demonstrate the paradigm.
Stimuli were presented and responses recorded using Cogent presen-
tation software (Wellcome Trust Centre for Neuroimaging, London)
written in MATLAB (version 6.5, MathWork, Natick, MA). Imaging data
were analysed using Statistical Parametic Mapping software (SPM8;
Wellcome Trust Centre for Neuroimaging, UK). Visual cues were
Fig. 1. Experimental Paradigm. A. We represented gambles on-screen as pie-charts. The pie
The numbers written in each segment showed the monetary value of each outcome in penc
outcome occurring. A positively skewed gamble (left) has a small chance of a better than aver
gamble (right) has a small chance of a worse than average outcome (the tail is to the left). Bo
trials, grouped into experimental blocks of ten. For each trial, a pie chart was shown and after
while the cue was on-screen if they wanted to gamble on the lottery, or alternatively select a
screen (3 levels—90p, 120p, 150p). At the end of each block, one trial from the block was rand
lottery by an on-screen graphic of a red ball spinning around the outside of the pie which st
each of 3 sure levels).
projected onto a screen, visible via an angled mirror mounted on the
MRI head coil. Choiceswere indicated by pressing a button boxwith the
right index finger.
Task

To dissociate different components of risk, in terms of dispersion
(variance) and asymmetry of outcomes (skewness), we designed a
novel decision-making task that controlled thedistributionof outcomes,
and ensured that variance and skewness of a set of lotteries were
manipulated independently by design (Fig. 1A, Supplementary Fig. 1).
Hence, as variance and skewness of gambles were orthogonal factors,
we could test whether neural activity evoked by variance could be
distinguished from that evokedby skewness. Participantswere required
to choose between taking a ‘sure’ (fixed) amount ofmoney or electing to
‘gamble’ (choosing to play a lottery with a number of potential
chart was divided into different segments showing possible outcomes from the lottery.
e (sterling) and the angle subtended by each segment indicated the probability of each
age outcome (the tail of the distribution is to the right). Conversely, a negatively skewed
th example gambles have identical variance and expected value. B. The task consisted of
5.5 s, a cue to respond appeared on screen (for 2 s). Subjects indicated by a button press
fixed, sure amount of money. To commence a block, the sure amount was written on the
omly selected and played out for real. If subjects had elected to gamble, we resolved the
opped at a randomly selected position. 180 trials were presented in total (60 stimuli at
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outcomes). Gambles were represented as pie-charts, where variance
and skewness of outcomes variedover a range,withexpectedvaluekept
constant (Fig. 1B). We predicted distinct preferences for both variance
and skewness (possibly with different preferences for positive versus
negative skewness).

Independent manipulation of variance and skewness

We constructed a stimulus set of 60 lotteries where variance and
skewness were independent and varied over a range (Supplementary
Fig. 1, Supplementary Table 1). For every level of variance (10 levels),
we independently varied skewness (6 levels, 3 positively skewed, 3
negatively skewed). Expected value of the lotteries was kept constant
(between £1.26 and £1.34), while variance ranged from 0.1 to 0.7 £2,
and (standardised) skewness ranged from −1 to 1. Stimuli were
constrained to have between 3 and 9 outcomes (segments of the pie
chart), with outcome probabilities varying in minimum 0.1 in-
crements between 0 and 1 to mitigate against probability distortion
effects at small probabilities. These restrictions allow the generation
of a space of possible lotteries varying in skewness and variance. We
pre-specified our desired levels of variance and skewness and selected
lotteries to give as orthogonal a stimulus set as possible. We also
resampled our set of lotteries to ensure variance and skewness were
decorrelated from the number of segments in each presented pie
chart gamble (variance r2=0.01; skewness r2=0.0004). Where 2
lotteries were equidistant from our desired array of points, we
selected a lottery at random. Usingmultiple outcomes is critical, as for
binary gambles, it is impossible to independently manipulate
statistical moments across a range of values.

To commence a block, the sure amount was written on the screen
(3 levels—90p, 120p, 150p). At the end of each block (every 10 trials),
one trial from the blockwas randomly selected and played out for real.
If subjects had elected to gamble, we resolved the lottery by an on-
screen graphic of a red ball spinning around the outside of the pie until
it stopped at a randomly selected position. This procedure was also
shown in the practice, to demonstrate the idea that the size of each
segment of the pie chart represented the chance of that outcome
occurring. Resolving one trial per block helped maintain subjects’ task
engagement during and thus maximise sensitivity to detect evoked
responses to the experimentally-manipulated stimulus dimensions.
Importantly, we do not expect any shifts in individual behavioural
preferences to change the evoked response to the objective features of
the gamble stimuli themselves. In addition, any changes in behaviour
can only count against (i.e. reduce the sensitivity of) an analysis of
correlations between trial-by-trial choice, individual preference, and
neural activity. 180 trials were presented in total (60 stimuli for each
of the 3 sure levels). Monetary earnings ranged between £16.10 and
£24.30 (mean £19.40).

Behavioural modelling

For a given lottery with N potential outcomes m1, m2,… mN, with
probabilities p=p1, p2, …pN, we define the statistical moments
(expected value (EV), variance (Var), standardised skewness (Skw))
of the outcome distribution as follows:

EV = ∑N
n=1mnpn ð1Þ

Var = ∑N
n=1 mn−EVð Þ2pn ð2Þ

Skw =
∑N

n=1 mn−EVð Þ3pn
Var3=2

ð3Þ

We analysed choice data by fitting a linear mean-variance-skewness
model (MVS) where individuals are allowed to express different
preferences for variance and skewness, and compared this to a set of
reduced models and a standard power utility model commonly used
to model standard expected utility (Camerer, 2003). The reduced
models included a model based on mean difference (M) alone (where
subjects only take account of the difference between the sure amount
and the expected value of the gamble in selecting actions), a mean-
variance model (MV), and a mean-skewness (MS) model. We then
define the subjective value, or utility (U) of each lottery for our
models:

Mean model (M):

U = EV ð4Þ

Mean-variance model (MV):

U = EV + ρVar ð5Þ

Mean-skewness model (MS):

U = EV + λSkw ð6Þ

Mean-variance-skewness model (MVS):

U = EV + ρVar + λSkw ð7Þ

ρ reflects preference for variance, λ indicates preference for positive
versus negative skewness.Expected utility model (EUT):

U = ∑N
n=0

m1−κ
n pn
1−κ

ð8Þ

κ reflects the concavity of the utility (power) function, hence the
degree of risk-aversion.

We also tested a further set of models, where subjects were
allowed to express a preference separately for positive and negatively
skewed gambles. These models are specified as:

Mean-variance-positive skewness (MVpS):

U = EV + ρVar + λpSkw
þ ð9Þ

Mean-variance-negative skewness (MVnS):

U = EV + ρVar + λnSkw
− ð10Þ

Mean-positive skewness-negative skewness model (MpSnS):

U = EV + λpSkw
þ + λnSkw

− ð11Þ

Mean-variance-positive skewness-negative skewness model
(MVpSnS):

U = EV + ρVar + λpSkw
þ + λnSkw

− ð12Þ

Where Skw+ indictates Skw≥0 and Skw- indicates Skwb0, and λp

and λn reflect preferences for positive and negative skewness
respectively.

We also tested a probability weighting (PW) model, where
probabilities are transformed according to a one-parameter probability
weighting function (Prelec, 1998):

U = ∑N
n=0

m1−κ
n g pnð Þ
1−κ

where g pnð Þ = e− − lnpnð Þα ð13Þ

We finally tested a cumulative prospect theory (CPT) model
(Tversky and Kahneman, 1992). For a given lottery with N potential
outcomes, we redefine outcomes relative to a reference point R, such
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that the outcomes are m-T, m-T+1,m-T+2…, R,… mN−2, mN−1, mN,
with probabilities p=p−T, p−T+1,p−T+2…, pR,… pN−2, pN−1, pN.
Overall utility U=U−+UR+U+, is given as:

For mNR:

Uþ = g pNð Þu mNð Þ + ∑N
k=1 g ∑k

j=0pN−j

� �
−g ∑k−1

j=0 pN−j

� �h i
u mN−kð Þ

ð15Þ

For mbR:

U− = g p−Tð Þu m−Tð Þ + ∑T
k=1 g ∑k

j=0p−T+j

� �
−g ∑k−1

j=0 p−T+j

� �h i
u m−T+k

� � ð16Þ

For m=R:

UR = 0 ð17Þ

u mið Þ =
−λ R−mið Þκ

1−κ
mi < R

mi−Rð Þω
1−ω

mi ≥ R

8>><
>>: ð18Þ

g pið Þ = e− − lnpið Þα mi < R

e− − lnpið Þδ mi ≥ R

(
ð19Þ

This is a rank-dependent model where small probability extreme
outcomes are overweighted (α∈ [0, 1], δ∈ [0, 1]), and outcomes
below the reference point have more influence than relative gains
(here λ∈(1, 5)). Rather than using the status quo as the reference
point, we used a non-zero reference point of £1.20. This enables the
model to overweight small probability events at both extremes of the
distribution, a parallel to skewness sensitivity.

Our models compare the utility of the lottery with the value of the
sure amount (S) to generate a trial-by-trial probability of choosing the
lottery over the sure amount, using a logistic/softmax function which
allows for noise in action selection (by free parameter β).

Pchoose gamble =
1

1 + e− U−Sð Þ=β ð20Þ

We estimated best-fitting model parameters using maximum
likelihood analysis, with optimisation implemented with a non-linear
Nelder–Mead simplex search algorithm in Matlab (Matlab, Natwick,
USA) and comparedmodels using Group Bayes Factors, with the Akaike
Information Criterion (AIC) (Akaike, 1974) and Bayesian Information
Criterion (BIC) (Schwarz, 1978) providing approximations to themodel
evidence and penalising model complexity (Penny et al., 2004).

fMRI—scanning parameters and preprocessing

We acquired gradient echo T2*-weighted echo-planar images
(EPI) with blood-oxygen-level-dependent (BOLD) contrast, on a 3
Tesla head scanner (Magnetom Allegra, Siemens Medical). Imaging
parameters were: 42 oblique transverse slices; slice thickness, 2 mm;
gap between slices, 1 mm, repetition time TR=3.1 s; echo time
TE=25 ms; field of view FOV=192×192 mm2, matrix size 128×64
(RO×PE). We employed an EPI sequence optimised to avoid signal
drop-out in the OFC using a combination of an increased spatial
resolution in the read-out direction and a reduced echo time, as this
generally enhances signal across a range of fronto-temporal regions
(Weiskopf et al., 2007). During the same experimental session, a T1-
weighted image was obtained for anatomical reference. To correct for
geometric distortions induced in the EPIs at high field strength, we
collected fieldmaps based on dual echo-time images (TE1=10 ms,
TE2=12.46 ms), and processed these using the SPM8 fieldmap
toolbox (Hutton et al., 2002) to produce a voxel displacement map
indicating the field distortions. Images were realigned with the first
volume, normalized to a standard EPI template, and smoothed using
an 8 mm full-width at half-maximum Gaussian kernel. Unwarping
was carried out using the routine in SPM8, correcting for distortions in
each acquired image by combining the measured fieldmaps with
estimated susceptibility-induced changes due to motion.

fMRI—statistical analysis

Data were analyzed at the within-subject level with a single
general linear model (GLM), with BOLD responses to each stimulus
modelled as a box-car of duration 7.5 s (duration of stimulus
presentation), time-locked to stimulus presentation and convolved
with a hemodynamic response function. Intertrial interval (fixation
cross) was 1–3 s. We constructed regressors to identify parametric
responses to variance and skewness, identically modelled to the
stimulus onset regressor, but with the height of the box-car
modulated by the (mean-corrected) magnitude of lottery variance
and skewness on each trial. Trials were split into positively and
negatively skewed lotteries, and for each trial type we included both
an unmodulated onset regressor, and also modulated regressors
indicating variance, skewness, and the subject's choice (gamble or
sure) per trial. Sure amount screens, keypresses, and resolution of
gambles at the end of each block were also modelled to factor out
BOLD activity unrelated to variables of interest. The experiment was
conducted over one scanning period (the subject remained in the
scanner throughout), but split into 3 scanner runs with brief breaks in
between. We therefore account for session effects (e.g. scanner drift)
in the design matrix by modelling each run separately. We also
included subject-specific realignment parameters from the image
preprocessing to account for motion-related artefacts in the images
that were not eliminated in rigid-body motion correction. Beta values
of linear contrasts for variance, (positive or negative) skewness, and
choice, were estimated and entered into t-tests using random-effects
analysis to provide group statistics.

At the between-subject level, we also included covariates derived
from the behavioural model to indicate individual preferences for
variance and skewness. This allows us to test two distinct hypotheses
with regard to how preferences are integrated in the brain. We test
either if inter-individual differences in behavioural preferencemodulate
either the representation of the summary statistics themselves, or
alternatively modulate choice-related activity. We used a cluster-
defining voxel-wise threshold of pb0.01, reporting whole-brain
significant clusters family-wise error (FWE) corrected for multiple
comparisons at pb0.05, or significant voxels within a priori regions of
interest (small-volume FWE-corrected at pb0.05). Regions of interest
basedonprevious studies comprise anterior insula/inferior frontal gyrus,
ventral striatum anddorsomedial prefrontal cortex (Christopoulos et al.,
2009; Mohr et al., 2010a; Preuschoff et al., 2006; Tobler et al., 2009).
Percent signal change within a cluster is estimated with RFXplot
(Gläscher, 2009). Figures show second-level SPM-T images thresholded
at pb0.005, superimposed upon a canonical image. Stereotactic co-
ordinates are reported in MNI space (Mazziotta, 2001).

Results

Behaviour

Subjects (n=23) distributed their choices between gamble and sure
options throughout the course of the experiment (mean percentage of
gamble choices=53%, std. 14%). The sure option changed over the
course of the experiment enabling us to decorrelate choice from the
statistical features of interest. Additionally, as we focused on decon-
structing risk (i.e. the distribution of outcomes), the expected value of
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the gamble was kept constant throughout (between £1.26 and £1.34).
When the sure amount was greater, subjects therefore opted to gamble
less often (mean percentage of gamble choices per sure amount level -
90p: 85%, std. 13%; 120p: 58%, std. 20%; 150p: 18%, std 14%). Therewere
few error (missed) trials (4+/−0.5%), which are excluded from
analyses. The mean correlation between choice and variance
was −0.009 (std 0.079) and the mean correlation between choice
and skewness was 0.0035 (std 0.087).

Behavioural modelling
We independently manipulated variance and skewness, and

predicted that individuals’ preferences would be sensitive to both
summary statistics. As described in methods, we compared a mean-
variance-skewness model (MVS) where individuals are allowed to
express preferences for both variance and skewness, to a set of
alternative decision models.

As predicted, a mean-variance-skewness (MVS) model provided a
significantly better fit to the behavioural data than the 4 main
alternative models (summed AIC: M: 4139; MV: 3599; MS: 3993;
MVS: 3431; EUT: 3760; Group Bayes Factors (log-GBF relative to
worst performingMmodel:M: 0;MV: 540;MS: 145;MVS: 708; EUT:
378 (Kass and Raftery, 1995; Raftery, 1995; Penny et al., 2004); MVS
model posterior probabilityN0.99 (very strong evidence in favour of
MVS) (Fig. 2A). Similar results were obtained using the Bayesian
Information Criterion (BIC) (Schwarz, 1978), an approach which
penalises model complexity more severely than the AIC (log-GBF
relative toMmodel calculated from BIC:M: 0;MV: 466;MS: 72;MVS:
Fig. 2. Behavioural modelling. A. Relative log-evidence for each of 5 models: mean only
(M), mean-variance (MV), mean-skewness (MS), mean-variance-skewness (MVS) and
power utility (EUT). Relative log-evidence (log-Group Bayes Factor) calculated as
summed difference in log-evidence for each model relative to worst performing M
model, across subjects. Model evidence is approximated by the Akaike information
criterion (AIC), calculated as AIC=2.k−2.ln(L), where L is the maximum likelihood
estimate of the model and k is the number of free parameters. A higher score indicates a
better model fit (higher model likelihood). There was strong evidence in favour of the
MVS model in a fixed effects analysis of Group Bayes Factors (model posterior
probability N0.99 in favour ofMVS). B. Parameter estimates from theMVSmodel reveal
a range of preferences for variance (negative coefficent reflects variance aversion), and
skewness (negative coefficient reflects aversion to positive versus negative skewness).
561; EUT: 305). Here, we paid subjects for 18/180 trials during the
entire experiment, motivated by a need to keep individuals engaged
with the task. While paying for multiple trials has the potential to
blunt risk-sensitivity, the fact that our risk-sensitive models were
clearly superior to the risk-neutral (M) model demonstrates that risk-
sensitivity was preserved, and suggests that participants assessed and
treated each gamble individually.

Given our intuition that positive and negative skewness exert
separate influences on behaviour, we also tested whether models with
separate parameters for positively and negatively skewed gambles (i.e.
oneextraparameter than theMVSmodel)fit participants’ choicesbetter
than the three-parameter MVS model, and also whether models with
preferences for variance and either positive or negative skewness fitted
choice as well as the full MVS model. Again, the MVS model proved
superior to these other models (Supplementary Fig. 2).

Althoughwemitigated severe probability distortion by constraining
our gambles such that the smallest probability used was 0.1, it
nevertheless is possible that behaviour attributed to skewness prefer-
ence could be caused by probability weighting effects. To outrule this,
we fit an additional model with probability weighting to our
behavioural data, using the same specification as Hsu and colleagues
(Hsu et al., 2009), with power utility and a 1-parameter (Prelec)
probability weighting function. Although this outperformed a power
utility model without probability weighting, it was vastly inferior to the
mean-variance-skewness model (probability weighting model AIC:
3674, log Group Bayes factorMVS vs probability weighting=243). We
also fit a cumulative prospect theory (CPT) model, with the reference
point set at the £1.20 sure amount rather than the status quo of £0. This
allows for potential overweightingof small probability outcomes atboth
extremes of the distribution, similar to skewness preference. The MVS
model outperformed the CPT model (log Group Bayes factor MVS vs
CPT: 236; Supplementary Fig. 2).

We next used our winning MVS model to provide subject-specific
preferences for variance and skewness. Parameter estimates from the
MVS model showed that 16/23 subjects were averse to variance
(average variance preference: −0.20; s.e.m. 0.07), and 15/23 were
averse to positive skewness (average skewness preference: −0.09;
s.e.m. 0.03) (Fig. 2B). Beta (temperature) values for the logistic
function were low, indicating that choices were well partitioned by
the linear model (average beta=0.14; s.e.m. 0.01). Some subjects had
strong skewness preference but were insensitive to variance, other
subjects were indifferent to skewness. 8/23 showed a negative
variance and skewness parameter, which corresponds to a (locally)
sigmoid utility function. There was a weak negative correlation
between variance and skew-preference (r2=0.17; p=0.05). No
individuals in our sample were both variance and positive-skew-
seeking. The MVS model was at least as good as the MV and MS
alternatives in the majority of individual cases, outperforming the MS
model in 19/23 subjects and the MV model in 17/23 subjects.

It is possible that subjects might switch their behavioural prefer-
ences from preferring positive to preferring negative skewness over the
course of the experiment. We checked this possibility by separately
fitting theMVSmodel per subject to the first and secondhalf of the data.
We found no evidence that individuals reverse their preference for
skewness during the experiment,with 15 subjects starting andfinishing
with preference for negative skewness, 5 subjects starting and finishing
with preference for positive skewness, and only 3 subjects reversing
preference from negative to positive skew seeking (20/23 subjects with
no switch in preference, binomial test=n.s.).Weexplored this question
further, and tested if there was any systematic shift in preference at all.
There was no significant change in the estimated variance preference
parameters from the 1st to the 2nd half of the session across subjects
(paired t-test, p=.75). However therewas a change in skew-preference
(paired t-test, p=0.005). Consequently, for the imaging analysis, we
use individuals’ average behavioural preferences estimated across the
experimental session. Note that any change in preference over timewill

image of Fig.�2
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count against our analysis by introducing noise into the data, rendering
it less likely to detect a significant result, and also mean that we may
underestimate the true effect size of some reported correlations.

Functional imaging

Responses to variance and skewness
Having established that a MVS model best explained participants’

choice behaviour, we next askedwhether statistical components of this
model have adistinct neural representation. In linewithourpredictions,
brain activity in right PPC (peak MNI coord: 32, −60, 50; p=0.003,
cluster extent=1318 voxels) showed a significant correlation with
lottery variance on each trial, irrespective of choice (Figs. 3A and B,
Supplementary Table 2). No brain activity negatively correlating with
variance survived family-wise error-correction.

In contrast to a segregated representation of variance, we observed
a distributed encoding of skewness. Using our pair of regressors
representing stimulus-evoked BOLD activity modulated by the degree
Fig. 3. Responses to summary statistics. Figure shows second-level SPM-T images thresholde
activity and variance (peak coord: 32, −60, 50; p=0.003, whole-brain corrected). B. Es
C. Correlation between increasing positive skewness and BOLD signal in ventral striatum (pe
change, averaged activity over all voxels within ventral striatum cluster, for positive and ne
insula (peak coords: right—30, 16, -14, p=0.021; left—−40,24, −16, p=0.017; small volu
gambles, averaged activity over all voxels within right and left anterior insula clusters (plotte
DMPFC (peak coord: 4, 44, 36; pb0.001, whole-brain corrected). H. Estimated percent signa
correlation plots show standard error. All statistical inference performed in SPM (reported in
size not re-calculated from plotted correlations, with relationships shown for illustrative pu
(magnitude) of lottery skewness, for positive and negatively skewed
trials respectively, we tested both whether there were regions
encoding the full range of skewness on a linear scale, and whether
there were regions whose activation depended solely on the degree of
positive or negative skewness. No single area linearly correlated with
the full range of skewness (i.e. both increasing activation for greater
positive skewness, and decreasing activation for greater negative
skewness), which we assessed by testing for a conjunction between
activity for positive and negative skewness (at pb0.01 voxelwise
threshold). Instead, we found dissociable cortical and subcortical
regions individually correlating with positive and negative skewness.
As positive skewness increased (a small chance of a better than
average outcome) so too did BOLD signal in ventral striatum (peak
voxel MNI coord: −10, 4, −14; p=0.033 (small volume corrected),
cluster extent =228 voxels), and bilateral anterior insula extending
into inferior frontal gyrus (IFG) (on right: peak voxel MNI coord: 30,
16, −14; p=0.021 (small volume corrected), cluster extent=234
voxels. on left: peak voxel MNI coord:−40, 24,−16; p=0.017 (small
d at pb0.005, superimposed upon a canonical image. A. Linear correlation between PPC
timated percent signal change, averaged activity over all voxels within PPC cluster.
ak coord:−10, 4,−14; p=0.033, small volume corrected). D. Estimated percent signal
gative skewed gambles. E. There was also positive correlation seen in bilateral anterior
me corrected). F. Estimated percent signal change for positive and negatively skewed
d separately). G. Correlation between increasing negative skewness and BOLD signal in
l change, averaged activity over all voxels within ventral striatum cluster. Error bars on
the main text and supplementary tables), thus separate correlation strength and effect
rposes.
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Fig. 4. Correlation of skew-evoked activity with individual preferences. A. Within the
anterior insula regions showing a correlation in signal with positive skewness, the left
anterior insula shows a significant positive correlation with individual skew-preference
(peak coord: −36, 24, −16; p=0.007, small-volume corrected). B. Plot of behavioural
model (MVS) skewness parameter estimate against neural contrast estimate for
positive-skew related activity.

Fig. 5. Choice-related activity. Both ventral striatum and posterior parietal cortex (PPC)
show significantly greater BOLD signal for gamble versus sure choices (ventral striatum
peak coord: −8, 4, −10; p=0.016, small-volume corrected; PPC peak coord: 26, −60,
54; p=0.008, small-volume corrected).
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volume corrected), cluster extent=67 voxels.) (Figs. 3C and 4,
Supplementary Table 2), a priori regions of interest where risk-
related activity has been seen in previous studies (Schultz et al.,
2008). In contrast, negative skewness correlated with activity in
medial prefrontal cortex (peak voxel MNI coord: 4, 44, 36; pb0.001,
cluster extent=1673 voxels) (Fig. 3E, Supplementary Table 2). There
were no areas surviving correction that correlated with decreasing
positive or decreasing negative skewness (i.e. greater BOLD signal for
less skewed lotteries). Ventral striatum and prefrontal cortex
expressed dissociated responses to positive and negative skewness
(Figs. 3D and F). No areas correlated with increasing magnitude of
skewness irrespective of sign (i.e. more active for skewed than
symmetrical lotteries, irrespective of whether the outliers were better
or worse than the average) survived correction.

Given that the MVS model specifies value as a linear mixture of
variance and skewness, we would expect that any regions expressing
activity correlating with gamble utility would be expected to also
show a partial correlation with both variance and skewness.
Conversely, the fact that we do not see common regions correlating
with variance and skewness would argue against a unitary represen-
tation of lottery value. However, this may be due to reduced detection
power in an additive mixture of random variables, thus we also tested
directly for a representation of value. We ran separate GLMs to
identify regions correlating with the trial-by-trial utility of the lottery
(stimulus value; MVS model), the difference in utility of lottery vs.
sure amount (relative stimulus value), and utility of the chosen–
utility of the unchosen option (relative action value). No areas
correlated with stimulus value, even within regions of interest
(variance and skew-sensitive areas, or prefrontal cortex) at an
uncorrected (pb0.001) threshold. For relative stimulus value, we
observed a 5-voxel cluster at uncorrected significance (pb0.001,
voxel level) in right ventromedial OFC. Relative action values were
reflected in robust activation in a network of regions comprising
bilateral precentral sulcus extending into supplementary motor area,
and bilateral inferior parietal lobe (pb0.001, corrected). As might be
expected, these regions form a typical motor/motor preparatory
network (Cunnington et al., 2002).

Integration with variance and skewness preferences
We considered whether regions encoding the statistics of lottery

outcomes also integrated this information with individuals’ tastes for
risk. These variance or skewness-encoding regions could express
different sensitivities to these statistics depending upon an individual's
risk preferences. Thus we tested whether areas expressing variance and
skewness-related activity altered in sensitivity (correlation effect size)
to these statistics in amanner that correlatedwith subjects’ preferences,
as estimated from theMVSmodel. In regions encoding either positive or
negative skewness,we identifieda significant interactionbetweenBOLD
activity for positive skewness and subject-specific skew-preference
(peak voxel MNI coord: -36, 24, −16; p=0.007, cluster extent=80
voxels) in anterior insula. Thus, the more positive a subjects’ skew
parameter (preference for positive over negative skewness) the
stronger the correlation with skewness in this area (Fig. 4, Supplemen-
tary Table 3). There was no significant correlation surviving correction
between behavioural preference and skewness-evoked activity in other
regions. By contrast, theposterior parietal area correlatingwith variance
did not express differential activity that co-varied with subject-specific
variance preference (masked for voxels expressing variance-related
activity, no significant voxels at mask threshold 0.05 uncorrected).

Choice-related activity
Information about summary statistics informed individuals’

choices, hence we next asked whether activity in regions responsive
to variance and skewness also correlated with choice. There was a
significant effect of choice (the choice regressor expressing the effect
of gambleNsure) within variance-sensitive PPC (peak voxel MNI
coord: 26, −60, 54; p=0.008, cluster extent=547 voxels, small
volume-corrected for variance-related areas of activity) (Fig. 5), in
skew-sensitive ventral striatum (peak voxel MNI coord: −8, 4, −10;
p=0.016, small volume-corrected for skewness-related areas of
activity) and medial prefrontal region (peak voxel MNI coord:
6,44,18; p=0.049, small-volume corrected for skewness-related
areas of activity) (Supplementary Table 4). In addition to these
areas, across the whole-brain, a network of regions showed greater
BOLD signal for gamble than sure choices (Supplementary Table 5),
including ventral striatum, prefrontal, occipital and bilateral posterior
parietal cortex. No areas showed the opposite pattern (sureNgamble
signal).

If activation correlating with choice within risk-sensitive regions
influences action selection, a strong expectation is that this choice-
coupled neural activity should also be modulated by individual risk
preferences. This provides an alternative mechanism for risk prefer-
ences to influence decisions, rather than only by altering neural
sensitivity to the stimulus dimensions of variance and skewness. For
example, in regions sensitive to variance onemight predict an enhanced
correlation of BOLDsignalwith choice (gambleNsure) inmore variance-
averse individuals. Within the variance-sensitive PPC region, we
observed just such an effect (peak voxel MNI coord: 36, −58, 42;
p=0.035, cluster extent=656 voxels). Thus, for subjects with strong
variance aversion there was greater activity for a gamble choice than a
sure choice (Figs. 6A and B). Clusters in right supplementarymotor area
(SMA), posterior cingulate, and occipital lobe also showed a similar
relationship (Supplementary Table 6). Performing the same analysis for
skewness revealed that left anterior insula and rightmid-insula express
a positive correlation between choice and skew-preference (peak voxel
MNI coord: −24, 22, −6; p=0.033, small-volume corrected, cluster
extent=666 voxels) (Figs. 6C and D, Supplementary Table 7).
Moreover, the same right insula region showing an interaction between
choice-related activation and skew-preference also showed a positive
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Fig. 6. Coupling of choice and neural activity in PPC and anterior insula depends upon subject-specific risk preferences. A. Correlation between PPC activity for choice (gambleNsure)
and individual variance-aversion (peak coord: 36, −58, 42; p=0.035, whole-brain corrected). B. Contrast estimate (for gambleNsure choice), from peak coordinate (indicated by
cross-hairs), correlated with behavioural variance preference parameter, with greater activity for gamble vs sure choices in variance-averse individuals, but greater activity for sure
vs gamble choices in variance-seeking individuals. C. Correlation between anterior insula activity for choice (gambleNsure) and individual skew-preference (peak coord: left:−24,
22, −6, p=0.033; right: 54, −4, −12, p=0.039; small-volume corrected). D. Contrast estimate (for gambleNsure choice), from peak coordinate (indicated by cross-hairs),
correlated with behavioural skewness-preference parameter, with greater activity for gamble vs sure choices in positive skew-seeking individuals. Within this cluster, there was also
a significant correlation between variance-seeking and choice-related activity (at coord: 46, −4, −14; p=0.040, small volume corrected for skew-sensitive voxels).
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correlation between choice-related activation and variance-preference
(at voxelMNI coord: 46,−4,−14; p=0.040 small volume corrected for
skew-sensitive voxels, Supplementary Table 6), suggesting that right
anterior insula activity integrates both variance- and skew-preferences
to influence choice.

Discussion

We show that individuals’ choices are sensitive to both the spread
(variance), and the shape and asymmetry of a distribution of possible
outcomes (skewness). Moreover, these different risk dimensions have
distinct neural representations, providing strong evidence that the
brain adopts a ‘summary statistic’ approach to outcome evaluation
(Rangel et al., 2008).

Our paradigm substantially differs from previous neuroeconomic
approaches to risk, as we independently manipulate statistical
features of a distribution of outcomes. Risk typically is approximated
by variance (Christopoulos et al., 2009; McCoy and Platt, 2005;
Preuschoff et al., 2006; Tobler et al., 2007). This neglects other
psychologically salient features, such as small chances of much better
(positive skewness) or worse (negative skewness) than average
outcomes (Coombs, 1960; Harvey and Siddique, 2000; Jullien and
Salanie, 2000). Contrasting with alternative risk-measures focusing
only on the chance of poor outcomes (Bawa, 1975; Fishburn, 1984),
we find participants influenced by both negative and positive
skewness in addition to variance.

Skewness-preference permits simultaneous ‘risk-aversion’ and ‘risk-
seeking’, inexplicable by variance-sensitivity alone (Garrett and Sobel,
1999). On average, our participants were both variance and positive
skew-averse, disliking uncertainty (outcome dispersion) and preferring
gambles with mostly above average rewards but risking a small chance
of low payoffs. An example of negative skew preference would be to
prefer property investment, with reasonable average yields but a small
chance of heavy losses, to the opportunity of investing in oil exploration,
with potentially high yields but a large probability of not recouping
one's original investment. In contrast with normative theoretical
predictions of positive skew preference in variance averse individuals
(Scott and Horvath, 1980), we find relative negative skew preference
and variance aversion (on average) in our sample of participants.
However, in experiments where preferences for lotteries with different
variance and skewness have been systematically examined, individuals
in fact exhibit heterogeneous behaviour.

Several studies have reported predominantly positive skew-
seeking behaviour (Alderfer, 1970; Coombs and Pruitt, 1960), or
used positive skew preference to explain gambling behaviour (Garrett
and Sobel, 1999; Golec and Tamarkin, 1998). Other studies have
reported varied preferences, with different participants showing
positive or negative skew-seeking as is the case in our study (Lopes,
1984), or negative skew preference on average (Lichtenstein, 1965).
Skewness has also been shown to influence perceived riskiness in
different directions (Coombs and Bowen, 1971), and negative skew-
seeking investment behaviour is also common in investors (Taleb,
2004; Tan, 1991). Here we systematically examine these separate
influences by experimental design, both showing that the overall
shape of the outcome distribution drives choice and independently
evokes neural activity. Together this supports the idea that ‘risk
preference’ is not a unitary measure, either of behaviour or in terms of
activity it is likely to evoke in the brain. While there are no clear
biological restrictions on the range of preferences individuals are
allowed to exhibit in a summary statistic framework, it is nonetheless
interesting to speculate on the reasons why these studies report
different preferences for variance and skewness. Distorted estimates
of very small probabilities are likely to have an additional impact on
choice, and some previous studies have used extremely unlikely
eventswhen demonstrating skew-preferences. Many previous studies
also present mixed gambles (with both possible financial losses and
gains), rather than presenting decisions purely in the gain domain as
in the current study. This raises the possibility that contextual frame
(loss or gain) of the decision could additionally influence pre-
dilections for risk.

Consistent with our behavioural finding of sensitivity to different
elements of risk, we also find distributed risk representation in the
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brain. Variance was linearly encoded in PPC, concurring with single
unit and fMRI data showing enhanced PPC activity during risky
decision making (Huettel et al., 2005; Mohr et al., 2010a; Platt and
Glimcher, 1999). Parietal cortex represents numerical range (Piazza et
al., 2007) and expresses an interaction between number and space
(Hubbard et al., 2005), suggesting that variance representation in PPC
reflects an intuitively spatial evocation of the spread of an outcome
distribution. This may explain the absence of PPC activity when risk is
varied by altering win probability, rather thanmanipulating the range
of outcome amounts (Preuschoff et al., 2006). While possible that PPC
expresses an effect consequent upon increasing risk, such as enhanced
attention (Behrmann et al., 2004), we find a specific effect for variance
rather than skewness, despite both influencing risk perception.

Skewness-related activity in DMPFC, insula, and striatum encodes
a dimension independent of variance, emphasising that risk is not
synonymous with variance alone. Anterior insula and DMPFC are
consistently implicated in risk-processing (Bach et al., 2009; Behrens
et al., 2007; Christopoulos et al., 2009; Critchley et al., 2001;
Engelmann and Tamir, 2009; Kuhnen and Knutson, 2005; Mohr et
al., 2010b; Smith et al., 2009; St Onge and Floresco, 2009; Tobler et al.,
2007), and ventral striatum manifests immediate and delayed
responses to probability (Preuschoff et al., 2006) and reward
magnitude (Knutson et al., 2005; Yacubian et al., 2007). These prior
observations may have tapped into a combination of risk elements,
while here we dissociate variance and skewness. Previously observed
non-linear ventral striatum activation for probability (Hsu et al.,
2009) could be explained by positive skewness encoding as these
variables are correlated when binary outcomes are used. It is also
possible that the converse is true, although less likely given that we
employ multiple outcomes. Moreover, there is no clear model of how
multiple outcomes would be encoded, indeed one might expect neural
representation of both ‘win’ and ‘loss’ outcomes assuming separate
encoding of amounts and probabilities. While agnostic as to the exact
coding of the summary statistics of outcomedistributions (e.g. variance,
standard deviation and coefficient of variation are correlated measures
of spread), critically we find responses to dispersion versus asymmetry
of outcomes evokes activity in anatomically separate networks.

We identify responses to positive skewness in ventral striatum,
anterior insula, and IFG, but to negative skewness in DMPFC. This
distinction parallels related findings that DMPFC encodes the
probability of loss (Smith et al., 2009; Xue et al., 2010) and could
explain why studies do not report risk-correlation in ventral striatum
when skewness is controlled (Christopoulos et al., 2009; Tobler et al.,
2009). Consistent with our data, PPC insula and DMPFC activation was
also reported in a study with choices between multiple-outcome
lotteries (Venkatraman et al., 2009), potentially reflecting preferences
for different kinds of outcome distribution. Our finding of separable
anatomic regions correlating with positive and negative skewness
does not predict that subjects would have distinct attitudes toward
positive and negative skewness. While this is a plausible prediction
we find no evidence for a separate expression of preference in these
regions. The skewness parameter from the MVS model reflects how
much subjects value positive relative to negative skewness in a
gamble. Given that we can approximate subjects’ behaviour with a
single skew parameter, it is equally likely that skew-preference arises
from an interaction between brain areas. In order for the MVpSnS
model to win (in terms of predicting choice), our participants would
need to have very different sensitivities for positive and negative
skewness, or express skewness intransitivities such as liking symmetric
above any skewed gambles. We acknowledge that it is possible that
within a larger behavioural sample we would have sufficient data to
demonstrate such different sensitivities for positive and negative
skewness.

A recent paper (Wu et al., 2011) has also examined skewness,
investigating neural responses to the presentation of 4 repeatedly
presented mixed gambles (high variance, low variance, positively
skewed, negatively skewed) in a passive viewing (no choice)
paradigm. In line with our present findings, they report greater
ventral striatal activity for positive versus negatively skewed gambles
and anterior insula sensitivity to skewness. There are several
important differences and limitations in the aformentioned study
compared to the present experiment. Critically, our subjects made
active choices allowing a distinction between processes supporting
risk quantification and evaluation from choice. We did not present
outcomes of gambles on each trial, thus could outrule feedback-
related activity. In addition, we employ an orthogonal parametric
design presenting a range of gambles with different variance and
skewness, avoiding a potential confound between skewness and high
variance and the limitation of using solely 4 stimuli in a cognitive
paradigm. These design features enables us to accurately and
independently measure behavioural and neural sensitivity to each
risk dimension. Interestingly, Wu at al elicited ratings of arousal,
perceived risk and preference for each of the 4 lotteries and found that
these ratings are not commensurate, highlighting a disparity between
the gambles that subjects preferred and gambles that evoked an
affective response. Despite preferences in their sample being very
different from our present participants, there is a similarity in neural
responses, with anterior insula being active for positively skewed
gambles in our negative-skew preferring subjects, whereas it was
most active for skewed versus symmetric gambles in Wu's study
where subjects exhibit converse preferences.

Medial PFC and striatum are reciprocally connected (Croxson et al.,
2005; Sesack et al., 1989), project to prefrontal and pre-motor areas
involved in action planning and execution (Haber, 2003), and insular
cortex (Guldin and Markowitsch, 1983; Shi and Cassell, 1998). These
connections can mediate information transmission between areas
translating different features of the outcome distribution into
summary statistics, and areas integrating this information with
context and individual risk preferences. This distributed network for
risk evaluation echoes distributed neural processing in vision, where
discrete visual dimensions (colour, motion, form), are processed in
segregated networks (Courtney and Ungerleider, 1997).

Anterior insula and IFG activity is modulated by individual taste for
risk, expressing greater activity for positively skewed gambles when
individuals prefer positive skewness, and showing a correlation with
choice also dependent upon individual skewness and variance-
preference. This supports the idea of these areas evaluating risk and
subsequently promoting or inhibiting risk-taking (Christopoulos et
al., 2009; Engelmann and Tamir, 2009; Paulus et al., 2003; Xue et al.,
2010). The insula is suited to perform such integration, central in
representing interoceptive states consequent upon perception of risk
(Craig, 2009; Singer et al., 2009), with motoric basal ganglia and pre-
motor projections, and to value-comparison regions in orbitofrontal
cortex (Augustine, 1996; FitzGerald et al., 2009; Plassmann et al.,
2007). We observed greater loading for skewness than variance in
anterior insula, generated by a range of skewness-preference in our
subjects, as opposed to previous studies where skewness was fixed
(Christopoulos et al., 2009; Tobler et al., 2009). We also decorrelated
choice from risk, whereas previous studies may have detected risk
anticipation contingent on choice rather than the process of
quantifying decision statistics (Christopoulos et al., 2009; Kuhnen
and Knutson, 2005; Preuschoff et al., 2006; Tobler et al., 2009; Xue et
al., 2010). Anticipation of chosen risk could recruit insula activity,
explaining consistent reports of (risk-attitude dependent) activity in
this region.

PPC and ventral striatum activity also correlated with choice, with
the strength of correlation in PPC dependent upon the degree of
variance-aversion, corroborating previous findings (Weber and
Huettel, 2008). Striatum responded to both positive skewness and
gamble choice, although subjects mostly avoided positively skewed
gambles. One possibility here is that striatum could encode statistical
properties of a gamble and independently engender action following
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integration of risk preferences and statistical information. Note that
variance preferences are also significant in driving choice, hence could
also influence striatal activity. Alternatively, striatum could exert a
negative influence on the choice to gamble. The pattern of activity we
observed in PPC would be expected in a region inhibiting risky choice,
as the strongest coupling occurs in variance-averse individuals. This
region overlaps the medial intraparietal area, integral to motor
intention (Andersen and Cui, 2009; Grefkes et al., 2004), thus parietal
cortex might promote safe choices via polysynaptic links to basal
ganglia and premotor regions (Clower et al., 2005; Tanne-Gariepy et
al., 2002). The PPC has direct insula connections (Cavada and
Goldman-Rakic, 1989), thus may also directly pass quantitative
information about variance to anterior insula.

It is interesting that a network of brain regions demonstrates
greater activation for a gamble than a sure choice, as has been
reported in previous studies (Christopoulos et al., 2009; Matthews et
al., 2004;Weber and Huettel, 2008). This indicates that recruitment of
neural regions is different when generating gamble versus sure
choices. This is contrasts with the simplifying assumption portrayed
in our behavioural models, where the process of choice is modelled as
a softmax comparison between equally-weighted utilities for the
lottery and sure amount. While we make no assumptions here about
the neural processes underlying choice generation, similar differential
activation in striatum has been related to the acceptance or rejection
of a default action (Yu et al., 2010) and in prefrontal cortex during the
selection of ‘exploratory’ actions (Daw et al., 2006).

In this study, we consider two plausible ways in which individual
preferences could modulate neural activity. We first find preferences
modulating stimulus-evoked activity, with individuals with stronger
preference for skewness demonstrating increased insula sensitivity to
skewness. Secondly, we show variance and skewness preferences
modulate action-related neural activation, as individuals with stronger
preferences have greater coupling between neural activity and choice
within risk-sensitive regions. Overall, this provides evidence that
preferencesmodulate both stimulus-evoked and choice-related activity.
Conclusion

Classical utility theory assumes values are assigned to possible
states of the world, thenweighted by probability (Machina, 2005).We
provide evidence for an alternative hypothesis, that the brain is
adapted to decompose decisions into summary statistics reflecting
dispersion and asymmetry of outcome distributions. Compartmen-
talizing independent stimulus properties to deconstruct neural
networks supporting perception is well established in sensory
neuroscience. Similarly, we find that contrary to common assumption,
risk is not monolithic but can be decomposed into separate
dimensions which have segregated representations in the brain.
Strikingly, neural activity in risky choice also reflects individuals’
tastes for different features of an outcome distribution, an evaluation
and integration supported by dissociable neural regions involved in
risk processing.
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Supplementary Figure Legends 
 
Supplementary Figure 1: 

Figure of stimulus set construction, plotted as variance against skewness of lottery outcomes. Blue dots 

represent all possible gambles, constructed with EV = £1.26-£1.34, according to stimulus set constraints. Green 

dots represent desired array of stimuli, and red dots are the actual selected stimuli (n=60) for use in experiment, 

with independent manipulation of variance and skewness. 

 
Supplementary Figure 2: 

Comparison of models including: mean only (M), mean-variance (MV), mean-skewness (MS), mean-variance-

skewness (MVS), power utility (EUT), mean-variance-positive skewness (MVpS), mean-variance-negative 

skewness (MVnS), mean-positve skewness-negative skewness (MpSnS), mean-variance-positive skewness-

negative skewness (MVpSnS), probability weighting (PW) and cumulative prospect theory (CPT). Relative 

log-evidence, with model evidence approximated by either AIC or BIC to penalise for model complexity, 

calculated against worst performing M model, across subjects, and are given above each model. A higher 

relative log-evidence indicates a better model fit (higher model likelihood).  

 

 

 

SUPPLEMENTARY TABLE 1 

Table of lotteries used in experiment: 60 lotteries were generated to form the stimulus set for this experiment, 

orthogonal in variance and skewness by design. Lottery outcomes were between 20p and 260p, with associated 

probabilities varying in 0.1 intervals. The amounts and probabilities used for each lottery are shown (0 indicates 

that amount not shown in lottery). The expected value (pence), variance ((pence)2 x 10-4) and skewness of each 

lottery are shown in the last 3 columns. 

 

 

 

 

 

 

 

 



 
  Amounts (p)       

Lottery 
number 

0  20  40  60  80  100  120  140  160  180  200  220  240  260 
Expected 
value 

Variance  Skewness 

1  0  0  0  0.1  0 0.2  0.1  0.2 0.4 0 0 0 0 0 130  0.11 ‐0.83
2  0  0  0  0.1  0 0.1  0.2  0.4 0 0.2 0 0 0 0 132  0.11 ‐0.49
3  0  0  0  0  0.2  0.1  0.2  0.1  0.3  0.1  0  0  0  0  130  0.11  ‐0.19 
4  0  0  0  0  0.1 0.3  0.1  0.2 0.1 0.2 0 0 0 0 130  0.11 0.19
5  0  0  0  0  0.2 0  0.4  0.2 0.1 0 0.1 0 0 0 128  0.11 0.49
6  0  0  0  0  0.1 0.1  0.5  0.1 0 0.1 0.1 0 0 0 130  0.11 0.81
7  0  0  0.1  0  0.2  0  0.1  0.1  0.5  0  0  0  0  0  126  0.18  ‐0.85 
8  0  0  0  0.1  0.2 0  0.1  0.1 0.3 0.2 0 0 0 0 132  0.18 ‐0.49
9  0  0  0.1  0  0 0.1  0.1  0.6 0 0 0 0.1 0 0 132  0.18 ‐0.17
10  0  0  0.1  0  0 0  0.6  0.1 0.1 0 0 0.1 0 0 128  0.18 0.17
11  0  0  0  0.1  0.1  0.1  0.2  0.3  0.1  0  0  0.1  0  0  128  0.18  0.49 
12  0  0  0  0.1  0 0.1  0.6  0 0 0.1 0 0.1 0 0 128  0.17 0.83
13  0  0.1  0  0  0.2 0  0.1  0.2 0.2 0.2 0 0 0 0 126  0.24 ‐0.84
14  0  0  0.1  0.1  0 0  0.3  0.1 0.1 0.2 0.1 0 0 0 132  0.24 ‐0.50
15  0  0  0.1  0  0.1  0.2  0  0.1  0.4  0  0  0.1  0  0  132  0.24  ‐0.18 
16  0  0  0  0.2  0 0.2  0.2  0.1 0 0.1 0.2 0 0 0 128  0.24 0.18
17  0  0  0.1  0  0.1 0.1  0.1  0.5 0 0 0 0 0.1 0 128  0.24 0.50
18  0  0  0  0  0.2 0.4  0.1  0 0 0.1 0.1 0.1 0 0 128  0.24 0.83
19  0  0.1  0  0.1  0.1  0  0  0.1  0.4  0.1  0.1  0  0  0  132  0.31  ‐0.83 
20  0  0  0.2  0  0.1  0.1  0  0  0.4  0.1  0.1  0  0  0  128  0.31  ‐0.50 
21  0  0.1  0  0  0.1 0.1  0.4  0 0 0 0.3 0 0 0 128  0.31 ‐0.16
22  0  0  0.1  0  0.3 0  0.2  0.1 0 0 0.3 0 0 0 126  0.30 0.17
23  0  0  0  0.1  0.1  0.4  0  0  0.1  0.1  0  0.2  0  0  132  0.31  0.50 
24  0  0  0  0  0.4  0.2  0.1  0  0  0.1  0  0.2  0  0  126  0.30  0.83 
25  0.1  0  0.1  0  0 0  0.2  0.1 0.4 0 0 0.1 0 0 128  0.37 ‐0.83
26  0  0  0.3  0  0 0  0.2  0 0 0.5 0 0 0 0 126  0.37 ‐0.50
27  0  0  0.2  0.1  0  0  0.1  0.3  0  0.1  0.1  0.1  0  0  128  0.37  ‐0.17 
28  0  0  0.1  0  0.3  0  0.2  0  0  0.2  0  0.2  0  0  132  0.37  0.17 
29  0  0.1  0  0  0 0.3  0.2  0.2 0 0 0.1 0 0 0.1 130  0.37 0.50
30  0  0  0.1  0  0.2 0.2  0.2  0 0 0.2 0 0 0 0.1 126  0.37 0.83
31  0.1  0  0.1  0.1  0  0  0.1  0  0.1  0.5  0  0  0  0  128  0.43  ‐0.83 
32  0.1  0  0.1  0  0.1  0  0.2  0.1  0  0.3  0  0.1  0  0  126  0.43  ‐0.50 
33  0  0  0.2  0.2  0 0  0  0.2 0 0.1 0.3 0 0 0 126  0.43 ‐0.16
34  0  0.1  0  0.1  0 0.1  0.2  0.2 0.1 0 0 0 0.2 0 134  0.43 0.16
35  0  0  0.2  0  0 0.2  0.3  0 0.1 0 0 0 0.2 0 128  0.43 0.50
36  0  0  0  0.3  0  0.3  0  0.1  0.1  0  0  0.1  0  0.1  126  0.43  0.83 
37  0.2  0  0  0  0 0  0.2  0.1 0.3 0 0.1 0.1 0 0 128  0.50 ‐0.84
38  0  0.2  0.1  0  0 0  0.2  0 0 0.3 0.2 0 0 0 126  0.50 ‐0.50
39  0  0.1  0.1  0.2  0 0  0  0 0.4 0 0 0.2 0 0 126  0.50 ‐0.17
40  0  0.1  0  0.1  0.1  0.1  0.1  0.2  0  0  0.1  0  0.2  0  134  0.50  0.17 
41  0  0  0.1  0.2  0.1 0  0.3  0 0 0 0.1 0 0.2 0 128  0.50 0.50
42  0  0  0.1  0.1  0 0.3  0.1  0.2 0 0 0 0 0 0.2 132  0.50 0.84
43  0.2  0  0  0  0 0.2  0  0 0.1 0.2 0.3 0 0 0 132  0.56 ‐0.83
44  0.1  0  0.2  0  0.1  0  0  0  0  0.5  0  0.1  0  0  128  0.56  ‐0.50 
45  0.1  0  0.1  0  0.2 0.1  0  0 0.1 0.1 0.2 0 0.1 0 128  0.56 ‐0.17
46  0  0  0.2  0.2  0 0  0  0.2 0 0.2 0 0.1 0 0.1 132  0.56 0.17
47  0  0  0.1  0  0.5 0  0  0 0 0.1 0 0.2 0 0.1 132  0.56 0.50
48  0  0  0.1  0.2  0.1  0.1  0.2  0  0.1  0  0  0  0  0.2  126  0.56  0.84 
49  0.1  0.2  0  0  0 0  0  0 0.1 0.4 0.2 0 0 0 132  0.62 ‐0.83
50  0.1  0.2  0  0  0 0  0.1  0 0.3 0.1 0 0.2 0 0 126  0.62 ‐0.50
51  0.1  0.1  0.1  0  0 0  0.1  0.2 0.1 0.1 0.1 0 0 0.1 126  0.62 ‐0.16
52  0  0.1  0.1  0.2  0.1  0  0  0  0.1  0.2  0  0  0.2  0  126  0.62  0.17 
53  0  0.1  0.1  0  0.1 0.4  0  0 0 0 0 0 0.3 0 126  0.62 0.50
54  0  0  0  0.2  0.4 0  0.1  0 0 0 0 0.1 0 0.2 130  0.62 0.81
55  0.2  0.1  0  0  0 0  0  0 0.1 0.3 0.3 0 0 0 132  0.69 ‐0.82
56  0.1  0.2  0  0  0  0  0  0.2  0.1  0  0.3  0  0.1  0  132  0.69  ‐0.50 
57  0.2  0  0  0  0.2 0.1  0  0 0 0.3 0.1 0 0 0.1 126  0.69 ‐0.16
58  0  0.1  0.1  0.2  0 0  0.2  0 0 0.1 0 0 0.3 0 132  0.69 0.17
59  0  0  0.1  0.2  0.3 0  0  0 0 0 0.2 0 0 0.2 132  0.69 0.50
60  0  0  0  0.3  0.3  0.1  0  0  0  0  0  0  0.1  0.2  128  0.69  0.82 

 

 



 
SUPPLEMENTARY TABLE 2 

 
Response to Risk Dimensions: A. Anatomical locations of regions positively correlating with the lottery 

variance on each trial. B. Anatomical locations of regions correlating with increasing positive skewness on each 

trial. C. Anatomical locations of regions correlating with increasing negative skewness on each trial. We report 

significant clusters surviving correction at p≤0.05 († = cluster-level family-wise error whole-brain corrected p-

value), or significant voxels at p≤0.05 within regions of interest (†† = voxel-level family-wise error corrected p-

value). Peak voxel MNI coordinates within significant clusters are given, with corresponding voxel-level Z 

scores. We define anatomical ROIs by 2cm-diameter spheres centred upon MNI coordinates for anterior 

insula/inferior frontal gyrus, ventral striatum, and anterior cingulate/dorso-medial prefrontal cortex, where risk-

related activation has previously been reported.  

Area L/R 
MNI coordinates 

Z score P value 
Cluster 

Extent x y z 

A. Response to Variance 

Posterior Parietal Cortex R 

32 -60 50 3.71 

0.003† 1318 28 -46 46 3.66 

16 -62 48 3.59 

B. Response to Positive Skewness 

Anterior insula / inferior frontal gyrus R 30 16 -14 3.59 0.021†† 117 

Anterior insula / inferior frontal gyrus L -40 24 -16 3.59 0.017†† 67 

Ventral Striatum L 
-10 4 -14 3.36 0.033†† 

228 
-16 8 -8 3.20 0.050†† 

C. Response to Negative Skewness 

Dorsal medial prefrontal cortex / medial frontal gyrus 

R 4 44 36 4.76 

<0.001† 1673 
L 

-8 32 34 3.93 

-2 48 18 3.38 



 
SUPPLEMENTARY TABLE 3 

Correlation of skew-related activity with skew-preference: 2nd-level analysis of anatomical locations of 

regions where the strength of the skewness response correlated with subject-specific skew-preferences 

(estimated from MVS model). We restrict our analysis to, and perform family-wise error correction for multiple 

comparisons within all voxels sensitive to skewness (identified at p<0.01 uncorrected). Voxels reported at 

p<0.05 corrected. 

 

Area L/R MNI coordinates Z score
P 

value 

Cluster 

Extent 

  x y z    

Anterior insula / inferior frontal gyrus L -36 24 -16 4.36 0.007 80 

Anterior insula / inferior frontal gyrus / BA45 L -56 18 6 4.09 0.018 38 

 

  



 
SUPPLEMENTARY TABLE 4 

Choice-related activity I: BOLD signal correlating with choice within variance- and skew-sensitive regions of 

interest. We report significant voxels at p<0.05, family-wise error corrected for regions of interest. 

 

Area L/R MNI coordinates Z score P value Cluster Extent

  x y z    

Posterior parietal cortex 

(variance-sensitive voxels) 
R 

26 -60 54 4.03 0.008 

547 30 -68 30 3.97 0.010 

18 -62 30 3.70 0.023 

Ventral Striatum 

(skew-sensitive voxels) 
L 

-8 4 -10 3.11 0.016 
39 

-16 4 -15 2.83 0.033 

Medial Prefrontal cortex 

(skew-sensitive voxels) 
R 6 44 18 3.53 0.049 525 

 

  



 
SUPPLEMENTARY TABLE 5 

Choice-related activity II: Anatomical locations of regions expressing greater BOLD signal for gamble versus 

sure choices. We report significant clusters surviving correction at p<0.05 (cluster-level family-wise error 

corrected). Peak voxel MNI coordinates within significant clusters are given, with corresponding voxel-level Z 

scores. 

 

Area L/R MNI coordinates Z score P value Cluster Extent

  x y z    

Ventral Striatum L -6 8 -4 4.59 

<0.001 2614 Ventral Striatum R 18 22 -2 4.40 

Middle Frontal Gyrus R 20 40 -14 4.43 

Occipital Lobe/BA17 

L 

-14 -94 -8 4.34 

<0.001 1742 Occipital Lobe -26 -84 -8 4.30 

Occipital Lobe/BA18 -8 -78 -4 4.02 

Superior Parietal Lobe 

L 

-12 -70 40 4.20 

0.001 785 Superior Parietal Lobe -20 -60 52 3.42 

Precuneus -16 -60 26 3.03 

Superior Parietal Lobe 

R 

26 -60 54 4.03 

<0.001 1248 Parietal Lobe/Precuneus 20 -62 32 4.02 

Parietal Lobe/Mid-occipital gyrus 30 -68 30 3.97 

 



 
SUPPLEMENTARY TABLE 6 

Interaction between choice and variance-preference: Regions where neural response to choice 

(gamble>sure) correlated with individual variance-preference. We report significant clusters at p<0.05 family-

wise error whole-brain corrected (†  - family-wise error small volume corrected for region showing interaction 

between skew preference and choice). Peak voxel MNI coordinates within significant clusters are given, with 

corresponding voxel-level Z scores. 

 

Area L/R MNI coordinates Z score 
P 

value 

Cluster 

Extent 

  x y z    

Superior Frontal Gyrus / 

Supplementary Motor Area 
R 

6 20 58 4.10 

0.014 790 6 34 38 3.28 

8 24 36 3.73 

Posterior Cingulate / BA29 L -2 -38 20 3.76 

0.026 699 Occipital Lobe / Lingual Gyrus R 20 -72 0 3.43 

Occipital Lobe - Cuneus R 12 -70 6 3.36 

Posterior Parietal Cortex / BA40 

R 38 -58 42 3.67 

0.035 656 R 48 -58 40 3.14 

R 30 -66 34 3.13 

Anterior insula / inferior frontal gyrus R 46 -4 -14 3.31 0.040† 57 

 



 
SUPPLEMENTARY TABLE 7 

Interaction between choice and skew-preference: Regions where neural response to choice (gamble>sure) 

correlated with individual skew preference. We report significant clusters at p<0.05 family-wise error corrected 

within regions of interest. Peak voxel MNI coordinates within significant clusters are given, with corresponding 

voxel-level Z scores. 

 

Area L/R MNI coordinates Z score P value 
Cluster 

Extent 

  x y z    

Anterior Insula / Inferior 

Frontal Gyrus 
L 

-24 22 -6 3.78 

0.033 666 -10 12 -12 3.29 

-38 4 -4 3.11 

Insula / Superior Temporal 

Gyrus 
R 

54 -4 -12 3.60 

0.039 643 52 2 -2 3.59 

46 -8 -14 3.53 
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