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SUMMARY

How the brain uses success and failure to optimize
future decisions is a long-standing question in neuro-
science. One computational solution involves updat-
ing the values of context-action associations in
proportion to a reward prediction error. Previous
evidence suggests that such computations are ex-
pressed in the striatum and, as they are cognitively
impenetrable, represent an unconscious learning
mechanism. Here, we formally test this by studying
instrumental conditioning in a situation where we
masked contextual cues, such that they were not
consciously perceived. Behavioral data showed
that subjects nonetheless developed a significant
propensity to choose cues associated with monetary
rewards relative to punishments. Functional neuro-
imaging revealed that during conditioning cue values
and prediction errors, generated from a computa-
tional model, both correlated with activity in ventral
striatum. We conclude that, even without conscious
processing of contextual cues, our brain can learn
their reward value and use them to provide a bias
on decision making.

INTRODUCTION

Humans frequently invoke an argument that their intuition can re-

sult in a better decision than conscious reasoning. Such asser-

tions may rely on subconscious associative learning between

subliminal signals present in a given situation and choice out-

comes. For instance, clinicians may improve their therapeutic

decisions through learned associations between treatment

outcomes and subliminal signs presented by their patients.

Likewise, poker players can improve their gambles through

a learned association between monetary outcomes and sublim-

inal behavioral manifestations of their opponents (the so-called

‘‘gamblers’ tell’’).

The idea that such instrumental conditioning can occur sub-

consciously has been around for almost a century (Thorndike,

1911). This assumption originally rested on observations that re-

wards and punishments shape behavioral responses in species

allegedly lacking conscious awareness. However, subliminal
conditioning studies in humans have so far been restricted to

Pavlovian paradigms such as fear conditioning (Clark and

Squire, 1998; Knight et al., 2003; Morris et al., 1998; Olsson

and Phelps, 2004), where subliminal stimuli (like unseen faces)

are paired with unpleasant events (like white noise) to increase

automatic responses (like skin conductance). To our knowledge,

subliminal instrumental conditioning, where decision making

would be biased by unperceived cues predicting rewards or

punishments, has never been previously demonstrated.

Our subliminal conditioning task was adapted from a published

supraliminal task, wherein subjects selected between visual

cues so as to learn choices that maximized monetary outcomes

(Pessiglione et al., 2006). In our previous study, we modeled sub-

jects’ behavior by optimizing the free parameters of a standard

machine learning algorithm (termed Q learning), to get maximal

likelihoods for the observed decisions. When we regressed key

output variables of the optimized model against simultaneously

acquired functional neuroimaging data, we showed that predic-

tion errors were expressed in the striatum. Postexperimental

debriefing indicated that some subjects managed to understand

the statistical structure of the task, while others appeared to rely

on what they referred to as their intuition. These latter reports

suggest that subjects can improve their decisions without

consciously following the incremental steps of the Q-learning

procedure.

The motivating assumption of the current experiment was that

processes associated with striatal learning are not consciously

accessible but, nonetheless, influence choice decision making.

Indeed, if contextual cues reach awareness, other brain systems

are likely to play a role, as expressed in conscious reasoning or

strategic control, which allows one to develop explicit knowl-

edge of statistical contingencies. However, if the cues remain

unseen, learning would solely depend on a subconscious pro-

cessing that involves the striatum, with an algorithmic structure

similar to a Q learning, which does not embody explicit informa-

tion about statistical contingencies. Under these assumptions,

we predicted that, if in our task visual cues were masked, both

striatal activity and behavioral choices would still reflect Q-learn-

ing outputs.

RESULTS

A prerequisite for the present study was to demonstrate efficient

masking of the visual cues. These cues were novel abstract sym-

bols, which were scrambled and mixed to create mask images.
Neuron 59, 561–567, August 28, 2008 ª2008 Elsevier Inc. 561

mailto:mathias.pessiglione@gmail.com


Neuron

fMRI Study of Subliminal Conditioning
To assess visual awareness, we successively displayed two

masked cues on a computer screen and asked subjects whether

they perceived a difference or not. We reasoned that if subjects

are unable to correctly perceive any difference between the

masked cues, then they are also unable to build conscious rep-

resentations of cue-outcome associations. The procedure has

the advantage of not showing the cues unmasked, so that, by

the end of the experiment, subjects had no idea what the cues

look like.

The perceptual discrimination task was performed outside the

scanner at the beginning of the experiment, in order to adapt du-

ration of cue display to each individual, and in the scanner at the

end of the experiment, to check for any effect of learning or

change in visual conditions. For all subjects, cue duration was

set at either 33 or 50 ms and was kept fixed through the entire

experiment. In every individual, correct guessing on the final as-

sessment did not differ from chance (p > 0.05, chi-square test).

At group level, average percentage of correct responses for

the 20 subjects was 48% ± 3%, which again was not different

from chance (p > 0.5, two-tailed paired t test). Average d0 was

0.08 ± 0.20, showing that, even when correcting for response

bias, signal detection was not different from zero (p > 0.5, two-

tailed paired t test). Thus, subjects remained unable to discrim-

inate between the different masked cues, from the beginning

to the end of conditioning sessions.

We employed the same masking procedure in the subliminal

conditioning task, in which cues were paired with monetary out-

comes (Figure 1). From these outcomes (�£1, £0, +£1), subjects

had to learn when to take the risky response (either ‘‘Go’’ or

‘‘NoGo,’’ depending on subjects). Subjects were also told that,

for the risky response, the outcome would depend on the cue

hidden behind the masking image (see instructions in Supple-

mental Data available online). As they would not see the cues,

we encouraged them to follow their intuition, taking the risky

response if they had a feeling they were in a winning trial and

choosing a safe response if they felt it was a losing trial. Note

that if subjects always made the same response, or if they

performed at chance, their final payoff would be zero.

As a dependent variable to assess for conditioning effects, we

used monetary payoff, which corresponds to the area below the

reward and above the punishment learning curves (Figure 2A).

Overall subjects won money in this task, on average £7.5 ± £1.8

(p < 0.001, one-tailed paired t test), indicating that the risky re-

sponse was more frequently chosen following reward predictive

relative to punishment predictive cues. Both reward and punish-

ment conditions also differed significantly from the neutral condi-

tion (p < 0.05, one-tailed paired t test). There was no significant

difference (p > 0.5, two-tailed paired t test) between the reward

and punishment condition: on average subjects won £24.3 ±

£1.9 and avoid losing £23.2 ± £2.1. Learning curves showed

that responses improved symmetrically for rewards and punish-

ments, ending with 63% ± 5% of correct responses on average.

Surprisingly, this plateau was reached at around the halfway

point of the learning session. The effects of subliminal condition-

ing were subsequently assessed with a preference judgment

task, in which cues were uncovered and rated by the subjects

from the most to least liked (Figure 2B). Ratings were significantly

higher for reward compared to punishment cues (p < 0.01, one-

tailed paired t test), consistent with subjects having learned the

affective values of subliminal cues, such that these values were

able to bias their preferences. When uncovering the cues, sub-

jects were also asked to signal any cue that they may have

seen during conditioning sessions; none was reported as previ-

ously seen.

Figure 1. Subliminal Conditioning Task

Successive screenshots displayed during a given

trial are shown from left to right, with durations in

milliseconds. After seeing a masked contextual

cue flashed on a computer screen, subjects

choose to press or not press a response button

and subsequently observe the outcome. In this

example, ‘‘Go’’ appears on the screen because

the subject has pressed the button, following

the cue associated with a rewarding outcome

(winning £1).

Figure 2. Behavioral Data

(A) Learning curves. Colors indicate cues for which

button presses are rewarded (green), neutral

(blue), or punished (red). Diamonds represent,

across trials, percentages of subjects that pressed

the button. Left: continuous lines join the dia-

monds to illustrate actual choices made by

subjects. Right: continuous lines represent the

probabilities of button press estimated by an

optimized Q-learning model.

(B) Preferences. After the conditioning phase,

cues were unmasked and subjects rated them,

from the most (3) to the least liked (1). The graph

shows the average rating for reward (green), neu-

tral (blue), and punishment (red) cues. Bars are ±

intersubjects standard errors of the mean.
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To model instrumental conditioning, we implemented a stan-

dard Q-learning algorithm (Pessiglione et al., 2006), with inputs

from individual histories of cues, choices, and outcomes. On

Figure 3. Neuroimaging Data

Left: ventral striatal regions isolated by regression of monetary values against

BOLD responses to cue display. Right: visual cortical regions isolated by cor-

relation of cue-value regression coefficients with individual payoffs. Slices

were taken at global maxima of interest indicated by red pointers on the above

axial glass brains. Areas shown in gray/black on glass brains and in orange/

yellow on coronal slices showed significant effect. The [x y z] coordinates of

the maxima refer to the Montreal Neurological Institute space.

(A) Statistical parametric maps using conservative threshold (p < 0.05 after

familywise error correction for multiple comparisons).

(B) Statistical parametric maps using liberal threshold (p < 0.001 uncorrected).

(C) Regression coefficients of Q values (QV) and prediction errors (PE) against

BOLD responses to cue and outcome display, respectively. Bars are ± inter-

subjects standard errors of the mean.
every trial, the model estimates the likelihood of the risky re-

sponse from the value of the displayed cue. If the risky response

was actually taken, the model then updates the value of the dis-

played cue in proportion to the prediction error. The parameters

of the model were optimized such that likelihoods of risky

responses provided the best fit of subjects’ actual responses

across conditioning sessions (Figure 2A). The Q values and pre-

diction errors generated by this optimized algorithm were then

used as regressors for analysis of brain imaging data (see

Figure S1).

We recorded brain activity while subjects performed the sub-

liminal conditioning task, using functional magnetic resonance

imaging (fMRI). We first examined brain regions reflecting Q

value at the time of cue onset, increasing their response to re-

ward-predicting cues and decreasing their response to punish-

ment-predicting cues, across learning sessions. After correction

for multiple comparisons (family-wise error, p < 0.05), we noted

significant correlated activity in ventral striatum bilaterally (Fig-

ures 3A and 3B, left). The same region was also significantly ac-

tivated at the time of outcome in keeping with prediction errors

being expressed at this time point (Figure 3C, left). In a second

analysis, we computed regression coefficients for the different

conditions at the time of cue and outcome onsets, separately

for the first and second half of conditioning sessions. Contrasts

with the neutral condition were then averaged over all ventral

striatal voxels showing significant activation at the most conser-

vative threshold in the first analysis. This confirmed that from the

first to the second half of conditioning sessions, ventral striatal

responses increased for reward cues and decreased for punish-

ment cues (Figure 4A, left). At the time of outcome onset, the

same ventral striatal region reflected positive prediction errors

in the reward condition and negative prediction errors in the pun-

ishment condition. In keeping with the Q-learning model, both

positive and negative prediction errors decreased from the first

to the second half of conditioning sessions. Thus, across sublim-

inal conditioning, the ventral striatal response was consistent

with the expression of Q values (for unseen cues) and prediction

errors (based on visible outcomes).

We further examined variability in individual performance to

explain why some subjects won more money than others.

More precisely, we searched for brain regions where coefficients

of Q-value regressors correlated with individual payoffs. These

regions were confined to extrastriate visual cortex (Figure 3A,

right) at the most conservative threshold (familywise error, p <

0.05), spreading into the ventral occipitotemporal stream

(Figure 3B, right) with a more liberal threshold (uncorrected, p <

0.001). Contrast estimates confirmed that extrastriate voxels

progressively differentiated the reward and punishment cues

from the first to the second half of conditioning sessions

(Figure 4A, right). At the time of outcome onset, these extrastriate

regions responded positively for both rewards and punishments,

showing no evidence for encoding of prediction errors. Thus,

during the subliminal conditioning task, the extrastriate visual

cortex learned to discriminate between unseen cues according

to their reward value but did not express outcome-related

prediction errors (Figure 3C, right).

To further assess whether the ventral striatum and visual

cortex were able to discriminate between the subliminal cues,
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we extracted time courses of BOLD response. These time

courses were averaged over trials, sessions, and subjects,

separately for the reward and punishment conditions (Figure 4B).

We found that BOLD responses to reward and punishment cues

significantly differed after two acquisition volumes (3.9 s) in the

ventral striatum (one-tailed paired t test, p < 0.01) and after three

(5.85 s) in the visual cortex (one-tailed paired t test, p < 0.01).

Finally, we ascertained whether neuroimaging and behavioral

effects of subliminal conditioning were driven by subjects scor-

ing at the high end in perceptual discrimination performance.

We tested for correlations between correct guessing assessed

in the final perceptual discrimination test and coefficients of Q-

value regressors in both the ventral and extrastriate cortex.

None was significant; Pearson’s correlation coefficients were

respectively�0.25 and�0.18. We also tested correlation of cor-

rect guessing with monetary payoffs from conditioning sessions

and differential ratings in the preference judgment task. Again,

Figure 4. Model-free Analyses of Brain Activations

Ventral striatum (left) and visual cortex (right) correspond to voxels surviving

familywise error correction on statistical parametric maps.

(A) Regression coefficients. Histograms represent contrasts of the reward

(green) or the punishment (red) condition with the neutral condition, at the

times of cue and outcome display. For every contrast the two joint histograms

correspond to the first (empty) and second (filled) halves of the conditioning

sessions.

(B) Time courses. BOLD responses were averaged across trials over condi-

tioning sessions, for the reward (green) and punishment (red) conditions,

relative to the neutral condition. Bars are ± intersubjects standard errors of

the mean.
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none was significant; Pearson’s correlation coefficients were

respectively 0.26 and 0.29.

DISCUSSION

We provide evidence that instrumental learning can occur with-

out conscious processing of contextual cues. This finding might

relate to previous evidence for implicit or procedural learning,

where behavioral responses can be adapted to the statistical

structure of stimuli that fails to be reported explicitly (Bayley

et al., 2005; Berns et al., 1997; Destrebecqz and Cleeremans,

2001; Seitz and Watanabe, 2003). Interestingly, implicit/proce-

dural learning has been suggested to involve the basal ganglia,

in contrast with explicit/declarative memory which would involve

the medial temporal lobe (Cohen et al., 1985; Milner et al., 1998;

Poldrack and Packard, 2003; Squire, 1992). In implicit learning

tasks, such as serial reaction time or probabilistic classification,

authors have claimed that subjects can achieve good acquisition

without explicit knowledge of the task structure. However,

methods for assessing awareness of statistical contingencies

have been criticized, principally on the issue that questions

were too demanding in terms of memory (Lagnado et al., 2006;

Lovibond and Shanks, 2002; Wilkinson and Shanks, 2004).

Thus, to formally test whether instrumental conditioning can

occur without awareness, we took a more stringent approach:

masking the cues, so that they remained unperceived.

We believe our methodology avoids most previous problems

related to assessing awareness, by demonstrating that subjects

were not able to discriminate between masked cues (without

the help of rewards and punishments), rather than retrospectively

assessing awareness of contingencies. Moreover, postcondi-

tioning recognition tests would not be sufficient in our case, since

subjects would not need to identify cues for associative learning

to be conscious. Indeed, they could learn associations between

risky response outcomesand tiny fragments of the visual dynamic

pattern formed by the mask/cue/mask flashing. However, post-

conditioning debriefing questions might be informative in explain-

ing why subjects could not discriminate between masked cues.

Thus, when we explicitly asked subjects to state what the cues

looked like, they reported in majority of cases that they had no

idea. When the subjects were presented with the cues, now

unmasked, they reported surprise at seeing the symbols while as-

serting that they had never seen them before. This suggests that

during conditioning, subjects had no a priori representational

knowledge to guide a visual search for cues hidden behind the

masks. We believe that absence of an a priori representation is

a crucial feature of our design, which, in addition to visual mask-

ing, prevented subjects from consciously seeing the cues.

Using this methodology, we show that pairing rewards and

punishments can guide behavioral responses and even condi-

tion preferences for abstract cues that subjects could not

consciously see. Note that if cues were visible, learning curves

would have been optimized in one trial or two; hence we are

not claiming that conscious awareness is unhelpful in supralim-

inal instrumental conditioning. However, in our subliminal condi-

tioning task, conscious strategies (such as win-stay/lose-switch)

might have been detrimental, which would explain why learning

curves were limited well below the optimum.
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We also identified brain circuitry associated with subliminal

instrumental conditioning. The ventral striatum responded to

subliminal cues and to visible outcomes in a manner that closely

approximates Q-learning algorithm, expressing reward ex-

pected values and prediction errors, just as was reported in

supraliminal instrumental conditioning studies (O’Doherty et al.,

2004; Pagnoni et al., 2002; Pessiglione et al., 2006; Yacubian

et al., 2006). Interestingly, there is no need for representing the

statistical structure of the task in Q learning, which is an incre-

mental procedure updating the expected values of chosen

actions according to the subject’s history of reward and punish-

ment outcomes. This accords well with views that the striatum is

a major player in implicit/procedural learning (Graybiel, 2005;

Hikosaka et al., 1999; Packard and Knowlton, 2002) and with ev-

idence that ventral striatum encodes reward-related information

(Delgado, 2007; Knutson and Cooper, 2005; Pecina et al., 2006).

For the sake of simplicity, we have described ventral striatum

activity as directly reflecting key outputs of Q-learning algorithm:

Q value at the time of cue onset and prediction error at the time of

outcome. There are nonetheless other variables in machine

learning literature that would also correlate with ventral striatum

activity and which could provide an alternative interpretational

framework for our study. In particular, it is important to note

that average Q values (over the reward, neutral, and punishment

conditions) remain around zero during our conditioning para-

digm. Hence, Q value is approximately equal to Q value minus

average Q value, which can be seen as equivalent to a cue pre-

diction error (actual Q value minus predicted Q value). Our data

are therefore equally compatible with the notion that the ventral

striatum encodes prediction errors at the time of both cue and

outcome onsets. However, because prediction errors represent

a function of Q values, the brain has to learn about Q values in

order to signal prediction errors. Thus, whether we consider

the ventral striatum as encoding a Q value or a prediction error

does not alter our central conclusion: namely, the human brain

can learn the reward value of subliminal cues, so as to later

influence behavioral choices.

It is of interest that extrastriate visual cortex also reflected the

reward value of subliminal cues, but not outcome-related predic-

tion errors. Modulation of visual cortex activity by monetary in-

centives has already been reported in neuroimaging studies of

supraliminal processes, such as visuomotor transformation, at-

tentional control, and working memory (Krawczyk et al., 2007;

Ramnani and Miall, 2003; Small et al., 2005). In our case, the

modulation suggests that conditioning involves an interaction

between the extrastriate cortex (which would discriminate cues

according to their visual properties) and the ventral striatum

(which would tag cues with affective values depending on

reward prediction errors). However, we acknowledge that we

do not as yet have a complete account of how the brain pro-

duces behavioral effects of subliminal conditioning. Notably,

we failed to identify the brain regions mapping affective values

onto motor commands, which would complete the circuit from

visual cues to behavioral responses. Further experiments will

be necessary to fill in these explanatory gaps.

More generally, our approach, combining perceptual masking

and computational modeling, can be extended over the field of

functional neuroimaging. Computational reinforcement learning
theory has proven useful to model both brain activity and behav-

ioral choices in human and nonhuman primates (Daw and Doya,

2006; McClure et al., 2004; O’Doherty et al., 2007). Brain activity

reflecting sophisticated computations are unlikely to be ac-

cessed by the conscious mind, which takes minutes to solve

even simple equations. This brain activity would therefore repre-

sent unconscious processes, which we formally demonstrated

here in the case of instrumental conditioning. Combining mask-

ing and modeling can, in principle, make more tractable the

identification of basic neuronal mechanisms shared within other

species, eliminating the use of reportable knowledge that might

be unique to humans. It might also help assess the integrity of

these same basic mechanisms in patients with neurological or

psychiatric conditions, avoiding confounds generated by

conscious strategic compensations.

EXPERIMENTAL PROCEDURES

Subjects

The study was approved by the National Hospital for Neurology and Neurosur-

gery and the Institute of Neurology joint Ethics Committee. Subjects were re-

cruited via Gumtree website and screened for exclusion criteria: left handed-

ness, age below 18 or above 39, regular taking of drug or medication,

history of psychiatric or neurological illnesses and contra-indications to MRI

scanning (pregnancy, claustrophobia, metallic implants). All subjects gave

informed consent prior to taking part. We scanned 20 subjects: 11 males

(mean age 26.8 ± 6.3 years) and 9 females (mean age 23.8 ± 3.3 years). Two

more subjects were scanned but discarded from the analysis, because they

eventually could describe parts of the visual cues, were above chance level

in the perception task, and won unusually large amounts of money in the con-

ditioning task. Subjects were told that they would play for real money, but at

the end of the experiment their winnings were rounded up to a fixed amount.

Behavioral Task and Analysis

Subjects first read the instructions (see Supplemental Data) about the different

tasks, which were later explained again step by step. Before scanning, sub-

jects were trained to perform the conditioning task and the perception task

on practice versions. In the scanner, they had to perform three sessions of

the conditioning task, each containing 120 trials and lasting 13 min, and one

session of the perception task, containing 120 trials and lasting about 7 min.

The abstract cues were letters taken from the Agathodaimon font. The 12

cues shown in the scanner were randomly assigned to the four task sessions,

each session hence employing 3 new cues. The same two masking patterns

(see Figure 1), one displayed before and the other after the cue, were used

in all task sessions. The sequence of display and the cue-outcome associa-

tions were also randomized for every subject.

The perceptual discrimination task was used to select the appropriate dura-

tion for cue display, which was then kept to either 33 or 50 ms for the entire

experiment. In this task, subjects were flashed two masked cues, 3 s apart,

displayed on the center of a computer screen, each following a fixation cross.

They had to report whether or not they perceived any difference between the

two visual stimulations. The response was given manually, by pressing one of

two buttons assigned to ‘‘same’’ and ‘‘different’’ choices. The perceptual dis-

crimination task was then employed as a control for awareness at the end of

conditioning sessions. We checked with a chi-square test that in all included

subjects performance was not significantly different from chance level (50%

of correct responses). We also calculated d0 measure, which is the difference

between normalized rates of hits (correct ‘‘different’’ response) and false

alarms (incorrect ‘‘different’’ responses). We ensured that this measure was

not significantly different from zero, at group level, using one-tailed paired t

test.

The instrumental conditioning task involved choosing between pressing or

not pressing a button, in response to masked cues. After showing the fixation

cross and the masked cue, the response interval was indicated on the
Neuron 59, 561–567, August 28, 2008 ª2008 Elsevier Inc. 565
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computer screen by a question mark. The interval was fixed to 3 s and the re-

sponse was taken at the end: ‘‘Go’’ if the button was being pressed, ‘‘No’’ if the

button was released. The response was written on the screen as soon as the

delay had elapsed. Subjects were told that one response was safe (you do not

win or lose anything) while the other was risky (you can win £1, lose £1, or get

nothing). The risky response was assigned to Go for half of the subjects, and to

NoGo for the other half, such that motor aspects were counterbalanced

between reward and punishment conditions. Subjects were also told that

the outcome of the risky response would depend on the cue that was

displayed between the mask images. In fact, three cues were used, one was

rewarding (+£1), one was punishing (�£1), and the last was neutral (£0). Be-

cause subjects were not informed about the associations, they could only

learn them by observing the outcome, which was displayed at the end of the

trial. This was either a circled coin image (meaning +£1), a barred coin image

(meaning �£1), or a gray square (meaning £0).

Subjects were then debriefed about their visual perceptions and their re-

sponse strategies. They reported responding either at chance, following their

intuition, or following logical rules. None of them had the slightest idea of what

the cues looked like. For the preference judgment task, the cues were then

shown unmasked on a computer screen. The three cues used for a given ses-

sion were displayed side by side, the position being randomized. Subjects

were asked to rate them in order of preferences: 3 for the most liked, 2 for

the intermediate, and 1 for the least one.

To assess for instrumental conditioning, we used one-tailed paired t tests

comparing individual earnings with chance level (which is £0). Similarly, to as-

sess for preference conditioning, we used one-tailed paired t tests comparing

differential rating of winning and losing cues with chance level (which is 0).

Computational Model

We used a standard Q-learning algorithm (Sutton and Barto, 1998), which has

been shown previously to offer a good account of instrumental choice in both

humans and monkeys (Daw and Doya, 2006; McClure et al., 2004; O’Doherty

et al., 2007). For each cue, the model estimates the expected value of the risky

response, on the basis of individual sequences of choices and outcomes. This

value, termed a Q value, is essentially the amount of reward expected from

choosing the risky response given the contextual cue. These Q values were

set at 0.1 before learning, and after every risky response the value of the cue

was updated according to the Rescorla-Wagner rule: Q(t + 1) = Q(t) + a*d(t).

Following this rule, values are increased if the outcome is better than expected,

and decreased in the opposite case. The prediction error was d(t) = R(t)� Q(t),

with R(t) defined as the reinforcement obtained from choosing the risky

response at trial t. In other words, the prediction error d(t) is the difference be-

tween the expected outcome, i.e., Q(t), and the actual outcome, i.e., R(t). The

reinforcement magnitude R was +1 and�1 for winning and losing £1, and 0 for

neutral outcomes. Given the Q value, the associated probability of choosing

the risky response was estimated by implementing the softmax rule: P(t) = 1/

(1 + exp(�Q(t)/b)). This rule ensures that likelihood will be superior to 0.5 for

positive values and inferior to 0.5 for negative values. The learning rate a con-

cerns the amplitude of value changes from one trial to the next. The tempera-

ture b concerns the randomness of decision making. These two free parame-

ters, a and b, were adjusted to maximize the probability (or likelihood) of the

actual choices under the model. With the constraint that the parameters

should be identical for reward and punishment cues we found: a = 0.1 and

b = 0.9. The model was then used to create statistical regressors correspond-

ing to the Q values and prediction errors, for analysis of brain images.

Images Acquisition and Analysis

T2*-weighted echo planar images (EPI) were acquired with blood oxygen-level

dependent (BOLD) contrast on a 3.0 Tesla magnetic resonance scanner. We

employed a tilted plane acquisition sequence designed to optimize functional

sensitivity in the orbitofrontal cortex and medial temporal lobes (Deichmann

et al., 2003). To cover the whole brain with a short TR (1.95 s), we used the fol-

lowing parameters: 30 slices, 2 mm slice thickness, 2 mm interslice gap. T1-

weighted structural images were also acquired, coregistered with the mean

EPI, normalized to a standard T1 template, and averaged across subjects to

allow group level anatomical localization. EPI images were analyzed in an

event-related manner, within a general linear model, using the statistical para-
566 Neuron 59, 561–567, August 28, 2008 ª2008 Elsevier Inc.
metric mapping software SPM5 (Wellcome Trust center for NeuroImaging,

London, UK). The first 5 volumes of each session were discarded to allow

for T1 equilibration effects. Preprocessing consisted of spatial realignment,

normalization using the same transformation as structural images, and spatial

smoothing using a Gaussian kernel with a full-width at half-maximum of 6 mm.

We used two different statistical linear regression models for our analyses. In

both every trial was modeled as having two time points, corresponding to cue

and outcome onsets. In the first model, two separate regressors were created

for cues and outcomes, respectively modulated by the Q values and prediction

errors computed by our optimized algorithm. In the second model, 12 separate

regressors were created corresponding to the two time points (cues and

outcomes) times the two conditioning phases (first and second half of each

session) times the three conditions (reward, neutral, and punishment). In all

cases, the regressors of interest were convolved with a canonical hemody-

namic response function (HRF). To correct for motion artifact, subject-specific

realignment parameters were modeled as covariates of no interest. Linear

contrasts of regression coefficients were computed at the individual subject

level and then taken to a group level random-effects analysis. At group level,

we performed two statistical analyses: first a one-sample t test to find brain re-

gions where regression coefficients were significant across subjects, and sec-

ond a correlation with individual payoffs to find brain regions where regression

coefficients increased with higher conditioning effect. A threshold of p < 0.05

after familywise error (FWE) correction for multiple comparisons was applied to

avoid any a priori on brain localization. A more liberal threshold (p < 0.001,

uncorrected) was also used to observe the extension of significant activations.

To further illustrate activations, time courses were estimated by fitting a flexible

basis set of finite impulse responses (FIRs), separated from the next by one

scan (1.95 s). Both regression coefficients and time courses were then aver-

aged across subjects, pooling together the voxels that passed the conserva-

tive threshold in statistical parametric maps (SPMs).

SUPPLEMENTAL DATA

The Supplemental Data include one figure and supplemental text and can be

found with this article online at http://www.neuron.org/cgi/content/full/59/4/

561/DC1/.
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