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SUMMARY

Human choice behavior often reflects a competition
between inflexible computationally efficient control
on the one hand and a slower more flexible system
of control on the other. This distinction is well
captured by model-free and model-based reinforce-
ment learning algorithms. Here, studying human sub-
jects, we show it is possible to shift the balance of
control between these systems by disruption of right
dorsolateral prefrontal cortex, such that participants
manifest a dominance of the less optimal model-free
control. In contrast, disruption of left dorsolateral
prefrontal cortex impaired model-based perfor-
mance only in those participants with low working
memory capacity.

INTRODUCTION

Why is our behavior at times automatic and driven by habit and at

other times deliberative and focused on a specific goal?

Although most of us seamlessly switch between these modes

of behavior, it has been suggested that a relative dominance of

either habit-like or goal-directed modes of behavior underpin a

range of disorders that span addictions (Everitt and Robbins,

2005) through to Parkinson’s disease (de Wit et al., 2011). This

renders understanding the parsing of control between these

two modes of decision making a pressing issue. Here we

address whether it is possible to causally manipulate their

relative dominance.

An elegant computational framework that captures the pres-

ence of (often competing) habit-like and goal-directed behaviors

is provided by a formulation of model-free and model-based

control (Daw et al., 2005; Dayan and Niv, 2008). A model-free

system learns a single value for each action based on reward

prediction errors and guides behavior based on these alone,

thus trading a minimum of computational effort against the

cost of a relative lack of flexibility in adjusting to current goals.

Model-based control, by contrast, dynamically computes

optimal actions by forward planning, a process that is computa-
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tionally demanding but allows for flexible, outcome-specific

behavioral repertoires (Daw et al., 2005; Dayan and Niv, 2008;

Otto et al., 2013; but see Gershman et al., 2012).

In this study, our goal was to manipulate the relative balance

between these two systems in human participants. We focused

on the dorsolateral prefrontal cortex (dlPFC) as a substrate for

model-based processes based on previous evidence for its

role in the construction and use of associative models (Gläscher

et al., 2010; Wunderlich et al., 2012a; Xue et al., 2012) and the

coding of hypothetical outcomes (Abe and Lee, 2011). Work on

nonhuman primates also implicates the dlPFC as a site for

convergence of reward and contextual information (Lee and

Seo, 2007), while lesions of rat prelimbic region (which some

argue is equivalent to primate dlPFC [Fuster, 2008; but see

Preuss, 1995; Uylings et al., 2003]) abolishes flexible decision

making (Killcross and Coutureau, 2003).

Therefore, while the literature suggests a crucial role for this

region in model-based control to date there is a lack of causal

evidence to support this hypothesis. Here we used a transient

lesion model, as engendered by theta burst transcranial mag-

netic stimulation (TBS), to provide evidence for a necessary

role of dlPFC in model-based behavior.

RESULTS

Transcranial Magnetic Stimulation and Task
We recruited 25 human participants (mean age [SD]: 24.2 [4.0]

years; 15 females) to perform a task in which behavior can be ex-

plained by a mixture of model-free and model-based control

(Daw et al., 2011). All participants were tested on three separate

sessions (3 to 16 days apart) after MRI-guided TBS to the right

dlPFC, left dlPFC, or vertex. TBS is known to inhibit cortical

excitability for at least 20 min (Huang et al., 2005). We thus

predicted that participants would show reduced model-based

control after dlPFC compared to vertex TBS. Given existing

evidence of functional asymmetries between left and right

dlPFC, e.g., in reciprocal fairness (Knoch et al., 2006) and work-

ing memory (Mull and Seyal, 2001), we also hypothesized that

the effects of TBS would differ between these sites.

We used a task that enables quantification of model-based

and model-free control over choices (Daw et al., 2011). Partici-

pants were required to make two choices on every trial to arrive
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Figure 1. Task Design

(A) On each trial, a choice between two stimuli led probabilistically to one of

two further pairs of stimuli, which then demanded another choice followed by

reward or no reward according to the p(reward) of the chosen second-stage

stimulus that fluctuated over time. Importantly, participants could learn that

each first-stage stimulus led more often (70%/30%) to one of the pairs; this

task structure could then be exploited by a model-based, but not by a model-

free, controller.

(B) Model-based and model-free strategies for reinforcement learning predict

differences in feedback processing particularly after uncommon transitions. If

choices were exclusively model-free, then a reward would increase the like-

lihood of staying with the same stimulus on the next trial, regardless of the type

of transition (left). Alternatively, if choices were driven by a model-based

system, the impact of reward would interact with the transition type (middle).

As shown previously, behavior in healthy participants resembles a hybrid of

model-based and model-free control (right; Daw et al., 2011; Otto et al., 2013;

Wunderlich et al., 2012b). We can thus quantify model-free control by esti-

mating the main effect of reward, and model-based control by estimating the

reward-by-transition interaction. Please see Figure S1 for a validation of the

random walks.
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at a rewarded or a nonrewarded outcome (Figure 1A). Choices

at the first stage of the task probabilistically determine which

pair of options becomes available to the participant at the

second stage. Crucially, for each first-stage action, one pair

of second-stage options is more likely to occur (a ‘‘common

transition’’). Because a model-based controller is able to incor-

porate the probability of state-state transitions into its decision

making, while the model-free controller is not, the predictions

made by these controllers diverge after uncommon transitions,

while being identical after common ones (Figure 1B). For

example, a reward obtained after an uncommon transition

prompts a model-free agent to (erroneously) choose the very

same first-stage stimulus on the next trial, since action values

are updated based solely on the reward that follows the action.
In contrast, a model-based agent who can represent task

structure would, upon receiving a reward after an uncommon

transition, be more likely to switch to the previously unchosen

first-stage stimulus, since this behavior is more likely to lead to

the just-rewarded second-stage pair. Using these divergent

predictions about first-stage choice behavior, we can infer

the influence of the controllers in terms of the main effect of

reward (model-free) and the interaction between reward and

transition likelihood (model-based) on the probability of staying

with the same first-stage stimulus (as in Daw et al., 2011). We

refer to Figure S1 available online for a validation of this

approach and Figure S2A for an analysis of second-stage

choices.

Participants’ first-stage choices for all three TBS conditions

qualitatively reflected a hybrid of model-based and model-

free control (Figure 2A; cf. Figure 1B). We estimated the main

effect of reward and the reward-by-transition interaction for

each TBS site using hierarchical logistic regression, with all

coefficients taken as random effects across participants (see

Experimental Procedures for details). We observed positive

coefficients for the reward and reward-by-transition regressors

for all three TBS sites (all p < 0.006), confirming that behavior

comprised a hybrid of model-free and model-based control

(see Figure S2B). Levels of model-based and model-free con-

trol after left and right dlPFC TBS were then contrasted with

vertex (Figure 2B). We observed that TBS to neither left (p =

0.52) nor right (p = 0.20) dlPFC significantly changed model-

free control compared to vertex. By contrast, model-based

control was disrupted following TBS to right (p = 0.01) but not

left (p = 0.89) dlPFC compared to vertex. We observed no

difference in model-based control between left and right dlPFC

(p = 0.13).

We also computed a measure of the relative balance between

these two systems as bmodel-based � bmodel-free (Figure 2C). This

showed a significant shift toward model-free control caused by

TBS to right (p = 0.01) but not left (p = 0.63) dlPFC compared

to vertex. We observed no difference between left and right

dlPFC (p = 0.11). Together, these results provide evidence that

right dlPFC exerts a causal role in model-based control and

show that the balance between model-based and model-free

control can be manipulated through prefrontal disruption

via TBS.

We repeated these analyses to examine order effects. In pair-

wise session comparisons, we found no effect of session on

model-free or model-based control or on the balance between

model-based and model-free control (all p > 0.14), except for a

marginally significant increase in model-free control in session

3 compared to session 1 (p = 0.04).

Model-based control is thought to depend on a number of pro-

cesses including prefrontal working memory (WM) capacity.

Given that studies of WM report lateralized functionality (e.g.,

Mull and Seyal, 2001), we asked whether the magnitude of a

TBS effect might be related to WM capacity. To examine such

interindividual differences, we could not use the population

parameter estimates obtained through the regression. Instead,

we extracted the numerical magnitude of the main effect of

reward, the reward-by-transition interaction, and the difference

between the two from each subject’s average stay probability
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Figure 2. Results

(A) The probability of repeating the same first-stage choice is shown as a

function of reward and transition experienced on the previous trial. The pattern

of choices qualitatively resembles influences of bothmodel-based andmodel-

free control for all three stimulation sites (cf. Figure 1B, right).

(B) We quantified model-free and model-based control as the main effect of

reward and the reward-by-transition interaction, respectively, in a hierarchical

logistic regression on stay/switch behavior on each trial. Disruption of right

dlPFC reduced model-based control compared to vertex. TBS did not

significantly affect model-free control.

(C) The relative balance between the controllers was calculated as

bmodel-based – bmodel-free. The balance significantly shifted toward model-free

control after disruption of right, but not left, dlPFC compared to vertex. Error

bars indicate SEM. Please see Figure S2 for additional stay-switch analyses.
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in each of the four reward/transition conditions in each stimula-

tion condition.

We first asked whether model-free or model-based control

independently correlated with WM in any of the three stimulation

conditions. Only the magnitude of the reward-by-transition inter-

action, inferred as model-based control, correlated with WM

after disruption to left dlPFC (r = 0.45, p = 0.02; all other p >

0.10). We then correlated the balance between the two systems

in all stimulation conditions with WM. Strikingly, only behavior

after disruption of left dlPFC was WM dependent (Figure 3;

vertex, r = 0.09, p = 0.68; left dlPFC r = 0.53, p = 0.006; right

dlPFC, r = �0.05, p = 0.80). Pairwise permutation tests revealed
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that the correlation was significantly more positive in left

compared to right dlPFC (105 permutations, p = 0.009), margin-

ally more positive in left dlPFC compared to vertex (p = 0.06), and

not significantly different between right dlPFC and vertex (p =

0.52). Taken together, these data show that the effect of left

dlPFC disruption on the balance between model-based and

model-free control depends on WM capacity, with high WM

participants retaining more model-based control compared to

those with low WM.

DISCUSSION

The balance between model-based and model-free control is

often framed as a competition between a flexible, forward-look-

ing system and a simpler retrospective stimulus-response-

based system (Daw et al., 2005). Our results show that the

balance between these two systems can be causally manipu-

lated in the human brain by a disruption to prefrontal cortex.

Our data suggest that TBS to right dlPFC impairs a key node in

a network that underpins model-based control (cf. Gläscher

et al., 2010; Killcross and Coutureau, 2003). We further show

an involvement of left dlPFC in model-based control that is

related to individual differences in working memory, suggesting

differential roles for left and right dlPFC in the functional architec-

ture underlying deliberative choice.

Animal lesion and human imaging work suggest that sectors of

prefrontal cortex are involved in high-level cognition and deci-

sionmaking (Miller and Cohen, 2001). These studies have shown

correlates of model-based control in ventromedial prefrontal

cortex and dlPFC as well as outside the prefrontal cortex, e.g.,

dorsomedial striatum (Boorman et al., 2009; de Wit et al.,

2009; Gallagher et al., 1999; Gläscher et al., 2010; Hikosaka,

2007; Killcross and Coutureau, 2003; Liljeholm and O’Doherty,

2012; Wunderlich et al., 2012a; Xue et al., 2012). In contrast,

model-free control is most strongly associated with the dorsolat-

eral striatum and infralimbic cortex (Balleine and O’Doherty,

2010; Wunderlich et al., 2012a; Yin et al., 2004). Furthermore, a

strong dependence of model-based control on prefrontal sys-

tems is hinted by a finding that its dominance can be abolished

during dual-task performance (Otto et al., 2013). However, up to

now the key human evidence for dlPFC involvement in model-

based control has been based on correlational evidence using

functional imaging (fMRI). Here we show that model-based

control is impaired by a transient disruption of the right dlPFC,

providing causal evidence for its involvement in complex, flex-

ible, decision making. We note that this effect was significant

only when compared to the vertex, our control site, but not

when compared to left dlPFC. We speculate that this might be

due to individual variation in the role of the left dlPFC in model-

based control or in the strategies employed by our participants

to solve the task.

An influential hypothesis about the balance between model-

based and model-free control states that their individual influ-

ence over behavior is governed by their respective uncertainties

(Daw et al., 2005).Within this framework, our results can be inter-

preted as emerging out of a disruption to a key component pro-

cess of model-based control (e.g., the utilization of associative

models; Gläscher et al., 2010). This would lessen the certainties



Figure 3. Working Memory Capacity Inter-

acts with Stimulation in Left dlPFC

Workingmemory (WM) capacity did not predict the

balance between model-based and model-free

control after disruption of vertex (left) or right

dlPFC (right). In contrast, higher WM was associ-

ated with relatively stronger model-based control

after disruption of left dlPFC (middle) with the

correlation being significantly more positive than

for right dlPFC (permutation test, p = 0.009) or

vertex (p = 0.06).
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of model-based predictions leading to an attenuated dominance

over behavior—similar to that observed when subjects are

distracted by a dual task (Otto et al., 2013). However, whereas

disruption of right dlPFC led to an unambiguous impairment of

model-based control, the effect of TBS on the left dlPFC was

dependent on baseline WM capacity. Specifically, higher WM

capacity conferred a degree of protection against a shift toward

model-free control upon disruption of left dlPFC, whereas partic-

ipants with low WM capacity appear to require an uncompro-

mised left dlPFC for the exercise of model-based control. We

acknowledge uncertainty as to what precise factors might

explain this finding.

We note that TBS to left, but not right, dlPFC has been re-

ported to decrease dopamine levels across the basal ganglia

(Ko et al., 2008). This effect might interact with baseline dopa-

mine levels that are known to covary with WM capacity (Cools

et al., 2008), such that high WM participants are more resilient

against TBS-induced decreases in dopamine than low WM

participants. We previously showed that dopamine levels modu-

late the balance between model-based and model-free control

(de Wit et al., 2011, 2012; Wunderlich et al., 2012b), and a

TBS-induced depletion in low WM (i.e., low dopamine) individ-

uals might have a more pronounced effect than a similar deple-

tion in high WM (i.e., high dopamine) individuals. However, given

that we did not directly measure dopamine levels, future work

could usefully explore potential interactions between WM and

model-based control to fully understand the effect reported here.

Our findings speak to the literature on goal-directed and

habitual behaviors (Balleine and O’Doherty, 2010). Although

model-based/model-free and goal-directed/habitual control

are not synonymous, the former provides a computational

framework that can encompass key features of goal-directed

and habitual control (for a review, see Dayan and Niv, 2008).

We would predict that a disruption of right dlPFC would also

impair goal-directed behavior in devaluation and contingency

degradation tests in humans, as has been shown in rats (Balleine

and O’Doherty, 2010).

In summary, we provide causal evidence for a role of the right

dlPFC in flexible, model-based decision making. Our findings

invite the question as to whether naturally occurring variation in

dlPFC function and connectivity is a marker for predisposition

toward model-free as opposed to model-based control and

whether an enhancement of dlPFC function (e.g., through other

stimulation protocols) might improve rather than impair model-

based control.
EXPERIMENTAL PROCEDURES

Participants

Twenty-five adults participated in the experiment (15 females; age range

18–35 years; mean = 24.2, SD = 4.0 years). All participants had normal or cor-

rected-to-normal vision and were without a history of psychiatric or neurolog-

ical disorder. All participants providedwritten informed consent prior to start of

the experiment, which was approved by the Research Ethics Committee at

University College London (UK). No participants were excluded over the

course of the experiment.

General Design

Participants were tested on 3 days between 3 and 16 days (mean = 5.9,

SD = 2.6) apart. In each session, participants practiced 50 trials of the task

before receiving offline theta burst transcranial magnetic stimulation (TBS;

Huang et al., 2005) to the right dorsolateral prefrontal cortex (dlPFC), left

dlPFC, or vertex. Participants then performed 201 trials on the task.

Task

The task design was based on Daw et al. (2011) and identical to Wunderlich

et al. (2012b) except for faster trial timings to fit the task within a constraint

of 20 min, i.e., the estimated time during which TBS modulates local neuronal

excitability (Huang et al., 2005). The task was programmed in Cogent 2000 &

Graphics (John Romaya, Wellcome Trust Centre for Neuroimaging and

Institute of Cognitive Neuroscience development team, UCL) in MATLAB

(MathWorks).

Each trial consisted of two choice stages. Each choice stage contained a

two-alternative forced choice, with choice options represented by a fractal

in a colored box on a black background (Figure 1A). On each choice, partici-

pants had to respond within 2 s using the left/right cursor keys or the trial

was aborted and reward omitted. Missed trials (mean = 0.1%, range = 0%–

1.5%) were omitted from analysis.

Choice at the first stage always involved the same two stimuli. After partic-

ipantsmade their response, the rejected stimulus disappeared from the screen

and the chosen stimulus moved to the top of the screen. After 0.5 s, one of two

second-stage stimulus pairs appeared, with the transition from first to second

stage following fixed transition probabilities. Each first-stage option was more

strongly (with a 70% transition probability) associated with one of the two sec-

ond-stage pairs, a crucial factor in allowing us to distinguish model-free from

model-based behavior (see below). In both stages, the two choice options

were randomly assigned to the left and right side of the screen, forcing the par-

ticipants to use a stimulus- rather than action-based learning strategy. After

the second choice, the chosen option remained on the screen, together with

a reward symbol (a pound coin) or a ‘‘no reward’’ symbol (a red cross). Each

of the four stimuli in stage two had a reward probability between 0.2 and

0.8. These reward probabilities drifted slowly and independently for each of

the four second-stage options through a diffusion process with Gaussian noise

(mean 0, SD 0.025) on each trial. Three random walks were generated before-

hand and randomly assigned to sessions. We chose to preselect random

walks as otherwise they might, by chance, turn out to have relatively static

optimal strategies (e.g., when a single second-stage stimulus remains at or

close to p(reward) = 0.8). Such static optimal strategies can lead to the
Neuron 80, 914–919, November 20, 2013 ª2013 The Authors 917



Table 1. Regressors for Hierarchical Logistic Regression

Intercept

Left dlPFC

Right dlPFC

Left dlPFC 3 reward

Right dlPFC 3 reward

Vertex 3 reward

Left dlPFC 3 transition

Right dlPFC 3 transition

Vertex 3 transition

Left dlPFC 3 reward 3 transition

Right dlPFC 3 reward 3 transition

Vertex 3 reward 3 transition

Regressors for hierarchical logistic regression on stay (coded as 1) or

switch (coded as 0) for each first-stage choice. The main effect of vertex

is subsumed in the intercept.
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emergence of a reward-by-transition interaction even in a purely model-free

agent due to the nature of the 1-back regression analysis (also see Figure S1

for a validation of our random walks).

Prior to the experiment, participants were explicitly instructed that for each

stimulus in the first stage, one of the two transition probabilities was higher

than the other and that these transition probabilities remained constant

throughout the experiment. Participants were also told that reward probabili-

ties on the second stage would change slowly, randomly, and independently

over time. On all 3 days, participants practiced 50 trials with different stimuli

before starting the task. The main task consisted of 201 trials with 20 s breaks

after trial 67 and 134. The participant’s payment was determined as a flat rate

plus their overall accumulated reward from both sessions. Reward per session

ranged from 3.75–12.75 in £s (mean = 8.4, SD = 2.4; no difference between

sessions [F(2,48) = 1.51, p = 0.23] or TBS sites [F(2,48) = 1.23, p = 0.30] in

three-way ANOVA).

Baseline Working Memory Capacity

In the first session, before any TBS or practice on the main task, participants

performed a 7 min task to establish visuospatial working memory capacity.

In short, participants had to remember the location of five simultaneously pre-

sented dots in a circular array of 16 positions. After a delay, the participant was

asked whether, for one of the 16 locations, a red dot was presented. From

these data, we calculated a K value, reflecting the amount of information

that the participant can store in working memory. For details of the task and

analysis, see McNab and Klingberg (2008).

Theta Burst Stimulation

Participants received TBS over the right dlPFC, left dlPFC, and vertex on three

separate occasions, with site order counterbalanced across 24 participants,

and the 25th participant received a randomly selected session order. We iden-

tified stimulation sites as follows: the MNI coordinates for the right dlPFC

(x = 37, y = 36, z = 34) were taken from a previous study that used a combina-

tion of individual anatomy and fMRI results to pinpoint the dlPFC (Feredoes

et al., 2011). For the left dlPFC (x = �37, y = 36, z = 34), we took the negative

of the right dlPFC x-coordinate. These MNI coordinates were transformed to

coordinates in native space by taking the inverse normalization parameters

from unified segmentation of a previously acquired T1w structural image as

implemented in SPM8 (Wellcome Trust Centre for Neuroimaging, UCL, UK).

We visually confirmed that the coordinates in native space corresponded to

middle frontal gyrus (as in Feredoes et al., 2011). These coordinates were

then entered as targets into Visor2 (ANT B.V.), which uses a 3D camera to

guide the stimulation coil (Magstim) to the target coordinate. The vertex was

set to the Cz of the 10-20 system. To mimic the stimulation experience for

the participant, we entered the vertex coordinates into Visor2 and used 3D

navigation to target the stimulation coil.
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We administered stimulation in 5 Hz bursts of three pulses set 20 ms apart,

for 40 s, amounting to a total of 600 pulses. Stimulation intensity was set for

each individual participant as 90% of active motor threshold (AMT). AMT

was defined as the lowest stimulation intensity, expressed as a percentage

of max output of the Magstim equipment that reliably (3/5 times) yielded a

visible muscle twitch in the hand when stimulating the hand area of the contra-

lateral motor cortex with a single pulse. During this procedure, participants

held (lightly) an item in the hand contralateral to the stimulation site. For tech-

nical and safety reasons, the maximum stimulation intensity was set to 51% of

maximum output; as such, any participant with an AMT > 56% received TBS at

51% of maximum output. Note that such reduced stimulation will make it less

likely to find significant effects of TBS. The average stimulation intensity was

49% (range: 40%–51%) of maximum output.

Analysis

We analyzed stay-switch behavior on the first choice of each trial to dissociate

model-based and model-free control. A model-free reinforcement learning

strategy predicts a main effect of reward on stay probability. This is because

model-free choice works without considering structure in the environment;

hence, rewarded choices are more likely to be repeated, regardless of whether

that reward followed a common or rare transition (Figure 1B, left). A reward

after an uncommon transition would therefore adversely increase the value

of the chosen first stage cue without updating the value of the unchosen

cue. In contrast, under a model-based strategy, we expect an interaction

between transition and reward on the previous trial, because a rare transition

inverts the effect of a subsequent outcome (Figure 1B, middle). Under model-

based control, receiving a reward after an uncommon transition increases the

propensity to switch. This is because the rewarded second-stage stimulus can

be more reliably accessed by choosing the rejected first-stage cue than by

choosing the same cue again. To summarize, this analysis quantifies model-

free behavior as the strength of the main effect of reward and model-based

behavior as the strength of the reward by transition interaction, even when

actual behavior is a hybrid of model-free and model-based control (Figure 1B,

right).

We used hierarchical logistic regression implemented in lme4 (Bates et al.,

2012) in the R software package (R Development Core Team, 2011). We

estimated coefficients for the regressors shown in Table 1, taking all coeffi-

cients as random effects over participants. This method accounts for both

within- and between-subject variance, providing unbiased estimates of the

population coefficient for each regressor. We then performed contrasts over

the population coefficients to test for differences between conditions in

model-free and model-based control. All p values reported in the manuscript

that pertain to the logistic regression are based on the chi-square distribution

and were estimated using the ‘‘esticon’’ procedure in the ‘‘doBy’’ package

(Højsgaard, 2006).

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and can be found with this
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