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Abstract: Fluid intelligence represents the capacity for flexible problem solving and rapid behavioral adap-
tation. Rewards drive flexible behavioral adaptation, in part via a teaching signal expressed as reward pre-
diction errors in the ventral striatum, which has been associated with phasic dopamine release in animal
studies. We examined a sample of 28 healthy male adults using multimodal imaging and biological para-
metric mapping with (1) functional magnetic resonance imaging during a reversal learning task and (2) in a
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subsample of 17 subjects also with positron emission tomography using 6-[18F]fluoro-L-DOPA to assess
dopamine synthesis capacity. Fluid intelligence was measured using a battery of nine standard neuropsy-
chological tests. Ventral striatal BOLD correlates of reward prediction errors were positively correlated
with fluid intelligence and, in the right ventral striatum, also inversely correlated with dopamine synthesis
capacity (FDOPA K

app
in ). When exploring aspects of fluid intelligence, we observed that prediction error

signaling correlates with complex attention and reasoning. These findings indicate that individual differen-
ces in the capacity for flexible problem solving relate to ventral striatal activation during reward-related
learning, which in turn proved to be inversely associated with ventral striatal dopamine synthesis capacity.
Hum Brain Mapp 34:1490–1499, 2013. VC 2012Wiley Periodicals, Inc.

Keywords: prediction error; dopamine synthesis; fluid intelligence; ventral striatum; fMRI; FDOPA PET

r r

INTRODUCTION

The fluid intelligence quotient (fluid IQ) [Horn and Cat-
tell, 1966; Sternberg, 2000] represents the capacity of an
individual for interpreting novel stimuli and flexible
behavioral adaptation, whereas crystallized IQ reflects
learning over the lifespan and has been associated with a
neurobiological signature expressed in cortical structure
[Choi et al., 2008]. Fluid IQ is a general factor comprising
attributes such as attention, cognitive speed, working mem-
ory, reasoning, and episodic memory, which have been
linked to activation in brain areas such as the dorsolateral
prefrontal cortex (dlPFC) [Fuster, 2000; Goldman-Rakic
et al., 2000] and striatum [Cools et al., 2008; Landau et al.,
2009]. Fluid IQ declines over the human lifespan [Salt-
house, 1992], and it has been suggested that individual dif-
ferences in cognitive functions such as cognitive speed and
working memory performance are associated with altera-
tions in dopaminergic neurotransmission in the striatum
[Cools et al., 2008; Landau et al., 2009; Salthouse, 1992].

In animal studies of reward-related learning, the firing
properties of dopaminergic midbrain neurons correlate
with trial-by-trial changes in errors of reward prediction
(PEs), which reflect the difference between the expected
reward and the reinforcement that was actually received
[Schultz et al., 1997]. This finding was paralleled in human
neuroimaging studies, which showed that functional activ-
ity in ventral striatum (VS), a target area of dopaminergic
midbrain neurons, is correlated with PEs [O’Doherty,
2004;Pessiglione et al., 2006]. PE signals can be used to
update the reward values of stimuli or actions in striatum
[e.g., Frank and Claus, 2006] and hence play a key role in
trial-and-error learning. As such, they are a key force driv-
ing flexible adaptation [Frank and Claus, 2006], and are
intimately related to broad aspects of decision making in
disease [Murray et al., 2008;Park et al., 2010] and across
the life span [Lindenberger and Baltes, 1997].

Despite these findings, a relationship between individual
differences in fluid IQ, reward-related learning and dopa-
mine neurotransmission has not yet been formally demon-
strated. In this study, our main aim was to relate blood
oxygen level-dependent (BOLD) VS PE signals derived
from a model-based analysis of learning performance dur-

ing a reversal learning task [Park et al., 2010] with (1) indi-
vidual differences in a composite measure of fluid IQ
[Lindenberger and Baltes, 1997] and (2) VS dopamine syn-
thesis capacity as measured with positron emission tomo-
graphy (PET) with 6-[18F]fluoro-L-DOPA [Kienast et al.,
2008]. We used biological parametric mapping to test for
an association between functional magnetic resonance
imaging (fMRI) and PET data in a voxel-wise manner
while controlling for gray matter volume differences.

MATERIALS AND METHODS

Subjects and Screening Instruments

A previously unpublished sample of 28 right-handed
healthy men with a mean age of 36.9 years (SD ¼ 12.4;
range, 22–61) underwent fMRI and neuropsychological
testing. A subgroup of 17 participants (39.4 years SD ¼
12.1; range, 19–61 years) was also investigated with
FDOPA PET. Subjects with Axis I and II psychiatric disor-
ders according to DSM IV were excluded through the
Structured Clinical Interview [First et al., 2001;First et al.,
1997] and drug abuse was further excluded with urine
tests. The study was approved by the local Ethics Commit-
tee of the Charité – Universitätsmedizin Berlin according
to the Declaration of Helsinki, and written informed con-
sent was obtained from all participants.

Neuropsychological Assessment

and Intelligence Measures

A neuropsychological battery was given during an ini-
tial session within two months of PET and fMRI measure-
ments. Components of fluid and crystallized IQ were
measured with an adaptation of the standard battery used
in the Berlin Aging Study [Lindenberger and Baltes, 1997].
Fluid IQ was measured with a battery of nine tests com-
prising cognitive speed (i.e., the Digit Symbol Substitution
test [Wechsler, 1955]; Reitan Trailmaking test, part A [REI-
TAN, 1955]), attention and executive function (Reitan
Trailmaking test, part B [Reitan, 1955]; Stroop color-word
interference test [Stroop, 1935]), working memory (forward
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and backward digit span tests [Wechsler, 1955], episodic
memory (Rivermead Behavioral Memory Test [Beckers
et al., 1992]; auditory verbal learning test [Helmstaedter
et al., 2001]), and reasoning [figural analogies [Horn, 1983]:
for details, see Supporting Information S1].

Fluid IQ scores were derived from a factorial analysis of
the raw scores of each of these tests using SPSS 11.0 for Mac-
intosh (SPSS, Inc). Specifically, we used a Varimax rotation
with an Eigenvalue cutoff set to 1.0; the final (single factor)
solution accounted for 74.3% of the variance in the nine tests
provided). The final composite measure of fluid IQ hence
reflects z-scores of aggregates of the nine tests provided
derived from factorial analysis for the measured sample.

Furthermore, in order to allow for correlations within
subdomains of fluid IQ we averaged z-scores of each test for
each domain (i.e., for cognitive speed, DSST, and Trailmak-
ing A; for complex attention, Trailmaking B and Stroop; for
working memory, forward and backward digit span; for epi-
sodic memory, RBMT and AVLT, for reasoning, LPS-3 scores
were used). Correlations between mean standardized scores
in each domain (cognitive speed, attention, working memory,
episodic memory, and reasoning) and the composite fluid
IQ score ranged from 0.54 to 0.97 (all P-values < 0.001).

Crystallized IQ was estimated using a verbal knowledge
test [Schmidt and Metzler, 1992], during which subjects
are required to identify each one meaningful word from a
total of 42 lists of five words (of which four are nonsense
words), which are ordered in increasing difficulty as
reflected by the frequency of word use, and raw scores
were used as the variable of interest.

Reversal Learning Task

During fMRI acquisition, subjects performed a reversal
learning task [Cools et al., 2002; Kahnt et al., 2009; Park
et al., 2010] known to evoke a BOLD PE signal in the stria-
tum [O’Doherty et al., 2004; O’Doherty, 2004]. In each of
200 trials (100 per session), subjects first saw two abstract
targets on the screen and were asked to choose one of
them as quickly as possible by pressing the left or right
button with the left or right thumb on a response box
(maximum response time: 2 s). A blue box surrounding
their chosen target and feedback (either a green smiley
face for positive feedback or a red frowning face for nega-
tive feedback) were simultaneously shown for 1 s. The tri-
als were separated with a jittered interval of 1–6.5 s.

Participants went through a random sequence of three
types of blocks. In block Type 1, a reward was delivered
for choosing the right stimulus if less than 80% of the
recent right choices had been rewarded, and a punishment
delivered otherwise. Conversely, a punishment was deliv-
ered for choosing the left stimulus if less than 80% of the
recent left choices had been punished, and a reward deliv-
ered otherwise. In block Type 2 the contingencies were
simply reversed for left and right. In block Type 3, the
probabilities were 50/50 instead of 80/20. Switches

between blocks happened always after 16 trials, or any
time after 10 trials if subjects reached 70% correct choices.

Computational Modeling of

Reinforcement Learning

The trial-by-trial sequence of choices for each subject
was fit by a simple Rescorla-Wagner (RW) model [Sutton
and Barto, 1998]. This model assumes that the likelihood
of a subject choosing action a on trial t is proportional to a
value Qt(a) and given by the softmax

pðajQtÞ ¼ expðQtðaÞÞ=ðRa0 expðQtða0ÞÞÞ:

The value Qt(a) in turn is the expected value of that
action, i.e., the expected reinforcement conditional on tak-
ing the action. It is updated iteratively

QtðaÞ ¼ Qt�1ðaÞ þ eðRt �Qt�1ðaÞÞ

where e is the learning rate. The variable Rt represents the
effective reinforcement sensitivity as expressed by the effect
of the reinforcement on the subject’s choice behavior. This
variable took on value Rt ¼ brew if a reward was obtained
and �bpun if a punishment was obtained. To fit the models,
parameters are transformed to lie on the real line vector of
parameters. Letting y ¼ [e0, b0pun, b0rew] denote the vector of
transformed parameters, we report the maximum a posteri-
ori estimates of these parameters using a Gaussian prior
with mean and variance parameters l and R:

hest ¼ argmaxh log pðAijhÞpðhjl;RÞ
¼ argmaxh½Rt log pðaitjQt; hÞ�pðhjl;RÞ:

where Ai represents all the actions by subject i and where
the dependence of each individual action probability on
the parameters y determining the Q value was empha-
sized. Importantly, we set the prior parameters empirically
using Expectation Maximization to find the maximum like-
lihood estimates of l and R given all the data by all the
subjects. Separate parameters were fitted to each subject.
An empirical Bayesian approach was used to constrain the
individual parameters and fit the prior distribution to the
data directly [Huys et al., 2011].

On the basis of the individually fitted parameters yi for
each of the subjects, a temporal sequence of PEs was com-
puted for each subject i as

PEi
t ¼ RiðtÞ �Qi

tðatÞ:

FMRI Protocol

fMRI acquisition

Functional imaging was conducted using a 3.0 Tesla GE
Signa scanner with an 8 channel phase array head coil to
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acquire gradient echo T2*-weighted echo-planar images as
previously described [Kahnt et al., 2009; Park et al., 2010].
For each of the two sessions, 310 EPI volumes (�12 min)
containing 29 slices (4 mm thick) were acquired (repetition
time (TR) ¼ 2,300 ms, echo time (TE) ¼ 27 ms, matrix size
128 � 128 and a field of view (FOV) 256 � 256 mm2, thus
yielding an in-plane voxel resolution of 2.7 mm2, flip angle
a ¼ 90�). A 3D anatomical image of the entire brain was
obtained by using a T1-weighted 3D spoiled-gradient echo
pulse sequence with (TR ¼ 7.8 ms, TE ¼ 3.2 ms, matrix
size 256 � 256, FOV 256 � 256 mm2, 1 mm slice thickness,
flip angle a ¼20�, voxel size 1 mm � 1 mm � 1 mm).

fMRI data preprocessing

Functional imaging data were analyzed using SPM8
(Wellcome Department of Imaging Neuroscience, Institute
of Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/
spm/). ArtRepair was used to remove noise spikes and to
repair bad slices within a particular scan and bad slices
were repaired by interpolation between adjacent slices
(‘‘Noise Filtering’’, http://cibsr.stanford.edu/tools/ArtRe-
pair/ArtRepair.htm). After that the following preprocess-
ing steps were performed: acquisition time and motion
correction, coregistration of the mean EPI to the anatomi-
cal T1 image, spatial normalization, and segmentation into
tissue classes of the T1 image using the unified segmenta-
tion approach as implemented in SPM8 [Ashburner and
Friston, 2005], application of the normalization parameters
to all functional images, and spatial smoothing with an
isotropic Gaussian kernel of 8 mm full width at half maxi-
mum (FWHM) kernel.

Statistical analysis

The images were analyzed in an event-related manner
using the general linear model approach (GLM) as imple-
mented in SPM8, Neuronal activity was modeled for win
and loss trials separately by stick functions at the onsets of
the feedback. We used a parametric design [Buchel et al.,
1998; O’Doherty et al., 2007], in which the trial-by-trial PE
values from the Rescorla-Wagner (RW) model modulated
the amplitude of the trial related stick. Regressors of inter-
est for the BOLD-responses corresponding to the trial-wise
PEs were generated by convolving the modulated stimulus
functions with the canonical hemodynamic response func-
tion (HRF), provided by SPM8. To account for signal fluc-
tuations associated to the movement by susceptibility
interaction, the six movement parameters from the realign-
ment preprocessing step were included in the model as
additional regressors. The individual contrast images for
the contrast of the PE modulated feedback (combining win
and loss feedback) were then taken to a random effects
group-level analysis using a one sample t-test. To test for
associations with measures of IQ, these measures were
entered as covariates into additional random effects analy-
ses. To control for age and individual fit of the Rescorla-

Wagner model, these variables were added as an addi-
tional covariate in the SPM analyses. Correlations were
plotted using the mean PE-related signal in VS VOIs
(described below) and fluid IQ.

Correction for multiple comparisons

Small volume correction was used within the VS volume
of interest (VOI). The VS VOI was constructed based on
coordinates of previous findings using an in house tool
provided by one of the authors (TW) to create an fMRI-lit-
erature based probabilistic VOI for the VS. To this end, we
selected 16 recent papers containing data from 325 subjects
[Bray and O’Doherty, 2007; Cohen, 2007; Cohen and Ran-
ganath, 2005; D’Ardenne et al., 2008; Gershman et al.,
2009; Kahnt et al., 2009; Krugel et al., 2009; Murray et al.,
2008; O’Doherty et al., 2004; O’Doherty et al., 2003; Pal-
minteri et al., 2009; Pessiglione et al., 2006; Rodriguez
et al., 2006; Schonberg et al., 2010; Tobler et al., 2006; Val-
entin and O’Doherty, 2009]. From each study, the coordi-
nates of PE-related activation for right and the left VS
were extracted (see Supporting Information S2).

PET Protocol

PET acquisition

We used PET with FDOPA [Heinz et al., 2005;Kienast
et al., 2008;Kumakura et al., 2007;Meyer-Lindenberg et al.,
2002] to define the magnitude of the net blood brain clear-
ance of FDOPA, designated as K

app
in ), which has units of

cerebral blood flow (ml g21 min21). Subjects reclined on
the scanning bed and their head positioned within the
aperture of the PET/CT (Siemens Biograph 16) scanner in
3D mode. After a low dose CT-scan, a dynamic ’’list-
mode‘‘ emission recording lasting 124 minutes started im-
mediately after intravenous bolus administration of 200
MBq FDOPA. After CT-based tissue attenuation correction
and scatter correction, listmode data were iteratively recon-
structed (OSEM, 16 iterations with six subsets) and framed
(30 frames: 3 3 20 s, 3 3 1 min, 3 3 2 min, 3 3 3 min, 15
3 5 min, 3 3 10 min). Arterial blood samples were
collected during the emission recording (in the first 6 min
continuous measuring using a blood sampler, then man-
ually at intervals), and the total radioactivity concentration
in plasma samples was measured using a well-counter
cross-calibrated to the PET. The fractions of untransformed
FDOPA and the main metabolite O-methyl-[18F]-fluoro-L-
DOPA (OMFD) were measured in plasma extracts from
blood collected at 5, 15, 30, 45, and 60 postinjection by
reversed phase HPLC, and the continuous arterial input
functions were calculated by bi-exponential fitting of the
measured fractions [Gillings et al., 2001]. We had initially
intended to calculate Vd, the steady-state storage capacity
for FDOPA as described in Kienast et al. [2008] and else-
where. However, the occurrence of extensive head motion
during the second scanning hour precluded this analysis in
9 out of 17 participants. Therefore we confined our analysis
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to the conventional net blood brain clearance of FDOPA
(K

app
in ) during the first scanning hour.

PET data preprocessing

PET data were analyzed using SPM8 (Wellcome Depart-
ment of Imaging Neuroscience, Institute of Neurology,
London, UK; http://www.fil.ion.ucl.ac.uk/spm/). The
emission recording frames and the individual T1 image
were coregistered to frame 12. The individual anatomical
T1 image was spatially normalized using the unified seg-
mentation approach of SPM8 [Ashburner and Friston,
2005], and the computed normalization parameters were
applied to all frames.

Voxel-wise quantification of net blood brain

clearance of FDOPA

The net blood-brain clearance of FDOPA from plasma to
brain (K

app
in , ml g21 min21) was calculated voxel-wise by

Gjedde-Patlak Linear Graphic analysis [Patlak and Blas-
berg, 1985] after subtracting the radioactivity measured in
the cerebellum (using the mean activity within a standard
cerebellum mask as defined in the WFU Pick Atlas), and
using the frames of the first 60 min of the emission record-
ing for the linear analysis [Cumming and Gjedde, 1998;
Kumakura and Cumming, 2009]. The K

app
in images were

spatially smoothed with a Gaussian kernel of 8 mm full
width at half maximum (FWHM). This net blood-brain
clearance is a macroparameter defined as K1 3 k3/(k2 1

k3), where K1 and k2 describe the partitioning across the
blood brain barrier, and k3 is the relative activity of
DOPA decarboxylase with respect to exogenous FDOPA.
As such FDOPA K

app
in describes the capacity to synthesize

the dopamine from exogenous dopamine, as distinct from
the dopamine synthesis rate, which depends on the
unknown brain activity of tyrosine hydroxylase.

Biological parametric mapping (BPM)

To test for association of local K
app
in and local PE related

BOLD response Biological Parametric Mapping [BPM; Casa-
nova et al., 2007] was used. Because both values appear to
depend on local neuronal structures as reflected in gray
matter density [Goense and Logothetis, 2008; Woodward
et al., 2009], data should be corrected for this unspecific—
usually age related—proportion of variance. Group models
containing locally specific variable values can take advant-
age of this multimodal information and can best preserve
the physiological meaningful local relationships. However,
the algorithms currently implemented in SPM are not able
to fit such locally different models to the data. To overcome
this limitation, we used the BPM-Toolbox [Casanova et al.,
2007]. The conceptual difference between this approach and
a conventional SPM style group analysis is in the use of
other images as covariates. To evaluate the impact of dopa-
mine synthesis capacity on the fMRI PE signal a BPM

ANCOVA design was used with fMRI as primary modality,
FDOPA K

app
in maps and gray matter density from the struc-

tural MRI as imaging covariate and age as nonimaging
covariate. Modulated gray matter density images of each
participant were calculate from the structural high-resolu-
tion T1-weigthed MRI images using the unified segmenta-
tion approach [Ashburner and Friston, 2005] as
implemented in SPM8 and smoothed with a 8 mm full
width at half maximum Gaussian kernel.

RESULTS

Participants made on average 72.8% � 6.3% correct
responses and reached criterion on 5.5 � 1.3 conditions
with a learning speed of 6.8 � 1.0 trials. In the fMRI group
of 28 healthy controls, we observed a significant PE signal
in VS (right VS: t ¼ 3.113; x ¼ 20, y ¼ 6, z ¼ �5; PFWE-cor-

rected for VS VOI ¼0.019; left VS: t ¼ 3.230 x ¼ �11, y ¼ 8,
z ¼ �3; PFWE-corrected for VS VOI ¼0.019) (Fig. 1).

Fluid IQ was significantly and positively correlated with
the BOLD PE signal in bilateral VS (right VS: t ¼ 3.617;
x ¼ 20, y ¼ 3, z ¼ �8; PFWE-corrected for VS VOI ¼ 0.007; and
left VS: t ¼ 2.994; x ¼ �11, y ¼ 8, z ¼ �3; PFWE-corrected for

VS VOI ¼ 0.031), while crystalline IQ displayed no associa-
tion, even when applying a much lower statistical thresh-
old (PFWE-corrected for VS VOI > 0.2). There was no
correlation between fluid IQ and correct responses on the
reversal learning task (r ¼ �0.015, P > 0.9).

Fluid IQ declined with age (r ¼ �0.647; P < 0.001).
Upon controlling for age by introducing age as an addi-
tional covariate into the SPM analysis, VS PE signal

Figure 1.

Prediction error signal in the bilateral ventral striatum. Coronal

slice at MNI coordinate y ¼ 6, statistical threshold t > 3.0, mini-

mum cluster size ¼ 20 voxels). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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remained associated with fluid IQ (right VS: t ¼ 3.959; x ¼
20, y ¼ 6, z ¼ �8; PFWE-corrected for VS VOI ¼ 0.004; left VS:
t ¼ 3.970; x ¼ �11, y ¼ 11, z ¼ �3; PFWE-corrected for VS VOI

¼ 0.004), suggesting that this association was not simply
explained by an age-related decline in fluid IQ (Fig. 2).
The positive correlation between VS PE signal and fluid
IQ also remained significant when individual model fit
(predictive probability) was introduced as an additional
covariate (right VS: t ¼ 3.47; x ¼ 17, y ¼ 6, z ¼ �8; PFWE-

corrected for VS VOI ¼ 0.010; left VS: t ¼ 3.32; x ¼ �11, y ¼
11, z ¼ �3; PFWE-corrected for VS VOI ¼ 0.001).

Regarding exploratory analyses of associations between
components of fluid IQ (attention, reasoning, working
memory, episodic memory, and cognitive speed) while
controlling for age, we observed a significant positive cor-
relation of VS PE-related signals with attention (left VS:
t ¼ 3.117; x ¼ �11, y ¼ 11, z ¼ �3; PFWE-corrected for VS VOI ¼
0.026) and reasoning performance (right VS: t ¼ 2.735; x ¼
15, y ¼ 8, z ¼ �5; PFWE-corrected for VS VOI ¼ 0.043; left VS:
t ¼ 3.024; x ¼ �16, y ¼ 11, z ¼ �3; PFWE-corrected for VS VOI ¼
0.030).

A subgroup of the participants (n ¼ 17; 39.4 years SD ¼
12.1; range, 19–61 years) also underwent PET with 6-
[18F]fluoro-L-DOPA (FDOPA) to directly measure individ-
ual differences in dopamine metabolism. Dopamine syn-
thesis capacity (K

app
in ; ml g21 min21), which represents the

net influx of FDOPA to the brain relative to the metabo-
lite-corrected plasma input, was computed on a voxel-wise
basis [Kienast et al., 2008].

The association between local BOLD response elicited
by PE and local dopamine synthesis capacity K

app
in was

tested on a voxel-by-voxel basis to best take advantage of
the multimodal imaging information. The Biological Para-
metric Mapping Toolbox (BPM) was applied [Casanova
et al., 2007], which in contrast to standard SPM analyses
allows the use of other parametric images such as K

app
in as

covariates. This analysis revealed an inverse correlation
between local FDOPA K

app
in and BOLD PE signal in right

VS (t 4.40; x 15, y 13, z 28; PFWE-corrected for VS VOI =
0.011), but not on the left side (Pfwe-corrected for VS VOI. [
0.8; uncorrected P 0.020) (Fig. 3).

DISCUSSION

We learn from making mistakes and need to adapt our
predictions in the face of changing circumstances; iterative
learning via PEs plays a major role in such learning pro-
cesses [Friston, 2010; O’Doherty et al., 2004; Park et al.,
2010; Pessiglione et al., 2006; Sutton and Barto, 1998]. Our
data show for the first time that individual neuronal signa-
tures of PEs were directly related to individual differences
in fluid IQ, even when correcting for the decline of fluid
IQ with age: The age-independent association between
fluid IQ and the functional correlate of a VS PE signal sug-
gests that the VS contributed to individual differences in
cognitive flexibility.

This interpretation was given credence by two further
analyses. First, more detailed analyses of the subcompo-
nents of fluid IQ, which revealed that VS PE signaling was
associated particularly with capacities such as complex
attention and reasoning performance that are intimately
related to error detection [Fuster, 2000]. Second, the corre-
lation between fluid IQ and the VS BOLD correlate of PEs
remained significant when we controlled for how well the
PEs accounted for behavior (i.e., when controlling for the
posterior likelihood the model assigned the data). This lat-
ter result is critical and supports our interpretation. If the
VS BOLD correlates strongly with PEs in one subject but
not another one, then that might just be because one
subject used PEs to guide their behavior, while the other
subject did not. Had the correlation with fluid IQ not sur-
vived correction for model fit, then the conclusion would
have had to be that subjects with higher IQ were more
likely to learn using PEs than subjects with lower IQ, and
thus that the VS correlate was a reflection of this strategic
difference. Our data do not support that conclusion.
Indeed, such a conclusion would have been counterintui-
tive. If anything, subjects with higher fluid IQ could have
been more inclined to extract and use the complex hidden
Markovian structure of the task instead of approximating
it with PE learning and this would have improved per-
formance overall. However, we did not find any associa-
tion between overall performance and fluid IQ.
Furthermore, displacement of the model-free by model-
based decision making should, if anything, have led to a
negative correlation between PE signaling and fluid IQ.

Figure 2.

Positive correlation between prediction error signal and fluid

intelligence. Mean prediction error signal extracted from the

bilateral ventral striatal VOI (shown on the right panel) plotted

against the z-value of the fluid intelligence score (Zfluid IQ).

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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To interpret these results, we turn to the finding that
several types of learning can co-exist, and be expressed at
different times. In rats, lesions of different parts of the pre-
frontal cortex can reveal ‘‘latent’’ habitually learned
responses when goal-directed decisions are normally
expressed [Killcross and Coutureau, 2003]. In this article,
the use of PEs is explicitly motivated by their neurobiolog-
ical face value in terms of DA phasic responses [Pessi-
glione et al., 2006; Schultz et al., 1997]. However, such
iterative PE learning forfeits much of the intricate structure
of reversal learning tasks (for instance Hidden Markov
Models; e.g. [Hampton et al., 2006]. As such, the BOLD
correlates of PE learning we observe is best taken as an
index of PE learning that is ongoing even though it may
not be fully expressed (and thus not be correlated with be-
havioral fit). Thus, subjects with higher fluid IQ show a
higher subcortical, ongoing, RW learning even when this
is not in charge. This suggests an interpretation whereby
high fluid IQ subjects show a more varied, multifaceted
approach to learning: rather than only exploiting one as-
pect of the reinforcement feedback, they exploit multiple
interpretations of reinforcements, possibly allowing for
more flexible future deployment of a larger variety of be-
havioral strategies. Our data point to VS PE signals as one
key ingredient of such fluid flexibility.

The PE signal closely matches the temporal properties of
a phasic dopamine response [Schultz et al., 1997] and
appears to be modulated by dopamine agonists [Pessi-
glione et al., 2006]. While acute striatal dopamine release

correlated with functional activation of the substantia
nigra/ventral tegmental area during reward anticipation
[Schott et al., 2008], it has to date not been explored
whether individual differences in dopaminergic neuro-
transmission as assessed in vivo with PET are directly
correlated with the PE related BOLD response [O’Doherty,
2004]. Like functional activation during reward
anticipation, the PE signal may well be triggered by phasic
alterations in firing rates of dopaminergic neurons and
their respective effect on striatal neurotransmission
[Pessiglione et al., 2006], while the magnitude of dopamine
synthesis capacity K

app
in likely reflects the local parenchymal

brain capacity to form [18F]fluorodopamine from plasma
FDOPA, and to retain that product within vesicles, mainly
located in dopaminergic nerve terminals. FDOPA K

app
in is

thus widely accepted as a surrogate marker for the activity
of DOPA-decarboxylase and is interpreted as an index of
dopamine synthesis capacity [Kumakura and Cumming,
2009]. Studies in Parkinson’ disease patients with a loss of
nigrostriatal nerve terminals found reduced FDOPA K

app
in

[Kumakura and Cumming, 2009] and therefore this macro-
parameter may reflect the density of dopaminergic innerva-
tions [Pate et al., 1993]. Therefore, one may have expected
to find a positive correlation between VS PE signaling and
dopamine synthesis capacity.

Indeed, dopamine depletion via blockade of synthesis
reduces electrically evoked dopamine release [Venton
et al., 2006]; however, such a rather profound stimulation
of dopamine release rapidly depletes presynaptic

Figure 3.

Negative correlation between dopamine synthesis capacity as

assessed in vivo with FDOPA PET and the BOLD prediction

error signal in the ventral striatum. Left panel: Voxel-by-voxel

association between FDOPA K
app
in and BOLD prediction error

signal from the Biological Parametric Mapping analysis. Coronal

slice at MNI coordinate y 12, statistical threshold t [ 3.0, mini-

mum cluster size 20 voxels). Right panel: Plot of z-standardized

mean K
app
in value derived from the right VS VOI and mean BOLD

prediction error signal derived from the right ventral striatal

VOI. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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dopamine storage pools and may impair continuous tonic
as well as stimulus-driven phasic [Goto et al., 2007] dopa-
mine release. In our study, we observed a negative correla-
tion in right VS between dopamine synthesis capacity and
the functional PE signal. One explanation for this comes
from animal and human studies with DA agonists and
antagonists, which suggest that dopamine synthesis
capacity is regulated by presynaptic autoreceptors [Cum-
ming et al., 1997; Vernaleken et al., 2006]. In FDOPA PET
studies of cats and healthy human volunteers Hassoun
et al. calculated the magnitude of FDOPA influx in stria-
tum relative to a reference brain region during the interval
of 60 – 90 minutes after tracer injection. Comparison of the
results obtained at baseline and during sensory stimulation
(i.e. radial nerve stimulation) revealed in both species a sig-
nificant decline in the apparent rate constant for FDOPA
utilization in striatum [Hassoun et al., 2005]. In earlier
[11C]raclopride studies from the same research group, the
same stimulus had evoked declines in dopamine D2/3 re-
ceptor availability, suggestive of increased dopamine
release [Thobois et al., 2004]. Although we note that their
reference tissue FDOPA utilization estimates, which
assumed irreversible trapping, could have been under-esti-
mated in a condition of increased dopamine turnover, their
results were interpreted to reveal an inverse relationship
between dopamine synthesis capacity and stimulus-evoked
dopamine release. Interestingly, a recent dual tracer PET
study with [11C]raclopride and the alternate DOPA decar-
boxylase tracer L-[b-11C]DOPA likewise reported a nega-
tive correlation between baseline D2/3 receptor availability
and dopamine synthesis capacity in striatum of healthy
human subjects [Ito et al., 2011]. In the context of our pres-
ent findings, we suggest that presynaptic D2/3 autorecep-
tors may normally mediate a compensatory balance
between pre- and postsynaptic aspects of dopamine trans-
mission, characterized by an inverse relationship between
synthesis capacity and dopamine release.

Therefore, our finding of an inverse relationship
between synthesis capacity and functional PE signal may
indicate a homeostatic regulation of dopamine synthesis,
under the control of autoreceptors. Indeed, dopaminergic
autoreceptor availability in human mesencephalon was
inversely correlated with striatal dopamine release evoked
by amphetamine [Buckholtz et al., 2010]. Animal research
has also suggested that a rather continuous, tonic mode of
dopamine release is negatively correlated with a phasic
dopamine signal [Goto et al., 2007; Grace, 1991; Grace,
2000]. The FDOPA K

app
in is a steady-state parameter meas-

ured during an hour, presumably reflecting the long-last-
ing rather than phasic aspects of dopaminergic
neurotransmission, although the exact mechanism of syn-
thesis capacity and dopamine release remains to be eluci-
dated. Therefore, one possible interpretation of the
observed inverse correlation between the VS PE signal and
local dopamine synthesis capacity is that these two meas-
ures reflect a phasic versus tonic component of dopamine-
related neurotransmission.

Higher dopamine synthesis capacity in some subjects
does not necessarily reflect hereditary differences in DA
neurotransmission; instead, elevated DA levels have, for
instance, been found in socially stressed primates [Morgan
et al., 2002; Nader et al., 2006]. In subjects with rather high
levels of DA synthesis capacity and putatively higher
stress levels (such as patients with psychosis [van Os
et al., 2010], both impaired cognitive performance and a
reduced VS PE signal has been reported [Heinz and Schla-
genhauf, 2010; Murray et al., 2008]. Further studies are
needed to assess acute and chronic stress effects on DA
neurotransmission and their respective effects on cognitive
performance.

Limitations of our study include the cross-sectional na-
ture of our data, the limitation to male subjects, and the
relatively limited sample size of n ¼ 17 for the multimodal
imaging group, which nevertheless yielded significant cor-
relations between VS PE signaling and dopamine synthesis
capacity in VS. We only observed a significant correlation
between FDOPA K

app
in and the functional PE signal in the

right but not left VS, and further studies may be required
to clarify whether there are indeed lateralization differen-
ces in the mediation of PE signaling by striatal dopamine.

Altogether, our data reveal a potential mechanism
directly linking individual differences in functional brain
activation associated with reward PEs to flexible cognitive
performance. Indeed, phasic alterations in striatal PE sig-
naling appear to preferentially facilitate complex reasoning
and staying on task [Aalto et al., 2005; Goto and Grace,
2005]. It has been suggested that cognitive performance
can be targeted pharmacologically by dopaminergic agents
such as modafinil [Grady et al., 2010]; however, the
inverse correlation observed in this study between right
VS dopamine synthesis and PE signaling in VS suggests
that pharmacological intervention seeking to optimize
cognitive abilities may face unexpected side-effects due
to the apparently complex nature of striatal dopaminergic
signaling.
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