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To efficiently represent all of the possible rewards in the world,
dopaminergic midbrain neurons dynamically adapt their coding
range to the momentarily available rewards. Specifically, these
neurons increase their activity for an outcome that is better than
expected and decrease it for an outcome worse than expected,
independent of the absolute reward magnitude. Although this
adaptive coding is well documented, it remains unknown how this
rescaling is implemented. To investigate the adaptive coding of
prediction errors and its underlying rescaling process, we used
human functional magnetic resonance imaging (fMRI) in combina-
tion with a reward prediction task that involved different reward
magnitudes. We demonstrate that reward prediction errors in the
human striatum are expressed according to an adaptive coding
scheme. Strikingly, we show that adaptive coding is gated by
changes in effective connectivity between the striatum and other
reward-sensitive regions, namely the midbrain and the medial pre-
frontal cortex. Our results provide evidence that striatal prediction
errors are normalized by a magnitude-dependent alteration in the
interregional connectivity within the brain’s reward system.
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From receiving a piece of chocolate to winning a lottery, the
range of possible rewards in the world is immense, yet the
coding range of reward-sensitive neurons is limited. An efficient
way for the brain to solve this problem is by dynamically adjusting
the activity range of neurons according to the momentarily avail-
able rewards. Such an adaptive coding mechanism maximizes the
discriminability between different values in a given reward context,
thus enabling efficient information processing.

Specifically, adaptive coding of reward prediction errors (PEs)
has been suggested by a wide range of theories from economics
and reinforcement learning. A PE quantifies the difference be-
tween the expected and the actually received reward. Prospect
theory suggests that such changes are coded according to an
individual reference outcome, such as the status quo or in-
dividual expectations (1, 2). In reinforcement learning theory, on
the other hand, the PE is considered to be essential for updating
the reward values associated with the predicting cue, thus acting
as a teaching signal (3, 4). Adaptive coding of PEs is essential for
two reasons. First, the reward magnitude (lottery or chocolate) is
already encoded during expectation. Hence, in terms of effective
neural coding, it is not necessary to represent the reward mag-
nitude redundantly when computing the PEs. Second, to cover
the wide range of all possible rewards, it is inevitable to optimally
exploit the limited range of neural firing rates. By doing so, the
neural system can represent the whole range of rewards and, at
the same time, remain sensitive to change.

Indeed, animal recording studies have shown that dopaminergic
midbrain neurons encode reward PEs (5, 6) according to an adap-
tive coding scheme (7). Specifically, these neurons increase their
activity for the larger of two potential reward outcomes and de-
crease their activity for the smaller outcome independent of the
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absolute reward magnitude (7). Human studies using functional
magnetic resonance imaging (fMRI) highlight PE-related activity in
the ventral striatum (8-14), activity that is often presumed to reflect
a dopaminergic input from the midbrain.

Adaptive coding is a normalization process that brings dif-
ferent magnitudes onto the same coding scale. Although adap-
tive coding in reward-sensitive neurons is well documented (7,
15-17), it is unknown how the brain normalizes different ranges
of rewards to enable the adaptive coding. One possible mecha-
nism for such normalization is via modulation of connectivity
with other reward-coding areas, including areas that might show
sensitivity to actual reward magnitudes. The major dopaminergic
innervations to the striatum originate in the ventral tegmental
area (VTA) and the substantia nigra (SN) (18). Additionally,
there is strong input from regions encoding reward value, notably
the orbitofrontal cortex (OFC) and the ventromedial prefrontal
cortex (vmPFC) (19-24). Based on these connections, we hypoth-
esized that changes in striatal connectivity with these regions would
underlie an adjustment in the coding range of striatal PEs. Spe-
cifically, when a high reward magnitude is encountered, a dynamic
change in connectivity would render striatal PE coding compa-
rable to that of a lower reward magnitude.

In the current study, we aimed to investigate the normalization
process underlying adaptive coding by means of fMRI. First, we
addressed the question of whether PEs are represented accord-
ing to an adaptive coding scheme in the human striatum. Second,
we investigated how the brain implements the reward rescaling
for adaptive coding.

Subjects performed a simple reward prediction task that
induces PEs. In each trial, subjects saw a cue indicating the
possible reward; in trials with high reward magnitude, subjects
saw 1€ combined with either high or low probability (66% or
33%). In trials with low reward magnitude, subjects saw 10ct with
high or low probability (Fig. 14). The reward cues appeared on
either the right or the left side of the screen, and subjects were
asked to indicate the position of the reward cue by pressing
a button. After a variable delay, subjects saw either the corre-
sponding coin, indicating the outcome was obtained, or the coin
with a red cross superimposed, indicating the outcome was
omitted (Fig. 14). Importantly, in our task, the reward magni-
tudes were combined with different probabilities, allowing us to
disentangle PE-related activity from outcome-related activity.
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Fig. 1. Task description and behavioral data. (A) In each trial, subjects saw
a visual cue indicating the reward magnitude and probability on the left or
right side of the screen. Subjects indicated the location of the cue by pressing
a button, after which a green circle surrounded the cue. After a variable
delay, the reward outcome was shown to the subjects. (B) Mean corrected
reaction time data. Left two bars show high and low reward magnitudes,
and right two bars show high and low reward probabilities. The greater the
reward magnitude and the higher the probability, the faster the subjects
responded. (Error bars: SEM.)

Results

Behavioral Results. Subjects correctly indicated the location of the
cue in 99.33% =+ 0.02% of the trials. A two-by-two ANOVA
(reward magnitude X probability) on the reaction time data
revealed a significant main effect of magnitude (F;, 7 = 13.75,
P < 0.001) and a significant main effect of probability (Fy,7 =
12.67, P < 0.001). There was no significant magnitude-by-prob-
ability interaction (Fjp; = 1.73, P = 0.2). Subjects responded
faster in the high compared with low reward magnitude (high,
555 ms; low, 568 ms) and in the high- compared with low-
probability trials (high, 557 ms; low, 567 ms), indicating that both
reward magnitude and probability affected reward expectations
independently (Fig. 1B).

Neuroimaging Results. Our first analysis of imaging data focused
on the question of adaptive coding of PEs. We applied a whole-
brain general linear model (GLM) that included onset regressors
for the reward cue and the outcome as well as two parametric
regressors at the time of the reward outcome. The first para-
metric regressor coded outcome delivery as 1 for received and —1
for omitted rewards, thus accounting for the variance caused by
received vs. omitted rewards. The second parametric regressor
accounted for the PE-related variance, and, importantly, this re-
gressor was orthogonalized with respect to the first parametric
regressor (received vs. omitted). Hence, this PE regressor accounts
for variance in the brain oxygen level-dependent (BOLD) signal
that is independent of outcome-related (received vs. omitted)
activity. Voxel-wise one-sample ¢ tests on the parameter estimates
of the parametric PE regressor revealed a significant correlation

4286 | www.pnas.org/cgi/doi/10.1073/pnas.1119969109

between PE and activity in the ventral striatum [Fig. 24; P < 0.05,
family-wise error (FWE) small volume-corrected (SVC), [—6, 18,
=3]; t»; = 4.19; see Table S1 for whole-brain results].

After having identified the region in ventral striatum coding
reward PEs, we determined whether this striatal region adap-
tively codes PE responses. Specifically, we tested whether the
striatal PE responses were invariant for different reward mag-
nitudes. In case where PEs are coded according to an adaptive
coding scheme, representations of striatal PEs for high reward
should not differ from those of low reward. We applied a GLM
to the striatal data, but this time all of the regressors were split
for high- and low-reward trials. The onset regressors for cue and
outcome, the two parametric regressors for outcome-related
variance, and the two PE coding regressors were regressed
against the BOLD signal in the striatum. Both PE regressors
were orthogonalized with respect to the parametric modulation
of reward outcome. This comparison of PE-related responses in
high vs. low reward magnitudes revealed no significant difference
in the striatum (Fig. 2B; t,; = —0.98, P = 0.34).

We further performed an additional analysis in which we di-
rectly tested whether the striatal changes in BOLD signal are
significantly better predicted by an adaptive PE (PE modulated
only by probability) than by a nonadaptive PE (PE modulated by
probability x magnitude). If an adaptive PE predicts striatal
activity better than a nonadaptive PE, it would support adaptive
PE coding in the striatum. In a case where PEs are modulated by
reward magnitude, then a nonadaptive PE would provide a bet-
ter prediction of striatal activity. Importantly, our analysis shows
that the striatal BOLD signal is significantly better predicted by
an adaptive compared with a nonadaptive PE (Fig. 2C; t,; =
2.82, P = 0.0089; mean parameter estimates: adaptive PE, 0.37 +
0.014; nonadaptive PE, 0.29 + 0.018). This invariance in the
representation of striatal PEs is consistent with an adaptive
coding scheme shown in dopaminergic neurons in primates (7).

Having shown that PEs are adaptively coded in the striatum, our
next analysis sought to determine whether there were dynamic
changes in striatal coupling associated with this magnitude-de-
pendent rescaling. We hypothesized that reward-sensitive brain
regions with striatal innervations, specifically the vmPFC and the
VTA/SN, would modulate striatal activity as a function of reward
magnitude. We performed a whole-brain psychophysiological in-
teraction (PPI) analysis where the striatal time series of PE-related
activity (Fig. 34) was selected as a physiological variable and the
reward magnitude was selected as a psychological variable (high
vs. low reward). Comparing striatal connectivity between reward
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Fig. 2. Adaptive coding of PEs in the striatum. (A) Parametric modulation
with trial-wise PE revealed significant correlation with BOLD responses in the
striatum. (B) Across different reward magnitudes, no significant difference
in PE-related responses was observed (t,; = —0.98, P = 0.34), confirming an
adaptive coding of striatal PE. (C) Adaptive PE predicted striatal BOLD re-
sponses significantly better than nonadaptive PE did (t,; = 2.82, P=0.0089). (B
and C) The y axes represent the parameter estimates of PE. (Error bars: SEM.)
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Striatal coupling gates adaptive coding of PEs. (A) The striatum, showing adaptive coding of PEs, was used as seed region in the functional con-

nectivity analysis. (B and D) VTA/SN (B) and vmPFC (D) showing significant magnitude-dependent connectivity modulation with the striatum. (B Inset) Activity
superimposed on a T2-weighted image. (D Inset) A coronal view. (C) Bar graph depicts significantly less midbrain—striatal and fronto-striatal connectivity

during high compared with low reward magnitudes. (Error bars: SEM.)

magnitudes revealed significant modulations in the VTA/SN ({6,
-8, -21]; P < 0.05, FWE SVC, t,7 = 4.74; Fig. 3B) and the vmPFC
([3, 54, =3], BA10/BAY; P < 0.05, FWE SVC, t,; = 4.85; Fig. 3D,
and see Table S2 for the whole-brain results). Specifically, the
coupling was significantly less during the high compared with the
low reward magnitude between the striatum and both VTA/SN
and vimPFC, respectively (Fig. 3C).

Discussion

From visual neurons (25, 26) to reward-coding dopaminergic
neurons, scale invariance is a ubiquitous encoding principle in
the brain. Retinal neurons rapidly adapt to an enormous range of
light to guarantee high visual discriminability. Dunn et al. (27)
have shown that this adaptation is implemented via a relay from
cone bipolar cells to ganglion cells, demonstrating that such
a rapid rescaling of range occurs via influences of innervating
neurons. Analogously, we demonstrate that PE-related activity in
the human striatum adapts to the momentarily available reward
magnitude, and this effect is driven by changes in neuronal dy-
namics associated with different reward magnitudes.

Adaptive coding of PEs enables an enhanced discriminability
to remain sensitive for changes of all sizes, which optimizes ef-
ficient coding in neural circuits with given limitations, namely, its
firing ranges (28). Previous animal studies have provided evi-
dence of neuronal adaptation in coding different aspects of re-
ward. Whereas midbrain dopaminergic neurons adaptively code
reward PEs (7), OFC neurons show adaptive coding of reward
preference (15). OFC neurons also adapt their firing range
according to the momentarily available reward range and dis-
tribution of rewards (16, 17). Furthermore, recently it has been
shown that the primate lateral intraparietal cortex represents
saccade values depending on other available choice options. This
context dependency is precisely predicted by the divisive nor-
malization mechanism (29). In humans, fMRI studies have also
shown that BOLD signals in reward-sensitive areas reveal mag-
nitude adaptation across possible rewards (14, 30-33).

In our data, we observe significantly less connectivity between
the striatum and the mPFC/midbrain in high-reward compared
with low-reward conditions (Fig. 3C). In the PPI analysis, non-
specific correlations across the brain were removed by regressing
out the global mean from every voxel. However, this global-mean
normalization shifts the correlation distribution to have a mean
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near zero and forces negative correlations to appear (34-36).
Therefore, it is important to interpret only the difference in con-
nectivity between task conditions.

Our PPI results are in accord with previous studies investigating
the dynamics of neuronal activation in this anatomic network. The
primate striatum is tightly interconnected with the midbrain as
well as with cortical areas (18, 37-39). Specifically, the striatum
receives dopaminergic input from midbrain regions, creating an
ascending midbrain-striatal loop (13, 40). Furthermore, PFC ac-
tivation modulates striatal dopamine release via inhibitory mid-
brain neurons (41). More specifically, PFC neurons activate
GABAergic cells in the midbrain that in turn inhibit neighboring
dopaminergic neurons projecting to the striatum (42). Thus, one
possible pathway underlying our connectivity result is that high
magnitudes of reward activate PFC neurons, thereby increasing
midbrain GABA inhibition, which in turn results in reduced do-
pamine release in the striatum (42). This pathway may underlie the
adjustment of PE signals during high-reward outcomes and
explains the relative decrease in connectivity between the mPFC/
midbrain and the striatum in high vs. low magnitudes.

Although our connectivity result is in line with the neuroan-
atomical and neurochemical systems, we acknowledge that it is
not possible to identify the underlying neurotransmitters by using
functional connectivity analyses with BOLD responses. Future
studies are needed to investigate the neurochemical nature of
this mechanism by means of positron emission tomography or
pharmacological interventions.

When a specific reward magnitude is expected, dopaminergic
neurons are not sensitive to the magnitude when coding the PE (7).
Analogously, in the present study, all rewards were cued to ensure
that rewards are expected before the outcome was presented.
Also, we show that the striatal PE was invariant for high and low
reward magnitudes, which is in line with other studies showing that
PEs are insensitive to different reward magnitudes when cues
signal the possible reward magnitude (7, 14, 32, 43). In contrast,
once a reward outcome is presented unexpectedly, activity in the
striatum is different for high vs. low reward magnitudes (44). Our
connectivity results suggest that, with cued magnitude, the context-
dependent regulation of striatal activity takes place via striatal
coupling with the PFC and the midbrain. However, in the absence of
a cue, when the outcome is delivered unexpectedly, no magnitude-
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dependent adaptation can occur, and the striatal activity might re-
main sensitive to different reward magnitudes.

Altogether, our results provide evidence that adaptive coding of
PEs in humans is gated by striatal coupling. In line with recordings
from primate dopamine neurons (7), our results show that striatal
PEs do not differ for high and low reward magnitudes. Using an
effective connectivity analysis, we show that mPFC and midbrain
significantly modulate their coupling with the striatum in the face
of a high reward magnitude, rendering striatal PEs comparable to
the lower reward magnitude. Our results suggest an elaborate
neural mechanism that facilitates the accurate representation of
the reward value. The adaptive coding of PEs enables the brain to
dynamically allocate its limited neural firing range to better dis-
criminate among momentarily available reward outcomes. This
mechanism provides a rich framework with which mechanistic
hypotheses for pathologies that include abnormal value process-
ing, such as drug addiction, can be examined.

Materials and Methods

Experimental Design. In each trial of the task, a reward-predicting cue was
presented on either the left or right side of fixation. Subjects were asked to
press the corresponding button on a response box as fast as possible. Each cue
contained information about both the probability (67% or 33%) and the
magnitude (1€ or 10ct) of the possible reward. Accordingly, there were four
different cues, indicating high probability of 1€, low probability of 1€, high
probability of 10ct, and low probability of 10ct (Fig. 1A). After the button
press, a green circle highlighted the stimulus, and after a variable in-
terstimulus interval, the outcome cue was presented for 2 s. In high-reward
trials, the outcome was an image of a 1€ coin (for received reward) or a red
cross superimposed on the 1€ coin (for omitted reward). Analogously, in
low-reward trials, subjects saw either a 10ct coin in received trials or a red
cross superimposed on the 10ct coin in omitted trials. The actual reception or
omission of reward was determined by the probability indicated by the cue.
Subjects performed five sessions with 60 trials each. A total of 33 healthy
subjects were tested in the study. Five subjects were excluded from the
sample [one was removed because of extreme head movement (more than
3 mm or 3°) during scanning, three subjects aborted the scanning because
they felt sick, and one subject was left-handed], resulting in a final sample
size of n = 28 (13 females and 15 males; mean + SD age, 25.04 + 2.5 y).

Behavioral Data Analysis. To monitor subjects’ attention to the task, we ana-
lyzed the percentage of correct responses (indicating the location of the cue).
All following analyses included only the correctly responded trials. We exam-
ined whether subjects established reward expectations during the reward-
predicting cue by testing whether reaction times are influenced by both reward
magnitude and probability. For this test, we computed a two-by-two (magni-
tude x probability) ANOVA with repeated measures on reaction time data.

fMRI Data Acquisition and Preprocessing. Functional imaging was conducted
on a 3-T Siemens Trio scanner with a 12-channel head coil. In each of the five
runs, 366 T2*-weighted gradient-echo echoplanar images containing 37 slices
(3 mm thick) separated by a gap of 0.75 mm were acquired. Imaging param-
eters were as follows: repetition time (TR), 2,000 ms; echo time (TE), 30 ms; flip
angle, 70° matrix size, 64 x 64; field of view, 192 mm; and voxel size, 3 x 3 x
3.75 mm. T1-weighted and T2-weighted structural datasets were collected for
the purpose of anatomical localization. The parameters for the T1-weighted
dataset were as follows: TR, 1,900 ms; TE, 2.52 ms; matrix size, 256 x 256; field
of view, 256 mm; 176 slices (1 mm thick); and flip angle, 9°. The parameters for
the T2-weighted dataset were as follows: TR, 8,170 ms; TE, 0.93 ms; matrix size,
256 x 256; field of view, 256 mm; 48 slices (3 mm thick); and flip angle, 120°.
Functional data were analyzed with SPM5 (Wellcome Department of
Imaging Neuroscience, University College London Institute of Neurology,
London, UK). Images were slice timing-corrected, realigned, spatially nor-
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malized to a standard echoplanar image template of the Montreal Neuro-
logical Institute (MNI), resampled to 3-mm isotropic voxels, and spatially
smoothed with an 8-mm full width at half maximum Gaussian kernel. All
included subjects moved less than the size of a single voxel (3 mm).

Model-Based fMRI Data Analysis. We computed a GLM with a parametric
design (45) to identify brain regions coding PEs in an adaptive fashion. In
each trial t, the PE & was defined as

8 =rt—pt [1]

where r; is the reward outcome (1 for received and 0 for omitted outcomes)
and p; is the expected probability of the reward (0.33 or 0.66). Note that the
task is not a learning task because the reward probability and magnitudes
were explicitly shown and did not change over the experiment. Four
regressors were included in the GLM in the following order: (/) onset of the
cue, (ii) onset of the outcome, (iii) parametric modulation of the outcome
(coded as 1 when received and —1 when omitted), and (iv) parametric
modulation of the trial-wise PEs. The PE regressor was created by para-
metrically modulating the stimulus function of the outcome by the nor-
malized (mean = 0, SD = 1) trial-wise PEs. Importantly, the PE regressor (the
fourth regressor) was orthogonalized with respect to the outcome-related
(received vs. omitted) parametric regressor (the third regressor). All regres-
sors were convolved with a canonical hemodynamic response function. In-
dividual contrast images were computed for PE-related responses and taken
to a second-level mixed-effect analysis using voxel-wise one-sample t tests.

Reward Magnitude-Dependent Changes in Striatal Connectivity. We per-
formed a whole-brain PPI analysis (12, 13, 46) with the striatum as a seed
region. Here, the entire time series over the experiment was extracted from
each subject in the clusters of the striatum, in which activity significantly
correlated with PE on the group level. To create the PPl regressor, we
multiplied the normalized time series with two condition vectors containing
ones for six TRs after each reward-magnitude type (one regressor for high
and one for low magnitudes) and zeros otherwise. The method used here
relies on correlations in the observed BOLD time-series data and makes no
assumptions about the nature of the neural event contributing to the BOLD
signal (13). The time window of six TRs (12 s) was selected to capture the
entire hemodynamic response function, which peaks after three TRs and is
back at baseline at approximately eight TRs after stimulus onset. These PPI
regressors were used as covariates in a separate PPI-GLM, in which the fol-
lowing regressors were included: (i) cue onset, (ii) psychological regressor
accounting for high-reward outcome, (iii) psychological regressor account-
ing for low-reward outcomes, (iv) physiological regressor (i.e., the entire
time series of the seed region over the whole experiment), (v) the PPI re-
gressor for high-reward outcomes, and (vi) the PPI regressor for low-reward
outcomes. The onset regressors were convolved with an hemodynamic re-
sponse function. The resulting parameter estimates of the two PPl regressors
represent the extent to which activity in each voxel correlates with activity in
the striatum for each condition. Individual contrast images for functional
connectivity during high vs. low reward magnitude were then computed
and entered into a one-sample t test. We then identified voxels with sig-
nificant connectivity difference during low vs. high reward magnitude.

We applied an omnibus threshold for all whole-brain analyses of P < 0.001,
uncorrected with a cluster extent threshold of k = 10 (whole-brain results are
shown in Tables S1 and S2). Correction for multiple comparisons (P < 0.05,
FWE correction) was then performed for clusters surviving this threshold by
using 12-mm spheres around previously reported peak voxels (SVC): for the
ventral striatum and midbrain, [-8, 8, —4] and [8, —18, —20], respectively (6);
for mPFC, [3, 54, —15] (25). All reported coordinates (x, y, z) are in MNI space.
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Table S1.

uncorrected; k = 10)

Significant whole-brain correlation with trial-wise prediction error (PE) (P < 0.001,

Brodmann

Hemisphere Region name area MNI (x, y, 2)* t
Right Ventral striatum 3 15 -6 4.86
Right Inferior frontal gyrus 44 42 12 18 437
Left Inferior frontal gyrus 44 —-45 12 21 4.01
Left Precentral gyrus 6 -39 0 60 3.66
Left Precuneus -3 -51 48 4.34
Left Lingual gyrus 19 =21 -60 -3 4.10
Right Lingual gyrus 19 15 -48 -6 417
Left Temporal lobe 37 -36 -66 6 4.67
Right Temporal lobe 22 63 -42 15 3.96
Left Occipital lobe 18 -6 -87 -9 5.03
Right Occipital lobe 19 6 -87 33 4.37
Left Cerebellum -39 -48 -30 5.15
Right Cerebellum 39 -42 -30 6.52
*Coordinates are in Montreal Neurological Institute (MNI) space.
Table S2. Significant whole-brain functional connectivity modulation with striatum in the
comparison of low- vs. high-reward context (P < 0.001, uncorrected; k = 10)

Brodmann
Hemisphere Region name area MNI (x, y, 2)* t
Right Dorsomedial PFC 32 12 48 21 492
Left Dorsomedial PFC 10 -6 57 21 4.35
Right Medial OFC 10 3 54 -3 4.85
Left Mid-OFC 11 -24 36 -12 4.09
Right Midbrain 6 -18 =21 4.74
Right Dorsolateral PFC 46 30 36 27 4.54
Right Parietal cortex 40 51 -51 27 4.40
Right Temporal lobe 21/37 60 -57 -6 4.08
Left Occipital lobe 19 -36 -78 24 3.95

No single voxel survived the threshold for the opposite comparison of high- vs. low-reward context. OFC,
orbitofrontal cortex; PFC, prefrontal cortex.
*Coordinates are in MNI space.
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