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Dynamic causal modelling (DCM) for steady-state responses (SSR) is a framework for inferring the
mechanisms that underlie observed electrophysiological spectra, using biologically plausible generative
models of neuronal dynamics. In this paper, we examine the dynamic repertoires of nonlinear conductance-
based neural population models and propose a generative model of their power spectra. Our model comprises
an ensemble of interconnected excitatory and inhibitory cells, where synaptic currents are mediated by fast,
glutamatergic and GABAergic receptors and slower voltage-gated NMDA receptors. We explore two
formulations of how hidden neuronal states (depolarisation and conductances) interact: through their mean
and variance (mean-field model) or through their mean alone (neural-mass model). Both rest on a nonlinear
Fokker–Planck description of population dynamics, which can exhibit bifurcations (phase transitions). We
first characterise these phase transitions numerically: by varying critical model parameters, we elicit both
fixed points and quasiperiodic dynamics that reproduce the spectral characteristics (~2–100 Hz) of real
electrophysiological data. We then introduce a predictor of spectral activity using centre manifold theory and
linear stability analysis. This predictor is based on sampling the system's Jacobian over the orbits of hidden
neuronal states. This predictor behaves consistently and smoothly in the region of phase transitions, which
permits the use of gradient descent methods for model inversion. We demonstrate this by inverting
generative models (DCMs) of SSRs, using simulated data that entails phase transitions.
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Introduction

Magneto- and electro-encephalography (MEG, EEG) report the
summed synaptic currents that flow in neural ensembles, where
oscillations are a ubiquitous feature (Pfurtscheller and Lopes da Silva,
1999). Models of neuronal population activity causing these measure-
ments have played a crucial role in studying the dynamic properties of
cortex in healthy and pathological states (e.g. Stoffers et al., 2007;
Breakspear et al., 2006; Robinson, 2006; Schnitzler and Gross, 2005;
Liley and Bojak, 2005). These neuronal models can be combined with
forward models, linking hidden neuronal states to experimental
measurements. The resulting generative models can then be inverted
(fitted to empirical data) using variational Bayesian techniques to
make inferences about model parameters and the models per se
(Friston et al., 2007). This is the basic idea underlying dynamic causal
modelling (DCM) and has been implemented both for fMRI and
electrophysiological data (e.g. David et al., 2005; Friston et al., 2003;
Kiebel et al., 2006; Stephan et al., 2008). In particular, DCM for steady-
state responses (SSR) (Moran et al., 2009) uses a biologically plausible
generative model of neuronal population dynamics to explain cross-
spectral densities fromM/EEG or local field potential (LFP) recordings.
Inverting these models provides a posteriori estimates of the model
parameters that encode various synaptic properties, such as synaptic
time-constants and connection strengths. DCM also provides an
estimate of the model's evidence, allowing competing hypotheses
about the underlying architecture to be tested.

Two broad classes of models have been used in DCM for elec-
trophysiological data, namely, synaptic kernel convolution models
(Marten et al., 2009; Valdes-Sosa et al., 2009; Wendling et al., 2000;
Jansen and Rit, 1995; Lopes da Silva et al., 1976) and conductance-
based models (Marreiros et al., 2009, 2010; Breakspear et al., 2003;
Brunel and Wang, 2001). For both model classes, the activity of large
neuronal populations is approximated by a probability density (see
Deco et al., 2008 for review). In our previous exposition of DCM for SSR,
we used a point mass or density to describe interactions of excitatory
and inhibitory interneurons and pyramidal cell populations within a
cortical source, a so-called neural-mass model (Deco et al., 2008;
Moran et al., 2007, 2008). This model was of the kernel type, where
postsynaptic responses result from the convolution of presynaptic
input with a postsynaptic kernel. While this type of model offers a
parsimonious description of population activity, conductance-based
models are more directly related to specific synaptic processes. This is
because they model different types of ionic currents explicitly, such
as passive leak currents and active voltage and ligand-gated currents.

Marreiros et al. (2009) described a conductance-based model
predicated on the Morris–Lecar (ML) model (Morris and Lecar, 1981).
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The ML model was extended to include three cell populations that
are interconnected by means of fast glutamatergic and GABAergic
synapses, forming a plausible cortical source. Given these sorts of
models explain local field potential, electro-encephalographic and
magneto-encephalographic data, theymust necessarily accommodate
thousands or millions of neurons. However, they have to generate
(predict) the ensemble average that is actually measured. Fortu-
itously, under some simplifying (mean-field) assumptions, this
average can be predicted quite simply. To do this we appeal to
statistical mechanics and model the probability density over all
hidden neuronal states (as opposed to modelling a large number of
individual neurons and then taking the average over their states). This
greatly finesses the numerics and allows us to model very (infinitely)
large populations. Marreiros et al. (2009) characterised the ensemble
density dynamics (that conform to the Fokker–Planck equation) using
a Laplace approximation, where the voltages and conductances of
the populations were summarised in terms of the sufficient statistics
(mean and variance) of a Gaussian probability density function.
Marreiros et al. (2009) compared a mean-field model (MFM) with
dynamically coupled means and variances to a neural-mass model
(NMM) where the variance was fixed. Importantly, they showed
qualitative differences in the dynamic repertoire of the two systems
with theMFMdisplaying limit-cycle attractors after bifurcation from a
fixed-point. In this setting the mean-field model is inherently more
nonlinear, because it entails nonlinear interactions between the mean
and variance (sufficient statistics) of the hidden states. The emergence
of limit cycles highlights an important limitation of most models used
in DCM. To date, DCM has employed a global linearization (Valdes-
Sosa et al., 2009) of nonlinear models, which assumes that changes in
the (neuronal) states of the system can be approximated with small
perturbations around a stable equilibrium point (Moran et al., 2007).
This means that the model has a very limited dynamic repertoire,
namely, a single fixed-point attractor. The work of Marreiros et al. and
many others (Daffertshofer et al., 2000; Stam et al., 1997; Breakspear
and Terry, 2002; Pijn et al., 1991; Babloyantz and Destexhe, 1988) has
shown that nonlinearities can lead to a richer set of dynamic phe-
nomena, with quasiperiodic, chaotic and itinerant attractors that
can contribute to the spectral behaviour of electrophysiological data.

In this paper, we extend the physiological plausibility of the ML
model described in Marreiros et al. (2009) by introducing NMDA ion
channels that allow for slow synaptic currents in pyramidal cells
and inhibitory interneurons (Brunel and Wang, 2001). This type of
channel affords further nonlinearity to the system due to its voltage
dependency (Jahr and Stevens, 1990), making the usual fixed-point
approximation less appropriate. Here, we investigate the behaviour of
this model over different parameter values and in different dynamic
regimes. Put simply, we examine the frequency content of a neuronal
system in two situations. One arises when the system settles to a fixed
point (i.e., the average activity reaches steady-state). The spectrum
observed is generated by noise, where the neurons act as a filter,
shaping the noise spectrum to produce a profile of output frequencies.
In a different dynamic regime, the average neuronal states themselves
may oscillate. In this situation the system exhibits what is known as a
quasiperiodic attractor and the frequency response to noise changes
with different positions on the attractor. This means we have to take
the average frequency response over the attractor manifold (i.e., over
the limit cycle). Crucially, the frequencies that are preferentially
filtered by the system are dominated by the frequency of the
oscillation (limit cycle). This means the predicted spectral responses
to noise under steady state can be seen (and treated mathematically)
as a special case that obtains when the attractor collapses to a fixed
point. In short, we predict spectral output from linearised perturba-
tions at fixed-point attractors and over (limit-cycle) orbits on
quasiperiodic attractors. This is the key contribution of this paper
and affords an internally consistent method of spectral approximation
for models that show bifurcations from fixed points to limit cycles and
beyond. This is an important issue for nonlinear DCM, since changes
in model parameters during inversion can cause bifurcations (phase
transitions) and a qualitative change in attractor dynamics. These
could induce phase transitions (discontinuities) in the objective
function that is optimised during model inversion, which can easily
confound the optimisation schemes used. It is this potential problem
the current DCM for SSR was designed to finesse.

This paper comprises four sections. In the first, we review the
conductance-basedmodel, placing special emphasis on the new (NMDA)
channel types introducedhere.Wepresent themodel equations using the
full mean-field treatment and relate them to their simplified (reduced)
neural-mass form. In the second section, using numerical integration, we
examine the effects of altering key parameters on the model's spectral
behaviour, under noisy input.We apply the same treatment tomean-field
and neural-mass forms and highlight the effects of coupling means and
variances in themean-field form. In the third section,wepresent a generic
approach for generating (predicting) spectra that relies on sampling from
the orbits of hidden neuronal states. Crucially, this spectral predictor is
a smooth function of the parameters inducing bifurcations and furnishes a
DCM of steady-state responses for nonlinear population dynamics that
canexhibit phase transitions.Wedemonstrate this in the fourth sectionby
invertingmodels of simulated spectra with different sorts of attractors. In
doing this, we hope to demonstrate the face validity of model inversion,
given ergodic behaviour, generated by qualitatively different dynamic
mechanisms.

Conductance-based neuronal ensemble model

The Morris–Lecar model (Morris and Lecar, 1981) was developed to
explain a variety of oscillatory behaviours observed in barnacle muscle
fibre, using a limited number of parameters. The model, originally
comprising calcium and potassium channels, has been reorganised in this
and previous accounts (Marreiros et al., 2010, 2009; Breakspear et al.,
2003) to incorporate active neurotransmitter-gated synaptic processes.
The kinetics encoding postsynaptic responses are formulated as an
equivalent RC circuit where, using Kirchhoff's current law, capacitive
synaptic current flow equals the summed active and passive currents
across the membrane.

CV̇ = ∑
k
gk Vk−Vð Þ + u + ΓV ð1Þ

Where C is the membrane capacitance set at 8 μF, V is the mem-
brane potential, gk is the conductance of channel k, Vk is its reversal
potential, u is the applied input current and ГV is the Gaussian
(normal) noise of state V. In previous DCM applications (David et al.,
2005; Stephan et al., 2007; Marreiros et al., 2009), we were primarily
concerned with the action of active currents, that describe ligand-
gated excitatory (Na+) and inhibitory (Cl−) ion flow, mediated
through fast glutamatergic and GABAergic receptors such that

CV̇ = gL VL−Vð Þ + gE VE−Vð Þ + gI VI−Vð Þ + u + ΓV ð2Þ

These sodiumand chloride currentsflow through themembranewith
conductances gE and gI (described below) and reversal potentials of
VE=60mV and VI=−90 mV, respectively. A potassium leak current is
used to account for all passive ionic currents (Gutkin et al., 2003),
with reversal potential VL=−70mV and conductance, gL, set to unity
(Table 1). We also include a driving current input u(t)∈R to the
granular (or stellate) layer. As above, the dynamics at the single-neuron
level are stochastic,with ΓVdenotingGaussian statenoise (fluctuations) in
voltage.

In addition to the channels described above, we now include a third
ligand-gated ion channel to model channels controlled by the NMDA
receptor. NMDA receptor controlled ion channels (referred to as “NMDA
channels” in the following) are special in that they are both ligand- and
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voltage-gated (Unwin, 1993). For an NMDA channel to open, following
the binding of glutamate, there must first be a large transmembrane
potential to remove a magnesium ion (MG) blocking the channel. Hence
the dynamics for this particular current are given by an extended
equation, which includes the magnesium component using the function
m(V) (Tanaka, 2002; Wang, 2002; Durstewitz et al., 2000) with switch
parameter α= 0.062 and reversal potential VNMDA=60mV (Fig. 1B)

CV̇ = ∑
k∈L;E;I

gk Vk−Vð Þ + gNMDAm Vð Þ VNMDA−Vð Þ + u + ΓV

m Vð Þ = 1
1+0:2 exp −αNMDAVð Þ

ð3Þ

The temporal characteristics of all receptors in our model, either
fast (e.g. AMPA, GABAA) or slow (NMDA), are incorporated in the
equations of motion describing conductance (Table 1). These con-
ductances g, which are dynamic states that depend on the presynaptic
input ς, the number of open channels and the channel time-constants
(1/κ), set to 4, 16 and 100 ms for AMPA, GABAA and NMDA channels,
respectively. These states are also subject to random fluctuations Гg

ġk = κk ςk−gkð Þ + Γg ð4Þ

Here, k∈E, I,NMDA. Together, these stochastic differential equa-
tions describe the dynamics ẋ = f x;uð Þ + Γ of the model's states
x = V ; gL;…; gNMDAf g for a single neuron.

As established in Marreiros et al. (2009), we can transform
these single-neuron stochastic dynamics to a deterministic generative
model of ensemble or population dynamics using the Fokker–Planck
formalism. A DCM of a single source typically comprises three coupled
populations (David et al., 2005). Here, we employ a similar structure
with interacting populations of excitatory spiny stellate cells, pyra-
midal cells and inhibitory interneurons, coupled through intrinsic
connections (Fig. 1A and C). These populations contain the ion
channels that mediate synaptic processing, with fast glutamate and
GABA receptors in all populations and NMDA receptors in pyramidal
and inhibitory populations (Hestrin et al., 1990; Homayoun and
Moghaddam, 2007) (Fig. 1A and C).

The stochastic nature of the differential equations above is dealt
with by decomposition into deterministic flow and diffusion using the
Table 1
Priors for model parameters of the observation model and neuronal sources. These
parameters operate as log-normal scaling parameters on prior means (see Moran et al.,
2009 for more details).

Parameter Interpretation Prior

ϑi=πiexp
(Θi)

Mean: Variance:

πi Θi=N(0,σi)

Neuronal source
κe/i/NMDA Rate constants πκe = 4ms−1

πκi = 16ms−1

πκi = 100ms−1

σKe = 1= 32
σKi

= 0
σKNMDA = 0

αNMDA Magnesium block πα=0.062 σα=1/4
VR Threshold potential VR=−40mV σVR

=0
VE,I,L Reversal potentials σVE

=0VE=60mV
σVI

=0VI=−90mV
σVL

=0VL=−70mV
gL Leak conductance gL=1 σgL=0
C Membrane capacitance πC=8/1000 σC=0
D Diffusion πD=1/16 σD=1/64

Design
β Trial specific changes πβ=1 σβ=1/8

Observation model
αs Channel white noise παs

=10−5 σαs
=1/2

αc Channel pink noise παc
=10−5 σαc

=1/2
L Lead-field gain πL=1 σL=1
Fokker–Planck equation, where the ensemble dynamics are described
by q̇ = −∇⋅fq + ∇⋅D∇q. Here, q(x) is the ensemble density over
all hidden states x = V ; gL;…; gNMDAf g and the flow f(x,u) is the
deterministic part of the motion of each state (Eqs. (3) and (4)), while
the amplitude (covariance) of the random fluctuations is specified
by the diffusion tensor D. The strength of this approach is that the
Fokker–Planck formalism yields density dynamics of a deterministic
form, even when the dynamics of each neuron are stochastic,
nonlinear or even chaotic (Frank, 2004). A Laplace approximation
further simplifies these equations (see Marreiros et al., 2009 for
details), by assuming a Gaussian form for the population densities
N μ ;∑ð Þ. This is formally the same as approaches using the method of
moments (Rodriguez and Tuckwell, 1998). Generally, for tractability,
one only considers the first two moments. A Laplace approximation is
motivated by the fact that a Gaussian density has the highest entropy
(allows for the most uncertainty), given just two moments.
The dynamics of the interactions among the sufficient statistics

μ jð Þ = μ jð Þ
V ; μ jð Þ

L ;…; μ jð Þ
NMDA

n o
and Σ(j) of each ensemble j∈1,…,n

(Fig. 1C) can then be written as an ordinary differential equation for

all the sufficient statistics μ={μ(1),…,Σ(1),…}

μ̇ = f μ ;uð Þ

μ̇ jð Þ
i

Σ̇
jð Þ

2
64

3
75 = ½ f jð Þ

i μ;uð Þ + 1
=2tr Σ jð Þ∂xx f

jð Þ
i

� �

∂x f
jð ÞΣ jð Þ + Σ jð Þ∂x f

jð ÞT + D jð Þ + D jð ÞT� ð5Þ

where, ∂ x f
j and ∂ xx f

j (the gradient and curvature of the neuronal
equations ofmotion) are non-zerowithin ensemble j (and ∂ f (j)/∂x(i)=
0:∀ i≠ j; see Appendix A). These equations describe a mean-field
model (MFM), in which the first and second order sufficient statistics
interact, influencing each other when the curvature is non-zero.

In a system of connected neuronal ensembles, the input to one
ensemble, i, now represents the expected firing rate from the source
ensemble, j mediated through a coupling parameter for each channel
type, k, γij

(k) :k∈E, I,NMDA (Fig. 1C)

ςk = γ kð Þ
i;j σ μ jð Þ

V −VR;∑
jð Þ� �

ð6Þ

Where γ3, 1
E =γ3, 1

NMDA=0.5 are the coupling parameters linking
the stellate population to pyramidal cells; γ1, 3

E =0.5 couples pyrami-
dal to stellate cells; γ2, 3

E =γ2, 3
NMDA=1 couples pyramidal to inhibitory

cells; γ3, 2
I =1 couples inhibitory and pyramidal cells and γ1, 2

I =0.25
is the coupling from the inhibitory interneurons to stellate cells. The
sigmoid function σ(⋅), represents the cumulative distribution func-
tion (CDF) of the presynaptic depolarization density encoded by
N μ jð Þ;∑ jð Þ� �

around a threshold potential VR = -40 mV which
determines the proportion of afferent cells firing (see Marreiros
et al., 2008). This function saturates at high firing rates. Its sigmoid
form comes frommean-field assumptions and can be thought of as an
average of an ensemble of (shifted) Heaviside or step functions
modelling the all or nothing responses of individual neurons. The
contribution from each cell is shifted according to its depolarisation.
The slope of the sigmoid reflects the variance of this depolarisation
over the population. In full mean-field treatments this variance
changes as a function of time (see the Appendix). Simper (neural-
mass) models assume this variance is constant and consequently the
sigmoid has a fixed shape. See Marreiros et al. (2008) for a more
detailed discussion.

Crucially, for our purposes Eq. (6) means that the flow depends
on the population density. This is of fundamental importance:
Without going into technical details, this means that the implicit
Fokker–Planck equation (approximated to second order in Eq. (5))
becomes nonlinear. In turn, this means the density dynamics



Fig. 1. Source model. (A) Neuronal architecture for each cortical source comprising an input layer of spiny stellate cells, and supra/infra granular regions continuing inhibitory
interneurons and pyramidal cells. Intrinsic connections between the subpopulations are drawn with arrows; red arrows indicate the presence of NMDA receptors, postsynaptically.
(B) NMDA switch function (Eq. (3)) illustrated for increasing values of parameterα. Asα increases, a voltage-dependentmagnesium switch becomes highly nonlinear. (C) Stochastic
equations describing the dynamical system with states comprising voltages and conductances.
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themselves can show quasiperiodic or chaotic behaviour as the
collective behaviour of each population self-organises. This is a form
of circular causality, in which the mean-field effect (the average state
over one population) affects the activity of all neurons in another
population, which determines its mean-field. See Breakspear et al.
(2010) for a very nice introduction to nonlinear Fokker–Planck
dynamics in the context of the Kuramoto model. In the absence
of this coupling, any oscillatory behaviour of single neurons would
desynchronise over time, because of the random effects and the
population density would asymptote to a fixed-point. However, with
coupling, richer dynamics can emerge. It is the emergence of periodic
behaviour in the population dynamics we want to accommodate
in our DCM.

This mean-field model can be simplified to form a neural-mass
model (NMM). For the NMM,we use a static covariance. This results in
equations of motion for the population voltage that comprise the flow
term and a decay term.

μ̇ jð Þ
V = f jð Þ

V μ ;uð Þ + 1
2
tr ∑ jð Þ∂xx f

jð Þ
V

� �
ð7Þ
For the population conductance, a zero curvature means that these
dynamics are solely determined by the flow.

μ̇ jð Þ
k = f jð Þ

k μ ; Ið Þ ð8Þ

Although Eq. (8) can, in principle, generate limit cycles, the
numerical simulations in Marreiros et al. (2009) suggest that fixed-
point attractors predominate in the absence of NMDA channels.
This contrasts with the mean-field formulation in Eq. (6), which is
sufficiently nonlinear to generate limit cycles, even without (nonlin-
ear) NMDA channels. This completes the description of the dynamics
of the mean-field and neural-mass models used in subsequent
sections. In what follows, we will simulate spectral responses
using both the MFM and NMM models of one cortical region.

Bifurcation analysis

We have shown previously (Marreiros et al., 2009) that in the
absence of an NMDA-like channel, the conductance-based model
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above exhibits resonant frequencies in the alpha and beta band,
depending on the strength of the externally applied input, u. Here, we
systematically vary two parameters and examine the spectral
response at different points in parameter space (Figs. 2–5). We
choose model parameters that (i) are of particular interest physio-
logically and (ii) have previously been shown in the ML model to
induce changes from fixed-point to limit-cycle attractors. Specifically,
the input current u (Fig. 1C) has been shown to induce bifurcations
(Breakspear et al., 2003) and was included in all our searches. This
input current was set to a constant value, over all times of the
response. The other parameters we changed were the intrinsic
excitatory connectivityγ3, 1

(E) :=γ3, 1, controlling glutamatergic input
to the pyramidal cells, and the NMDA channel parameter αNMDA,
determining kinetics at pyramidal and inhibitory subpopulations.
These were chosen as exemplar parameters controlling the strength
and nature (nonlinearity) of intrinsic coupling. We therefore
performed two searches of bi-dimensional parameter space for pairs
{u, γ3, 1} and {u, α} for both the NMM and MFM instantiations of the
MLmodel. The values used for these simulations (Figs. 2–5) cover two
orders of magnitude around their nominal values to ensure we
considered a wide and physiological regime of parameter space. This
section uses a combination of numerical techniques (integrating
Eq. (5) for the mean-field treatment and Eqs. (7) and (8) for the
neural-mass treatment) and linear stability analysis to illustrate the
sort of dynamics these models can manifest. In the next section, we
address how their dynamics can be predicted (generated) formally,
in terms of spectral density.
Fig. 2. Spectral response of the neural-mass model. (A) Left: Spectral phase-diagram illustra
illustrating the maximum frequency with 1 Hz resolution, which illustrates the highest maxi
in frequency within a particular band, where here at γ31

E =0.25, for example, we see an inc
(B) Bifurcation diagram illustrating the maximum andminimum pyramidal cell membrane p
a limit-cycle attractor. Then at u~10.6 mA, the system undergoes a second phase transition ba
D parameter plane (u=0.06 mA; γ31

E =0.25), where the system lies at an alpha fixed-point.
(u=4 mA; γ31

E = 0.5), where the system enters an alpha limit cycle. (E) A second region i
Neural-mass dynamics

Here, we present a descriptive bifurcation analysis of the models
above. Strictly speaking, a (local) bifurcation occurs when a parameter
change causes the stability of an equilibrium (or fixed point) to
change. However, here we use bifurcation (and phase transition) in a
slightly informal and inclusive sense to refer to any qualitative or
topological change in behaviour, including those of transient
responses to perturbation. Technically, this means we are interested
in loss of stability (when any real eigenvalue ceases to be negative)
and the emergence of oscillations (when any imaginary eigenvalue
ceases to be zero). To access these changes, we characterise transient
dynamics as quasiperiodic, even if the attractor is a fixed point.
Given the size of the state-space we did not characterise the particular
type of bifurcations encountered (analytically), but they likely belong
to a set of Hopf, saddle node and hetero/homoclinic bifurcations.

We first examined the system response over the parameter
space u×γ3, 1. To do this, all parameters were set to their nominal
values (see Table 1), while u and γ3, 1 were varied systematically:
u: 0→100 mA; γ3, 1: 0→5. The system of differential equations
(Eq. (5) and Fig. 1C) was integrated for 256 ms and the pyramidal cell
membrane potential (V3) was taken to represent the observable
response or output (Moran et al., 2007). We created bifurcation
diagrams from each integration step representing {max(V3),min(V3)}
over 0 to 256 ms. We examined regions of parameter space where
(max(V3)=min(V3)) after an initial (120 ms) transient and defined
these regions as fixed points. When (max(V3)Nmin(V3)), we defined
ting the maximal frequency band over the u and γ31
E dimensions. Right: phase-diagram

mum frequency of 21 Hz. Note that in these grey scale images, one can observe changes
reasing frequency in the alpha limit cycle regime before it returns to a beta fixed point.
otential along parameter u for γ31

E =0.5. At u~3.06 mA the system bifurcates and enters
ck to a fixed-point. (C) Time domain and phase domain portraits for one region of the 2-
(D) Time domain and phase domain portraits for one region of the 2-D parameter plane
n parameter space, here at a beta fixed-point, when (u=16 mA; γ31

E = 0.25).

image of Fig.�2


Fig. 3. Spectral response of the neural-mass model. (A) Left: Spectral phase-diagram illustrating the maximal frequency band over the u and α dimensions. Right: phase-diagram
illustrating the maximum frequency with 1 Hz resolution, which illustrates the highest maximum frequency of 22 Hz. (B) Bifurcation diagram illustrating maximum and minimum
pyramidal cell membrane potential along parameter u for α=0.279. At u~3.06 mA the system bifurcates and enters a limit-cycle attractor. Then at u~10.6 mA, the system undergoes
a second phase transition back to a fixed-point. (C) Time domain and phase domain portraits for one region of the 2-D parameter plane (u=0.0625 mA; α=0.279), where the
system oscillates with theta frequencies around a fixed-point attractor. (D) A second region in parameter space, here at an alpha limit cycle.
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these regions as (pseudo) limit-cycle regimes. Clearly, these dynamics
could just represent protected transients that may or may not have
a true limit cycle. However, they indicate the emergence of at least
one imaginary eigenvalue.

Having established the type of dynamics (fixed-point or quasipe-
riodic), we summarised the corresponding frequency domain output,
g(ω). For regions of parameter space where the system settled to a
fixed-point, we assumed that physiological fluctuations in u(t) cause
the observed spectral output. The implicit filtering of these fluctua-
tions is encoded in the system's modulation transfer function. The
transfer function H( jω) was computed for radial frequencies ω
corresponding to 0 to 100 Hz, using standard linear systems theory,
where the requisite derivatives were evaluated numerically (as
described in Moran et al., 2009). The fixed point was taken as the
numerical solution of the mean-field states μ(t) at 240 ms.

H jω; μð Þ = ∂h
∂μ Ijω− ∂f

∂μ

� �−1 ∂f
∂u

g ωð Þ = jH jω; μð Þ j2ϕ ωð Þ
h μð Þ = μV3

ð9Þ

Here, h(μ)=μV3
maps hidden states to observed measurements

and φ(ω) corresponds to the spectral density of the fluctuations in
u(t), which, for simplicity, we assumed were white; i.e., φ(ω)=1. It is
important to realise that these perturbations are not the random
fluctuations Γ on the states of neurons in the population but
perturbations of a mean-field sort that are seen identically by all
neurons. The spectral density φ(ω) of these fluctuations is generally
unknown and, in the context of DCM, has to be estimated.

For regions of parameter space that generated limit cycles (or
quasiperiodic transients), we assumed the spectral activity would be
dominated by the deterministic dynamics of the ensemble mean
and computed the characteristic frequency from the numerical solu-
tion (orbit) directly, over 256 ms (the length of each integration or
solution from the initial conditions). These orbits included any
quasiperiodic or chaotic transients after perturbation. The spectra
were obtained using a parametric autoregressive (AR) model of order
p where

V3 tð Þ = ∑
p

i=1
aiV3 t−ið Þ + ε tð Þ

V3 = h μð Þ = μV3

ð10Þ

The autoregressive coefficients ai : i=1,…,p provide a direct
estimate of the spectral density g(ω), using the following transform:

H jωð Þ−1 = ∑
p

i=1
aie

ijω ð11Þ

The estimation of the autoregression coefficients used the spectral
toolbox in SPM (http://www.fil.ion.ucl.ac.uk). Details can be found in
Roberts and Penny (2002). Note that we could have used the transfer
function approach (Eq. (9)) for both steady-state and limit-cycle
regimes. However, this would have given a limited, ‘snapshot’ of the

http://www.fil.ion.ucl.ac.uk
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Fig. 4. Spectral response of the mean-field model. (A) Left: Spectral phase-diagram illustrating the maximal frequency band over the u and γ31
E dimensions. Right: phase-diagram

illustrating the maximum frequency with 1 Hz resolution. This mean-field formulation produces high frequency gamma oscillations, with the highest maximum frequency of 89 Hz.
(B) Bifurcation diagram illustrating maximum andminimum pyramidal cell membrane potential along parameter u for γ31

E =1.5. For this particular value of γ31
E , the system remains

at fixed points. (C) Time domain and phase domain portraits for a region of parameter space exhibiting a low frequency quasiperiodic attractor. (D) For high input current and high
levels of forward excitatory connectivity (i.e. from the stellate cell input layer to the pyramidal cells) the system exhibits gamma resonance (u=100 mA; γ31

E = 5).
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spectrum at one point on the limit cycle. Later, wewill use the transfer
function averaged over the limit cycle to predict spectral responses;
however, here we can just use the numerical (AR) estimate (Eq. (10))
to characterise simulated dynamics.

Using the peak of g(ω)for each {u, γ3, 1} pair, we identified the
regions of parameter space that generated predominant delta
(b4 Hz), theta (N4–8 Hz), alpha (N8–16 Hz), beta (N16–32 Hz),
gamma (N32–60 Hz) or high-gamma (N60 Hz) oscillations (Fig. 2A).
The ensuing bifurcation diagram showed that the system bifurcates
at a particular value of γ3, 1 (γ3, 1= 0.5), when all other parameters are
fixed at their nominal value as per Table 1. In Fig. 2B, we plot the
{max min} system response as a function of u. We observe that for
values of ub3.06 mA the system exhibits a stable equilibrium point,
where the modulation transfer function is dominated by low
frequency delta activity and a prominent alpha response for low
values of γ3, 1 (Fig. 2C). Then at u~3.06 mA the system bifurcates to a
quasiperiodic attractor with periodicity in the alpha range. In Fig. 2D,
we illustrate the time domain response of the pyramidal cell
membrane potential and the systems phase-space in three dimen-
sions {V1,V2,V3} in this regime. The system later settles to a new
equilibrium at uN10.6 mA with a narrow beta resonance for γ3, 1 =
0.5 (Fig. 2E).

Repeating the procedure for parameter pair {u: 0 →100 mA;
αNMDA: 0 →0.62}, we obtain a different phase-diagram (Fig. 3A). In
this case, the bifurcation structure is largely dependent on u. For
αNMDA= 0 the system remains in equilibrium for all values of u. Then
at values of αNMDA N 0, and uN3.06 mA, a phase transition produces a
limit cycle. As above, a return to a fixed point is observed after a
second phase transition at u~10.6 mA. Examining the spectral peak
we observe, for low values of αNMDA and u, an alpha regime mediated
by the modulation transfer function. Increasing αNMDA leads to a
decrease in the MTF's spectral peak to theta frequencies (Fig. 3C).
Similarly, in the (transient) quasiperiodic regime, the system changes
to produce delta, theta, alpha, or beta peaks, depending on both u and
αNMDA (Fig. 3A). Then, after the final phase transition, a fixed-point
with a betaMTF first emerges, followed by a new delta equilibrium for
uN36 mA.

Mean-field dynamics

The system response for the full mean-field formulation was
assessed in the same way. This formulation contains new states that
represent the dynamics of the population covariance, leading to
spectral outputs that differ from those of the NMM. We obtained the
maximum and minimum system output, V3, over bi-dimensional
parameter searches as above, characterising the attractor at each
parameter pair as either a fixed point {max(V3)=min(V3)} or
quasiperiodic {max(V3)Nmin(V3)}. Then using the modulation trans-
fer function at 240 ms or AR estimates over the full 256 ms, we
evaluated the spectral response. First, we focused on the parameter
pair {u: 0→100 mA; γ3, 1: 0→5} to examine the effects of varying the
strength of the input current and intrinsic excitatory connectivity. At
γ3, 1= 0, we found a fixed-point attractor with beta/gamma resonance
for all u i.e. where (max(V3)=min(V3)) after 120 ms (Fig. 4A). The
system then undergoes a series of bifurcations along both the u and
γ3, 1 dimensions. For 0.25 b γ3, 1 ≤ 0.5 the system exhibited beta and
low frequency delta limit-cycle oscillations for values of uN4 mA
(Fig. 4A and C) and alpha resonance for ub4 mA. Then for γ3, 1b1, the
system returns to a fixed-point attractor, with alpha, delta, beta and
gamma resonances, depending on u. At γ3, 1 = 1, the system bifurcates
to a new low frequency limit cycle for uN7.56 mA. For γ3, 1= 1.25 a
similar bifurcation occurs but here, only for values of u=3.06 mA.

image of Fig.�4


Fig. 5. Spectral response of the mean-field model. (A) Left: Spectral phase-diagram illustrating the maximal frequency band over the u and α dimensions. Right: phase-diagram
illustrating the maximum frequency with 1 Hz resolution, which illustrates the highest maximum frequency of 65 Hz. (B) Bifurcation diagram illustrating irregular bifurcation
structure depending on both u and α. (C) Time domain and phase domain portraits for a region of parameter space exhibiting a low frequency quasiperiodic attractor. (u=6.25 mA;
α=0.062). (D) A second region in parameter space, exhibiting at a beta limit cycle.
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Finally for all γ3, 1≥ 1.5, the system has fixed-point attractors,
with resonance frequencies dependent on u (Fig. 4B and D).

The second bifurcation analysis of the mean-field model looked at
the parameter pair {u: 0→100 mA; αNMDA: 0→0.62}. The spectral
response pattern is given in Fig. 5A. As with the previous search, the
MFM displays a bifurcation diagram that depends on both model
parameters. When 0 bαNMDAb 0.031 the system has a fixed-point
attractor with delta, beta and gamma resonances, depending on u
(Fig. 5A). Then at values of αNMDA = 0.062, the system produces low
frequency limit cycles for values of uN3.0625 mA (Fig. 5C). ForαNMDAN

0.062 the system displays limit cycles again, for values of uN3.062
at beta, gammaandhigh-gamma frequencies (Fig. 5D); however, these
limit-cycle dynamics undergo a second bifurcation back to fixed points
at certain αNMDA values (Fig. 5B). Second transitions occur close to
60.06 mA for values of αNMDA = {0.093, 0.0186 and 0.527→0.62}.

Diffusion on a limit cycle

In the analysis above, we used parameters encoding different
synaptic processes to generate a landscape of spectral responses
(bifurcation and phase-diagrams). These parameters affect the flow of
the deterministic dynamics in Eq. (5). Another parameter that is of
particular interest in the setting of mean-field limit cycles is the
amplitude of stochastic terms that determines the diffusion operator
D (Table 1).

Gang et al. (1993) have shown that diffusion can affect several
properties of deterministic oscillatory responses. In a model system
comprising two states, they showed that in the region of a saddle node
bifurcation, diffusion can change the peak frequency and spectral
height of the response in a nonlinear way. Since the Morris–Lecar
model has a similar bifurcation structure (Tateno and Pakdaman,
2004; Rinzel and Ermentrout, 1998), we examined the effects of
diffusion close to transitions from fixed-point to periodic attractors.
Our high dimensional, coupled system, though not amenable to
analytical solution, does display some phase transitions that could
resemble heteroclinic (a trajectory joining one equilibrium to
another) or homoclinic (a trajectory joining a saddle point to itself)
orbits, namely, low frequency oscillations and asymmetric phase
portraits (Rinzel and Ermentrout, 1998; Fujii and Tsuda, 2004);
see Figs. 4C and 5C.

To investigate the effects of diffusion, we simulated the system at
{γ3, 1= 0.5; u=5.065 mA} and scaledD to 150% and 50% of its nominal
value (Table 1). For a diffusion scaling of 150% we observed, in the
time domain, a faster response (grey line, Fig. 6A), close to the
asymmetry at V3=-40 mV, than the original output (hashed line,
Fig. 6A). For a diffusion scaling of 50%, however, we observed an
enhanced slowing at this point (Fig. 6A, blue line), i.e. V3 flattens even
further, as per Gang et al. (1993). We can also see how increased
diffusion (system or state noise) adds symmetry to the periodic orbit
(Fig. 6B). The result in the frequency domain is a decrease in power for
low diffusion dynamics compared to the increased diffusion (Fig. 6C).
This paradoxical speeding with increased diffusion may reflect an
increased diffusion away from the heteroclinic or homoclinic orbit
(Gang et al., 1993).

In summary, the Morris–Lecar model, with NMDA currents, can
display a rich repertoire of dynamical behaviours. These behaviours,
under steady-state or ergodic assumptions, can be accessed through
conventional linear systems analysis (via the modulation transfer
function) but also arise from bifurcations due to changing key
parameters of the system's stochastic differential equations. These
dynamics are seen even in simple neural-mass approximations to the
ensemble activity but are more evident under a mean-field treatment
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that preserves dynamics in the dispersion of hidden states by random
fluctuations. The presence of bifurcations means that any generative
model based on these neuronal models has to accommodate the
implicit phase transitions. We now address this issue:

Consistent spectral prediction

To invert models based on the systems described in the previous
section (given real data) we require a generative model of their
spectral behaviour. In the simulations above, we used two procedures
to estimate the spectral output, depending on the type of attractor
network. At fixed points, the modulation transfer function was used
to compute the spectrum, assuming small perturbations by noisy
input. In contrast, in the case of quasiperiodic transients and attrac-
tors, we used an ARmodel to compute the spectrum from a numerical
solution or orbit. In this section, we outline a new approach that pro-
vides a generic approximation to the spectral response for systems
with any sort of attractor. The approach is motivated by two con-
verging ideas in dynamical systems theory: the principle of dynamic
enslavement (Haken, 1977) that arises from the centre manifold
theorem (Guckenheimer and Holmes, 1983), and the characterisation
of noisy precursors to nonlinear instabilities (Wiesenfeld, 1985;
Knobloch and Wiesenfeld, 1983).

The centre manifold theorem is used to simplify the dynamics of a
nonlinear system at or near a bifurcation point. At a bifurcation point,
a small number of system modes (mixtures or patterns of states) lose
stability, such that these modes exhibit slow, large oscillations, while
the remaining modes decay quickly. Hence it is possible to ap-
proximate the dynamics using only the motion of slow modes on a
centre manifold (Knobloch and Wiesenfeld, 1983). This can be done
by breaking the system into two blocks (a slow Jordan block, A and a
fast Jordan block, B). The stable or fast dynamics of modes (with large
negative real eigenvalues) become enslaved by the unstable or slow
modes (with small or zero real eigenvalues). Mathematically,
the dynamics of some states z(t) can be expressed as

ż = F z;uð Þ ð12Þ

These can be decomposed into coupled differential equations
describing the motion of slow μ(t) and fast η(t) modes respectively
(Carr, 1983).

μ̇ = Aμ + ε μ;η;uð Þ
η̇ = Bη + g μ ;η;uð Þ
z = μ ;ηf g

ð13Þ

Here, we associate the slow stable modes with the sufficient
statistics describing population activity above, μ={μ(1),…,Σ(1),…}.
Crucially, Eq. (13) shows that the motion of these modes can be
expressed in terms of a slow (linear) part and fast fluctuations due to

image of Fig.�6


1703R.J. Moran et al. / NeuroImage 55 (2011) 1694–1708
exogenous input (and any un-modelled fast modes). This means we
can predict the spectral response to fast fluctuations from the (slow)
Jordan block A in Eq. (13). This corresponds to the Jacobian A=∂ f/∂μ
of Eq. (5), when evaluated on, and only on, the centre manifold. The
Jacobian specifies the transfer function, which specifies the spectral
responses to fast fluctuations. Under ergodic assumptions, this means
the expected transfer function can be evaluated by taking its average
over a solution or orbit of the system; because the orbit must be on
(or near) the centre manifold. Using linear systems theory, this gives
the following predictor of spectral activity, where the spectral density
of the fluctuations is ϕ(ω)

H jω; μð Þ = ∂h
∂μ Ijω− ∂f

∂μ

� �−1 ∂f
∂u

g ωð Þ = jH jω; μð Þ j2ϕ ωð Þ
D E

μ∈μ t1ð Þ;…;μ tTð Þ

ð14Þ

Formally, this is exactly the same as Eq. (9) but averaging over the
orbit (solution) of the system by sampling at t1,…, tT, as opposed to
just one time point. By sampling phase-space selectively in this way,
we construct a spectral profile that reflects macroscopic dynamics on
the centre manifold that enslave transverse fluctuations.

To sample an orbit, we use discrete sampling points, spread evenly
over the orbit. To optimise this set of points we test six sampling
periods (corresponding to one cycle of a delta, theta, alpha, beta,
gamma and high-gamma oscillation). We then use the sample set
with the best balance of positive and negative derivatives. This is
because points spread evenly over the orbit should encounter the
same number of increases and decreases. This sampling is somewhat
arbitrary but works well in practice. Fig. 7A, illustrates this by showing
that an alpha limit cycle (NMM; γ3, 1=0.5; u=4 mA) sampled
according to this scheme has balanced derivatives at alpha, theta
and delta sampling frequencies. Fig. 7B illustrates the procedure
in phase-space.

The nice thing about this approximation is that it gives the same
frequencies as the (numerical AR-based) frequency analysis of the
orbits used to characterise the spectral activity of quasiperiodic
dynamics. This means the same (consistent) approximation can be
used for fixed-point attractors and quasiperiodic attractors (or indeed
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Fig. 7. Sampling phase-space. (A) Six possible sampling sets for an orbit. Samples are distribu
The time series is differentiated at the sample points in each set. In parentheses, we show the
positive derivative=4) is chosen as the sampling set. (B) Alpha limit cycle of NMM as per
any attractor). Crucially, this removes qualitative differences between
the spectral activity before and after a phase transition: One can see
this anecdotally by noting that the frequency profile of the dynamics
will be dominated by the principal mode (with the largest eigenvalue
of A=∂ f/∂μ). As the system undergoes a bifurcation, the real part of
the eigenvalue crosses (reaches) zero; however, the frequency will
not change markedly, because it is determined by the imaginary part.
Another perspective on the approximation in Eq. (14) is that we
are estimating the linearised frequency response to perturbations
from the system's orbit. The frequencies of the fast (stable) modes
will contribute much less than those of the slow (unstable) modes,
because they dissipate much more quickly; where the dissipation
of the perturbation to each mode is proportional to the mode's
(negative) real eigenvalue.

This procedure for predicting or generating a spectral output is
clearly valid at fixed points, where the Jacobian is necessarily con-
stant. In order to motivate the same procedure for estimating spectra
from quasiperiodic attractors, we appeal to the work of Knobloch
and Wiesenfeld (Wiesenfeld, 1985; Knobloch and Wiesenfeld, 1983).
Their work describes the characteristics of a dynamical system on a
quasiperiodic attractor when it is subject to noise. Specifically, it
illustrates how small perturbations kick the system off the limit cycle
and how it then relaxes back to a periodic orbit. These transients are
governed by the transfer function at the point of perturbation and
contribute more to the observed output as the system approaches
instability (slows down). We assume that these perturbations or
‘kicks’ are elicited here by exogenous fluctuations (e.g., afferent
neuronal activity) or un-modelled fast modes intrinsic to each region.

Using this sampling procedure, we recreated the spectral phase-
diagrams, illustrating the maximal frequency band over the param-
eter pairs (Fig. 8). From these graphs we can see that the sampled
attractors are in good agreement with the AR and (fixed point) MTF
spectra. Importantly, the model can also generate multimodal spectra
in various regions of parameter space. This suggests that the sampling
method is sensitive to a range of frequencies; please see Fig. 8. For the
neural-mass model in the {u, γ3, 1} plane we observe similar alpha-
theta-beta transitions to delta activity, while for this model in the
{u, α} plane, smoother transitions from theta fixed points to alpha
limit cycles to beta fixed points are obtained than in the non-sampled
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Fig. 8. Sampled spectral responses. (A) Top: Spectral phase-diagram illustrating the maximal frequency band over the u and γ31
E dimensions for the neural-mass model using the

modulation transfer function sampled from the centremanifold. The diagram shows a good comparison between this and the full (non-sampled) estimates shown in Fig. 2A. Bottom:
The spectral prediction at u=6.25 mA and γ31

E =0.25 (white circle) contains a peak at 14 Hz, in the alpha range and a secondary peak at 17 Hz, in the beta range. This illustrates the
ability of the model to generate multimodal spectra. (B) Top: Spectral phase-diagram illustrating the maximal frequency band over the u and α dimensions for the neural-mass
model. The diagram shows smoother transitions than in Fig. 3A. Bottom: The spectral prediction at u=5.06 mA and α=0.279 (white circle) contains peaks in the alpha (11 Hz) and
theta (7 Hz) range. (C) Top: Spectral phase-diagram illustrating themaximal frequency band over the u and γ31

E dimensions for the mean-field model. These responses have a similar
profile to Fig. 4A. Bottom: For the MFM, the sampling scheme also produces multimodal spectra, with beta (19 Hz) and gamma (39 Hz) peaks for u=5.06 mA and γ31

E = 0 (white
circle). (D) Top: Spectral phase-diagram illustrating the maximal frequency band over the u and α dimensions for the mean-field model. These responses have a similar profile to
Fig. 5A. Bottom: For u=9 mA and α=0.56 (white circle), the prediction contains two peaks, one in the beta range at 16 Hz, and one in the theta range at 4 Hz.
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case (Fig. 8A and B). For the mean-field model, both pairs retain their
high frequency attractors, with beta, gamma and high-gamma
speckled in the high-valued regions of parameter space.

In summary, this section has introduced a simple and internally
consistent way of generating the spectral responses of any dynamical
system subject to random perturbations. Crucially, these responses
can be generated in the same way, irrespective of whether the system
exhibits fixed points, quasiperiodic transients or chaotic attractors.
Furthermore, this spectral characterisation will not (in general)
show discontinuities at bifurcations or phase transitions. This is
important from the point of view of model inversion, as we will see
in the next section.

Simulations

In this section, we highlight the importance of using a consistent
generative model of spectral responses when inverting a DCM. Model
inversion means estimating the conditional density of the unknown
model parameters p(ϑ|g(ω),m) given observed spectral density
features g(ω) (predicted by g(ω,ϑ)) for any model m. Each model is
defined by the network architecture and priors on the parameters,
p(ϑ|m). These unknown parameters include the biophysical param-
eters of the neural-mass or mean-field model, as well as parameters
controlling neuronal and measurement noise (Table 1: see Moran
et al., 2009 for details). The model is inverted using standard varia-
tional approaches described in previous publications (Stephan et al.,
2008; David et al., 2005) and summarised in Friston et al. (2007).
These procedures use a variational scheme in which the conditional
density is optimised under a fixed-form (Laplace) assumption.
This optimisation entails maximising a free-energy bound on the
log-evidence, ln p(g|m). Once optimised, this bound can be used as
an approximate log-evidence for model comparison (Stephan et al.,
2009; Penny et al., 2004). Priors on the parameters play an important
role in this scheme. Firstly, for a given model, the priors are an
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important determinant of the log-evidence. This can be seen by
expressing the log-evidence in terms of accuracy and complexity
(Friston et al., 2007), where complexity reflects the discrepancy
between the prior and posterior densities. For example, when
posterior estimates are required to diverge greatly from the priors
to explain the data, a larger penalty is accrued, compared to posterior
parameter estimates that are similar to their priors. Second, in our
implementation of DCM, priors are used to initialise the parameter
estimates. This has important implications for the optimisation
scheme, which performs a gradient ascent on the free-energy (or
approximate log-evidence). We will use the phase-diagrams in
Figs. 2–5A to specify priors (and implicitly initialisation of the
inversion scheme).

Our simulations try to demonstrate the usefulness of the
consistent spectral predictor in Eq. (14), when dealing with phase
transitions during model inversion. We generated two sampled
spectra from models with different predominant frequencies and
inverted both as if they belonged to two trials (or trial averages) in an
experimental data set. First, we illustrate model inversion using
spectra generated by networks with fixed points (i.e., no phase
transition but a difference in the principal frequency, under small
perturbations). For this we simulated spectra at an alpha fixed-point
(Fig. 3A), using u=0.06 mA and αNMDA= 0.03 (trial 1) and a theta
fixed-point, using u=0.06 mA and αNMDA= 0.25 (trial 2), with all
other parameters as per Table 1. The priors on these parameters were
Fig. 9. Simulations. (A) Two trials with different spectral profiles generated from the NMM.
(hashed red circle & spectrum) and at (u=0. 25 mA; α=0.248) we generated a “theta tria
estimates are shown as full circles in the phase-diagram (reproduced from Fig. 3) and full lin
NMM. At (u=4 mA; γ31

E = 0.25) we generated an “alpha trial” from an alpha limit cycle (has
trial” from fixed-point resonance (hashed grey circle and spectrum). All other parameters a
diagram (from Fig. 2) and full lines in the spectra plots. The colours of the lines in the plots
set to u=1 mA and αNMDA= 0.06, with all other parameters set to
their nominal values (Table 1). Fig. 9A illustrates the maximum
a posteriori (MAP) estimates for this inversion and the corresponding
model fits. MAP estimates for trial 1 placed u=0.6±0.22 mA
(posterior mean±s.d.) and αNMDA= 0.03±0.01. The parameters for
trial 2 were estimated in the direction of the simulated change in the
NMDA channel function, with estimates u=0.76±0.27 mA and
αNMDA= 0.10±0.02, resulting in non-overlapping 95% posterior
confidence intervals for αNMDA(trial 1) and αNMDA(trial 2). Though
we found a change in the correct direction for αNMDA in trial 2 relative
to trial 1, the posterior mean for trial 2 did not reach its simulated
value of 0.25. We looked for possible identifiability issues by
examining the posterior correlations among parameters. The maxi-
mum (absolute) correlation was with the parameter encoding the
fixed variance (diffusion) measure, which correlated negatively with
αNMDA (ρ=−0.4) and may account for the small values of αNMDA

estimates in trial 2.
For our second analysis, we generated spectral data from both

sides of a phase transition (Fig. 2A and B).We generated an alpha limit
cycle at u=4.00 mA and γ3, 1 = 0.25 (trial 1) and a beta spectrum
after a phase transition to a fixed-point, at u=14.06 mA and γ3, 1 =
0.25 (trial 2). Priors on these parameters were set to u=0.06 mA
andγ3, 1 = 0.13, with all other parameters set to their nominal values
(Table 1). Fig. 9B illustrates themaximum a posteriori (MAP) estimates
for this inversion and the corresponding model fits. MAP estimates
At (u=0. 25 mA; α=0.031) we generated an “alpha trial” from fixed-point resonance
l” from fixed-point resonance (hashed green circle and spectrum). Model fits and MAP
es in the spectra plots. (B) Two trials with different spectral profiles generated from the
hed red circle and spectrum) and at (u=14.063 mA; γ31

E =0.25), we generated a “beta
re as per Table 1. Model fits and MAP estimates are shown as full circles in the phase-
correspond to the different trials coloured according to their predominant frequency.
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for trial 1 placed u=3.65±0.28 mA and γ3, 1= 0.22±0.14. Crucially,
trial 2 estimates crossed the phase transition with estimates of
u=11.79±0.00 mA and γ3, 1= 0.11±0.04.

In summary, these results show that the inversion scheme, which
requires a continuous free-energy function, can accommodate
bifurcations (in this example, at u~10.6 mA). The reason for this is
that the spectral behaviour of the system does not change qualita-
tively with a dynamical phase transitions. We have exploited this
by using spectral data features to provide a free-energy objective
function for model inversion that is analytic (smooth and continu-
ously differentiable).

Discussion

Converging evidence suggests that oscillations in cortical dynam-
ics play an important role in mediating and coordinating activity in
neural circuits (Womelsdorf and Fries, 2007; Sejnowski and Paulsen,
2006; Seidenbecher et al., 2003; Dragoi and Buzsáki, 2006).
Biophysically plausible generative models of these oscillations
allow us to infer the synaptic physiology that subtends observed
responses. In this context, we addressed two aspects of biological
realism when constructing our generative model.

First, we attempted to capture some important physiological
processes using a greater array of channel types than considered
previously (Moran et al., 2009). The inclusion of NMDA channels is
important in DCM hypotheses testing (i.e., model comparison) and
inference, given the potential role of NMDA receptors in a wide
range of cognitive processes (e.g. memory; Nakazawa et al., 2004, and
learning; Chen and Tonegawa, 1997) and pathophysiology (e.g. in
schizophrenia, Stephan et al., 2009). Establishing the utility of the
modelling scheme, given real data, will require a series of careful
validation studies. This entails the study of electromagnetic signals
when certain channel properties are changed selectively or measured
independently; e.g. via microdialysis (Moran et al., 2008) or
pharmacological manipulations. This is the subject of current work,
in which we focus on NMDA receptor function and, crucially,
interactions with things like dopaminergic neurotransmission. In
this context, we envisage that questions about the form of the model
(e.g., the need to include NMDA receptors) will be addressed using
Bayesian model comparison, in other words, comparing the evidence
for models with and without NMDA receptors.

Second, the repertoire of our generativemodels has been extended
to provide for nonlinear oscillatory behaviour based on limit-cycle
attractor networks, a ubiquitous property of complex systems (Jirsa,
2004) and density dynamics that conform to nonlinear Fokker–Planck
equations (Breakspear et al., 2010).

Studies investigating the bifurcation structure of Morris–Lecar
(ML) models have indicated the existence of distinct phase
transitions in one- and two-dimensional parameter spaces. One-
dimensional analysis has revealed two different types of oscillatory
solutions; the first corresponds to saddle node bifurcations, which
produce slow oscillations, with frequencies proportional to the
applied driving current. In the second, a higher current leads to
stable limit cycles following a sub-critical Hopf bifurcation
(Ermentrout, 1996; Rinzel and Ermentrout, 1998; Tateno and
Pakdaman, 2004). In two-dimensional parameter space, transitions
between these solutions can be achieved through global homo-
clinic bifurcations by altering particular currents within the model
(Tsumoto et al., 2006). Clearly, the bifurcation structure of the ML
model is rich and complex. Our primary concern in this paper was
not to characterise the bifurcations per se, but instead to search a
wide parameter space, within a meaningful physiological range, to
elucidate the spectral response profile. We did this by applying a
numerical bifurcation analysis to study the stationary regimes of
the ensemble model, which covered spectral responses from low,
delta frequencies (2 Hz) to high gamma (100 Hz). We found that
our NMM and MFM formulations generated distinct spectra in the
associated phase-diagrams, with higher frequency gamma
responses observed for the MFM. On the other hand, lower
frequency oscillations could be generated by both. Low frequency
dynamics at fixed points suggest that both of these formulations
might act as generative models for other forms of DCM, e.g. DCM
for ERPs (Kiebel et al., 2006).

The proposed approach to spectral prediction (generation) allows us
to observe spectra consistently from all regions in parameter space; at
fixed points, at bifurcation to quasiperiodic behaviour and beyond. The
ideas fromWiesenfeld (1985) allow the latter two regions to be treated
similarly. Here the dimension reduction at the centre manifold was
extended to limit-cycle bifurcations and specifically its noisy precursor.
Perturbations from the limit-cycle attractor (centre manifold) can be
approximatedwith linearised transients. At the fixed-point bifurcations
the sampling procedure embodies an adiabatic reduction, or the
enslaving principle introduced by Haken (1977). The Jacobian at a
fixed-point may be an over-complete representation of the determin-
istic spectral response, but allows for a consistent generative model of
oscillatory dynamics under the assumption of stochastic perturbations.

In this paper, we simulated spectral responses using both the MFM
and NMM models of one cortical region. In subsequent work we will
extend this approach to multiple brain regions. The case of multiple
interacting cortical sources is mathematically identical to the
treatment of a single source in this paper. This is because, for multiple
regions, we simply augment the coupling parameters γ i, j

k in Eq. (6) to
include (extrinsic) coupling between regions, where the strength of
AMPA mediated input would correspond to the strength of extrinsic
glutamatergic connections. One might anticipate that quasiperiodic
dynamics will be more prescient in this context because heterogene-
ity in (extrinsic and intrinsic) coupling may induce more complex
macroscopic dynamics (see Shibata and Kaneko, 1997; Hennig and
Schimansky-Geier, 2008; Stefanescu and Jirsa, 2008 and De Monte
et al., 2003). For such inter-regional connections the presynaptic
population is the pyramidal cell population, while the postsynaptic
population can be any of the three neuronal types (pyramidal,
spiny stellate or inhibitory interneurons), depending on the type of
connection (forward, backward, lateral).

In conclusion, this paper makes two contributions to the ongoing
development of dynamic causal models of electrophysiological data: it
augments recent conductance-basedmodelswith anNMDA channel, and
it introduces a generic and consistent method for generating spectral
responses across different regions of parameter space. This might be an
important step for underwriting the robustness of model inversion in
DCM, when analysing nonlinear systems with phase transitions.
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Appendix A

The dynamics of the density q(x), under the Fokker–Planck
equation is given by

q̇ = −∇⋅fq + ∇⋅D∇q

With flow f and dispersion D. Assuming a Gaussian form for
the population densities N μ ;∑ð Þ, the dynamics of the first order
moments are given by

μ̇ i = ∫−x∂x fqð Þdx + ∫x∂xD∂xqdx
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Where, by parts

μ̇ i = − xf xð Þq xð Þ½ �∞−∞ + ∫f xð Þq xð Þdx + xD∂xq½ �∞−∞−∫D∂xqdx

μ̇ i = ∫f xð Þq xð Þdx

noting q(x),∂ xq(x)→0 as x→±∞. And for the second order moments,
where xi = xi−μið Þ, by parts again

Σ̇ij = ∫ xjfi xð Þ + xifi xð Þ
� �

q xð Þdx + Dij + Dji

Under Gaussian assumptions xih iq = 0 and xixj
� 	

q = Σij, giving
finally (main text)

μ̇ jð Þ
i = f jð Þ

i μ ;∑;uð Þ + 1
2
tr ∑ jð Þ∂xxf

jð Þ
i

� �
Ṗ jð Þ

= ∂x f jð Þ∑ jð Þ + ∑ jð Þ∂x f jð ÞT + D jð Þ + D jð ÞT

Please see Marreiros et al. (2009) for further details.
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