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Glossary

Cognitive phenotype: a phenotype is a measureable trait of an organism.

Although easy to state in this manner, the idea of a phenotype can become

subtle and contentious. Phenotypes include different morphology, biochemical

cascades, neural connection patterns, behavioral patterns and so on.

Phenotypic variation is a term used to refer to those variations in some trait

on which natural selection could act. A cognitive phenotype is a pattern of

cognitive functioning in some domain that could be used to classify styles of

cognition. By analogy, variations in cognitive phenotypes would be subject to

natural selection.

Computational phenotyping: a computational phenotype is a measurable

behavioral or neural type defined in terms of some computational model. By

analogy with other phenotypes, a computational phenotype should show

variation across individuals and natural selection could act on this variation.

Large-scale computational phenotyping in humans has not been carried out;

therefore, the ultimate utility of this idea has not been rigorously tested.

Game theory: the study of mathematical models of interactions between

rational agents.

Instrumental controller: instrumental conditioning is the process by which

reward and punishment are used in a contingent fashion to increase or

decrease the likelihood that some behavior will occur again in the future. An

instrumental controller is one whose control over behavior can be conditioned

in exactly the same fashion. It is an operational term used in the reinforcement

learning approach to motivated behavior to refer to any controller whose

influence over behavior shows the dependence on rewards and punishments

typical of instrumental conditioning.

Neuromodulatory systems: systems of neurons that project to broad regions

of target neural tissue to modulate subsequent neural responses in those

regions. Neuromodulatory systems typically have cell bodies situated in the

brainstem and basal forebrain and deliver neurotransmitters, such as

serotonin, dopamine, acetylcholine and norepinephrine, to target regions.

They are called modulatory because their impact is typically much longer-

lasting than fast synaptic effects mediated by glutamate and they are much

more widely distributed.

Pavlovian controller: an operational name for a behavioral controller that is

Pavlovian in the normal psychological use of this term – that is, the controller

mediates involuntary responses to situations or stimuli. Pavlovian control can

be demonstrated behaviorally and modern work is focused on identifying the

neural substrates that contribute to this function.

Serotonin: a neuromodulator common to many neurons in the raphe nuclei.

Serotonin has a presumed role in clinical depression because of the efficacy of

medications that selectively block its reuptake into neurons after its release

from synaptic terminals (so-called SSRI’s – selective serotonin reuptake
Computational ideas pervade many areas of science and
have an integrative explanatory role in neuroscience and
cognitive science. However, computational depictions of
cognitive function have had surprisingly little impact on
the way we assess mental illness because diseases of the
mind have not been systematically conceptualized in
computational terms. Here, we outline goals and na-
scent efforts in the new field of computational psychia-
try, which seeks to characterize mental dysfunction in
terms of aberrant computations over multiple scales. We
highlight early efforts in this area that employ reinforce-
ment learning and game theoretic frameworks to eluci-
date decision-making in health and disease. Looking
forwards, we emphasize a need for theory development
and large-scale computational phenotyping in human
subjects.

The explanatory gap
The idea of biological psychiatry seems simple and com-
pelling: the brain is the organ that generates, sustains and
supports mental function, and modern psychiatry seeks
the biological basis of mental illnesses. This approach has
been a primary driver behind the development of genera-
tions of anti-psychotic, anti-depressant, and anti-anxiety
drugs that enjoy widespread clinical use. Despite this
progress, biological psychiatry and neuroscience face an
enormous explanatory gap. This gap represents a lack of
appropriate intermediate levels of description that bind
ideas articulated at the molecular level to those expressed
at the level of descriptive clinical entities, such as schizo-
phrenia, depression and anxiety. In general, we lack a
sufficient understanding of human cognition (and cognitive
phenotypes) to provide a bridge between themolecular and
the phenomenological. This is reflected in questions and
concerns regarding the classification of psychiatric dis-
eases themselves, notably, each time the Diagnostic and
StatisticalManual ofMental Disorders (DSM) of the Amer-
ican Psychiatric Association is revised [1].

While multiple causes are likely to account for the
current state of affairs, one contributor to this gap is the
(almost) unreasonable effectiveness of psychotropic medi-
cation. These medications are of great benefit to a substan-
tial number of patients; however, our understanding of
why they work on mental function remains rudimentary.
For example, receptors are understood as molecular motifs
(encoded by genes) that shuttle information from one
cellular site to another. Receptor ligands, whose blockade
inhibitors).
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or activation relieves psychiatric symptoms, furnished a
kind of conceptual leap that seemed to obviate the need to
account for the numerous layers of representation inter-
vening between receptor function and behavioral change.
This, in turn, spawned explanations of mental phenomena
in simplistic terms that invoked a direct mapping from
receptor activation to complex changes in mental status.
We are all participants in this state of affairs, since symp-
tom relief in severe mental disease is sufficient from a
clinical perspective, irrespective of whether there are mod-
els that connect underlying biological phenomena to the
damaged mental function. A medication that relieves or
removes symptoms in a large population of subjects is
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unquestionably of great utility, even if the explanation for
why it works is lacking. However, significant gaps in the
effectiveness of medications for different mental illness
mean we should look to advances in modern neuroscience
and cognitive science to deliver more.

We believe that advances in human neuroscience can
bridge parts of the explanatory gap. One area where there
has been substantial progress is in the field of decision-
making. Aberrant decision-making is central to the major-
ity of psychiatric conditions and this provides a unique
opportunity for progress. It is the computational revolution
in cognitive neuroscience that underpins this opportunity
and argues strongly for the application of computational
approaches to psychiatry. This is the basis of computation-
al psychiatry [2–4] (Figure 1). In this article, we consider
this emerging field and outline central challenges for the
immediate future.

Contrasting mathematical and computational modeling
Mathematical modeling

To define computational modeling, we must first distin-
guish it from its close cousin, mathematical or biophysical
modeling. Mathematical modeling provides a quantitative
expression for natural phenomena. Thismay involve build-
ing multi-level (unifying) reductive accounts of natural
phenomena. The reductions involve explanatory models
at one level of description that are based on models at finer
levels, and are ubiquitous in everything from treatments of
action potentials [5] (see also [6] for a broader view) to the
dynamical activity of populations of recurrently connected
neurons [7]. Biophysical realism, however, is a harsh
taskmaster, particularly in the face of incomplete or sparse
data. For example, in humans, there seems to be little
point in building a biophysically detailed model of the
dendrite of single neurons if one can onlymeasure synaptic
responses averaged over millions of neurons and billions of
synapses using functional magnetic resonance imaging
(fMRI) or electroencephalography (EEG).

Biophysical modeling is important for elucidating key
relationships in a hugely complex system [8] and thus
predicting the possible effects of therapeutic interventions
(see [9] for an example using dynamic causal modeling).
For example, it is well known that critical mechanisms
within neuromodulatory systems, such as dopamine, sero-
tonin, norepinephrine and acetylcholine, are subject to
intricate patterns of feedback and interactive control, with
autoreceptors regulating the activity of the very neurons
that release neuromodulators. Moreover, this feedback
often includes the effects of one neuromodulator (e.g.,
serotonin) on the release and impact of others (e.g., dopa-
mine) [10]. These neuromodulators are implicated in many
psychiatric and neurological conditions. The fact that they
play key roles in somany critical functions may explain the
fact, if not the nature, of this exquisite regulation. It is the
complexity of these interactions that invites biophysical
modeling and simulation, for instance, to predict the effect
of medication with known effects on receptors or uptake
mechanisms. Moreover, the capacity to perform fast bio-
physical simulations is essential for evidence-based model
comparison using empirical data [11] and the exploration
of emergent behaviors (e.g., [12]). Simulation has become
vital to vast areas of science and it will be central in
computational psychiatry. Mathematical predictions
based on real neural and biophysical data are important;
however, they are not equivalent to a computational ac-
count of mental or neural function.
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Computational modeling

Computational modeling seeks normative computational
accounts of neural and cognitive function. Such accounts
start from the premise that the brain solves computational
problems and indeed has evolved to do so. One of the
pioneers of computing theory, Alan Turing, conceived of
mental function in exactly this fashion – the mind was cast
as specific patterns of information processing supported by
a particular kind of hardware (the brain) [13]. This notion
implies key constraints on mental phenomena – in partic-
ular constraints on computational complexity that limit
the power of any device, neural or mechanical, to solve a
wide range of problems [14]. This idea is commonplace
today but in the 1930s the idea of computation and its
limits underwent a revolution [15–17] (see also [18]).

Currently, computational accounts of elements of men-
tal and neural function exist, and in each case, typically
some constraint is found that guides the discovery of the
computational model. Some of the most important con-
straints come from optimality assumptions – the idea that
the brain is organized to maximize or minimize quantities
of external and internal importance (e.g., [6,19]). One set of
optimality constraints emerges naturally from behaviors
that support survival, such as foraging for food or respond-
ing appropriately to prospects of danger [20]. A wide range
of ideas, proofs, methods and algorithms for executing such
behaviors can be found in many fields, including engineer-
ing, economics, operations research, control theory, statis-
tics, artificial intelligence and computer science. In fact,
these fields provide a formal foundation for the interpre-
tation of many cognitive and neural phenomena [6]. This
foundation can span important levels of description, for
instance, offering accounts of the representational seman-
tics of the population activity of neurons [21] or of the firing
Box 1. Reinforcement learning

Reinforcement learning (RL) is a field, partly spawned by mathema-

tical psychology, that spans artificial intelligence, operations re-

search, statistics and control theory (for a good introductory account

of RL, see [89]). RL addresses how systems of any sort, be they

artificial or natural, can learn to gain rewards and avoid punishments

in what might be very complicated environments, involving states

(such as locations in a maze) and transitions between states. The field

of neural RL maps RL concepts and algorithms onto aspects of the

neural substrate of affective decision-making [90,91]. One important

feature of this framework is that the majority of its models can be

derived from a normative model of how an agent ‘should’ behave

under some explicit notion of what that agent is trying to optimize

[89].

Conventional and neural RL include two very broad classes of

method: model-based and model-free. Model-based RL involves

building a statistical model of the environment (a form of cognitive

map; see [92]) and then using it to (i) choose actions based on

predicted outcomes and (ii) improve predictions by optimizing the

model. Acquiring such models from experience can be enhanced by

sophisticated prior expectations (a facet that we relate to the

phenomena of learned helplessness). In other words, an agent

significantly enhances the models it can build based on experience

if it already starts with a good characterization of its environment. In

turn, these models enable moment-to-moment prediction and plan-

ning. Except in very simple environments, prediction and planning

consume enormous memory and computational resources – a fact

has inspired much work on approximations and the search for

biological work-arounds.
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of neuromodulatory neurons in the context of tasks involv-
ing predictions of reward [22–26]. This type of computa-
tional modeling can thus provide one explanatory
framework for the reductive mathematical modeling dis-
cussed above.

Computational modeling in decision-making

The field of decision-making has been a particular target
for computational modeling. Decision-making involves the
accumulation of evidence associated with the utilities of
possible options and then the choice of one of them, given
the evidence. Decision-making problems in natural envir-
onments are extremely complex. One difficulty arises from
the balance models must strike between built-in informa-
tion acquired over the course of evolution about the nature
of the decision-making environment (ultimate constraints)
versus what can be learned over the course of moment-to-
moment experience (proximate constraints). A second dif-
ficulty arises because of the inherent computational com-
plexity of the problem: certain types of optimal decision-
making appear intractable for any computational system.
This fact motivates the search for approximations that
underlie mechanisms actually used in animals. Reinforce-
ment learning is one area where such approximations have
been used to guide the discovery of neural and behavioral
mechanisms. Box 1 provides a brief description of the
modern view of neural reinforcement learning.

Many psychiatric conditions are associated not only
with abnormal subjective states, such as moods, but also
with aberrant decisions. Patients make choices: in depres-
sion, not to explore; in obsessive compulsive disorder, to
repeat endlessly a behavior (such as hand-washing) that
has no apparent basis in rational fact (such as having dirty
hands); in addiction, to seek and take a drug, despite
Model-free RL involves learning exactly the same predictions and

preferences as model-based RL, but without building a model.

Instead, model-free RL learns predictions about the environment by

enforcing a strong consistency constraint: successive predictions

about the same future outcomes should be the same. Actions are

chosen based on the simple principle that actions which lead to better

predicted outcomes are preferred. Model-free RL imposes much

lower demands on computation and memory because it depends on

past learning rather than present inference. However, this makes it

less flexible to changes in the environment.

The conceptual differences between model-based and model-free

RL suggest that correlates can be sought in real-world neural and

behavioral data. There are ample results from animal and human

experiments to suggest that both model-free and model-based RL

systems exist in partially distinct regions of the brain [67,93–97] and

that there is a rich panoply of competitive and cooperative interac-

tions between them [67]. Model-free RL has a particularly close

association with the activity of the dopamine neuromodulatory

system, especially in the context of appetitive outcomes and

predictions.

Finally, model-based and model-free RL are both instrumental in

the sense that actions are chosen because of their consequences [94].

Animals are also endowed with extremely sophisticated Pavlovian

controllers (see main text), where outcomes and predictions of those

outcomes directly elicit a set of species-typical choices apparently not

under voluntary control. One important example related to predic-

tions of future negative outcomes is behavioral inhibition (learning

not to do something), which may be related to serotonin [51].
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explicitly acknowledging the damage that follows. Key to
the initial form of computational psychiatry is the premise
that, if the psychology and neurobiology of normative
decision-making can be characterized and parameterized
via a multi-level computational framework, it will be pos-
sible to understand the many ways in which decision-
making can go wrong. However, we should first consider
an important earlier tradition of modeling in psychiatry.

Early connectionist models of mental dysfunction
There is an old idea in brain science, namely, that complex
functions emerge from networked interactions of relatively
simple parts [27,28]. In the brain, the most conspicuous
physical substrates for this idea are the networks of neu-
rons connected by synapses. This perspective has been
termed ‘connectionism’. One modern expression of connec-
tionism began with the work of Rumelhart, McClelland
and the parallel distributed processing research group [29]
(but now see [30]), which applied this approach to both
brain and cognition in the early and mid-1980s, building
upon the earlier pioneering work [27,28]. The basic concept
underlying connectionism involves taking simple, neuron-
like, units and connecting in them in ways that are either
biologically plausible based on brain data or capable of
performing important cognitive or behavioral functions. At
approximately the same time and parallel to this work,
three key publications emerged from physicists John Hop-
field and David Tank, which showed how a connectionist-
like network can have properties equivalent to those per-
taining to the dynamics of a physical system [31–33].
Inspired by Hopfield’s work and the seminal (and still
classic) work of Stuart and Donald Geman on Gibbs sam-
pling and Bayesian approaches to image analysis, Hinton
and Sejnowski [34] showed that probabilistic activation in
simple units could perform a sophisticated Bayesian style
of inference. Collectively, this work addressed memory
states, constraint satisfaction, pattern recognition and a
host of other cognitive functions [29], thus suggesting that
these models might aid in understanding mental disease.

Through the 1990s, connectionist models turned their
sights on psychopathologies, such as schizophrenia [35–

39]. These models primarily addressed issues related to
cognitive control and neuromodulation [35–38], with a
particular focus on neural systems that could support these
functions [40–44]. These and other models offered plausi-
ble solutions for how networks of neurons could implement
functions, such as cognitive control and memory, and
offered new abstractions for how such functions go awry
in specific pathologies. This work leans heavily on the
neurally-plausible aspect of connectionist models, a fea-
ture that now finds more biological support, as neurosci-
ence has produced enormous amounts of new data that can
be fit into such frameworks [42–44].

Recent efforts toward computational characterization
of mental dysfunction
In this section, we review recent efforts to develop and test
computational models of mental dysfunction and to extract
behavioral phenotypes relevant for building computation-
ally-principled models of mental disease. The examples
discussed are intended to provide insights into healthy
mental function but in a fashion designed to inform the
diagnosis and treatment of mental disease. Along with the
pioneering earlier studies [35–40], there have been recent
treatments and reports of work along these lines on schizo-
phrenia [3,45,46], addiction [47], Parkinson’s disease,
Tourette’s syndrome, and attention-deficit hyperactivity
disorder [3]. Here, we concentrate on two areas that have
not been recently reviewed in this context, namely depres-
sion and autism.

The efforts discussed here are now collectively blossom-
ing into programmatic efforts in computational psychiatry
(for example, the joint initiative of the Max Planck Society
and University College London: Computational Psychiatry
and Aging Research). It is our opinion that such efforts
must reach further and strive to extract normative compu-
tational accounts of healthy and pathological cognition
useful for building predictive models of individuals. Con-
sequently, we emphasize for computational psychiatry the
goal of extracting computational principles around which
human cognition and its supporting biological apparatus is
organized. Achieving this goal will require new types of
phenotyping approaches, in which computational param-
eters are estimated (neurally and behaviorally) from hu-
man subjects and used to inform the models. This type of
large-scale computational phenotyping of human behavior
does not yet exist.

Reinforcement learning (RL) models of mood disorders

and anxiety

Box 1 notes three different, albeit interacting, control
systems within the context of RL: model-based, model-free,
and Pavlovian. Model-based and model-free systems link
the choice of actions directly to affective consequences. The
Pavlovian system determines involuntary actions on the
basis of predictions of outcomes, whether or not deployed
actions are actually appropriate for gaining or avoiding
those outcomes. Pavlovian control appears completely au-
tomated in this description. However, it is known that
other brain systems can interact with Pavlovian control,
hence, it is at this level that such control can be sensitive to
ongoing valuations in other parts of the brain.

These types of controllers and their interactions have
been the subject of computational modeling in the context
of mood disorders, especially depression [4,48–50]. First,
let us consider the role of serotonin in clinical depression.
In many patients, one effective treatment involves the use
of a selective serotonin reuptake inhibitor (SSRI), which
prolongs the action of serotonin at target sites. Data from
animals suggests that serotonin release is involved in
(learned) behavioral inhibition [50–53], associated with
the prediction of aversive outcomes [54,55]. Computational
modeling inspired by these data suggests that serotonin’s
role in behavioral inhibition may reflect a Pavlovian effect:
subjects do not have to learn explicitly what (not) to do in
the face of possible future trouble. This effect could be
called the ‘serotonergic crutch’. Problems with the opera-
tion of this crutch can lead to behavior in which poor
choices are made because they have not been learned to
be inappropriate. In this framework, punishments are
experienced or imagined even if the choices concern inter-
nal trains of thought rather than external events [50].
75
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Restoration of the crutch is considered to improve matters
again. The logic here is that the more an individual’s
behavior is determined in a Pavlovian manner, the more
devastating is the likely consequence of any problem with
the serotonergic crutch. This is an account of vulnerability
(analogous to the incentive sensitization theory of drug
addiction; see [56–58]).

Conversely, model-based RL has been used to capture
another feature of some forms of anxiety and depression:
learned helplessness [59–61]. Animals can be made help-
less when provided with uncontrollable rewards as well as
uncontrollable punishments [62] and, thus, learning that
their actions do not consistently predict outcomes. In these
experiments, one way to demonstrate the onset of learned
helplessness is to show that the animals do not explore or
try to escape when placed in new environments (e.g. [63]).

A natural computational account is to treat the help-
lessness training in the first part of learned helplessness as
inducing a prior probability distribution over possible
future environments, indicating that the animal can expect
to have little influence over its fate, that is, little control-
lability. This hypothesis is based on the expectation that
related environments have similar properties. Exploration
in a new environment is only worthwhile only if it is
expected that good outcomes can be reliably achieved given
appropriate actions. Thus, a prior belief implying that the
environment is unlikely to afford substantial controllabili-
ty will discourage exploration. Prior distributions are un-
der active examination in Bayesian approaches to
cognitive science and are offering substantial explanations
for a broad range of developmental and adult behaviors
[64]. Only model-based RL is capable of incorporating such
rich priors, even though model-free control can be induced
to behave in similar ways by simpler mechanisms [65,66].
This computational interpretation of uncontrollability pro-
vides a new way to understand the role that environments

[(Figure_2)TD$FIG]

Obstruction 

Mobile stag 

Stationary rabbit 

Computer agent 

Human player 

(a) Stag hunt game 

Key:

(b) Multi-round trust game 

Investor
R .3.I

Trus

3.I

$20

Figure 2. Economic games requiring theory-of-mind modeling. (a) The stag-hunt game.

or act alone and hunt low yield rabbits. A human subject (red circle) plays the game with

(larger gray square) or a (low value) rabbit sitting at a fixed position (smaller gray squar

can catch a stag together by cooperatively trapping it somewhere on the open grid. (b)

round, the proposer (the investor) is engaged with 20 monetary units. The investor any fr

triples and the trustee can repay any fraction R of the tripled amount. Players who think

who do not [73,78].

76
can play in etiology. It also provides a way of formalizing
the complex interaction between model-based, model-free
and Pavlovian systems, when not onlymight one controller
directly influence the training signal of the other control-
lers [67] but also the very experience other controllers
require in order to learn their own predictions or courses
of action.

Using games to phenotype autism spectrum disorder

A defining feature of human cognition is the capacity to
model and understand the intentions (and emotions) of
other humans. This extends to an ability to forecast into
the near-term future, for example, how someone else will
feel should they experience a consequence of an action that
wemight take. Sophisticated capacities such as these lie at
the heart of our ability to cooperate, compete and commu-
nicate with others. One of the defining features of autism
spectrum disorder (ASD) is a diminished capacity for socio-
emotional reciprocity – the social back-and-forth engage-
ment associated with all human interaction [1,68–70].
Recent modeling and neuroimaging work has used two-
agent interactions, typically in the form of some game, to
parameterize and probe this social give-and-take [71–81].
This work, along with other efforts [82–85], has collectively
launched a computational neuroscience perspective on
inter-personal exchange – a first step toward identifying
computational phenotypes in human interactions that are
underwritten by both behavioral and neural responses.

Game theory is the study of mathematical models of
interacting rational agents. It is used inmany domains and
in recent years has been increasingly applied to common
behavioral interactions in humans. Two game-theoretic
approaches have recently been used to probe ASD and
other psychopathological populations directly: the stag
hunt game and the multi-round trust game (Figure 2).
Although the behavioral probes are different, the two
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games share the feature that it is advantageous for a
human player to make inferences about their partner’s
likely mental state during the game. These inferences are
recursive: my model of you incorporates my model of your
model of me, and so on. Both approaches have built
computational models around this central idea of recursion
[78,79], thereby furnishing component computations re-
quired for healthy human exchange.

Yoshida et al. [79–81] used the stag hunt game
(Figure 2a) to probe mental state inferences in ASD versus
control subjects. The stag hunt game is a classic two-player
game (in this case involving a human player and a com-
puter agent), where players can cooperate to hunt and
acquire high yield stags, or act alone and hunt low yield
rabbits. The model developed by Yoshida et al. [79] used
the human player’s observed behavior to estimate the
sophistication level (depth of recursion) of their inference
about the computer agent’s beliefs (theory of mind). This
estimate is necessary if the human player is to cooperate
successfully with the computer agent – the human must
believe that the agent believes that the human will also
cooperate, and so on.

Behavioral results that exploited this model pointed to a
higher probability for a theory-of-mindmodel (versus fixed-
strategy) for control subjects. The opposite was true for
ASD subjects (�78% probability for fixed-strategy). How-
ever, as one might expect, there was heterogeneity in these
estimates, with some ASD subjects (n=5) displaying higher
probability for the theory-of-mind model compared to a
fixed-strategy model (n=12). Intriguingly, ASD subjects
with a higher probability for a fixed-strategymodel showed
higher ratings on two ASD rating scales (ADI-R, ASDI).
These results are preliminary and the sample of ASD
subjects small. However, the crucial point is that themodel
allows for a principled parameterization of important cog-
nitive components (e.g., depth of recursion in modeling
one’s partner). The use of such a model provides a way
to formalize the cognitive components of ASD in computa-
tional terms. By collecting muchmore normative data, this
type of approach could serve to differentiate ASD along
these newly defined computational dimensions to improve
diagnosis, guide other modes of investigation and help
tailor treatments.

The multi-round trust game has also been used to probe
a range of psychopathologic populations including ASD
and borderline personality disorder [2,75,77]. The game
is a sequential fairness game involving reciprocation,
where performance is determined by whether players
think through the impact of their actions on their partner.
In the game, a proposer (called the investor) is endowed
with $20 and chooses to send some fraction I to their
partner. This fraction is tripled (to 3*I) on the way to
the responder (called the trustee), who then chooses to
send back some fraction of the tripled amount. Subjects
play 10 rounds and know this beforehand. Cooperation
earns both players the most money. Even when playing
with an anonymous partner, investors do send money, a
fact that challenges rational agent accounts of such
exchanges. One way to conceptualize this willingness to
send money was proposed by Fehr and Schmidt [86], who
suggested that in such a social setting a player’s utility for
money depends on the fairness of the split across the two
players. Based on this model of fair exchange between
humans, Ray and colleagues developed a Bayesian model
of how one player ‘mentalizes’ the impact of their actions
(money split with partner) on their partner [78]. The key
feature is for each player to observe monetary exchanges
with their partner and estimate in a Bayesian manner the
‘fairness type’ of their partner, that is, the degree to which
the partner is sensitive to an inequitable split.

This model was able to ‘type’ players reliably from 8
rounds of monetary exchange in the game. These types can
be used to seek type-specific (fairness sensitivity) neural
correlates. More importantly, the model can be used to
phenotype individuals according to computational param-
eters important in this simple game-theoretic model of
human exchange. This is an important new possibility.
Using this same game, Koshelev and colleagues showed
that healthy investors playing with a range of psychopath-
ological groups in the trustee role can be clustered in a
manner that reflects that type of psychopathology acting as
the trustee [87]. This model used a Bayesian clustering
approach to observations of the healthy investors’ behavior
as induced by interactions with different psychopathology
groups. These preliminary results suggest that parameters
extracted from staged (normative) game-theoretic
exchanges could be used profitably as a new phenotyping
tool for humans, where the phenotypes are defined by
computational parameters extracted using models.

Computational phenotyping of human cognitive
function
Computational models of human mental function present
more general possibilities for producing new and useful
human phenotypes. These phenotypes can then structure
the search for genetic and neural contributions to healthy
and diseased cognition.We do not expect such an approach
to supplant current descriptive nosologies; instead, they
will be an adjunct, where the nature of the computational
characterization offers a new lexicon for understanding
mental function in humans. Moreover, this approach can
start with humans, define a computational phenotype,
seek neural and genetic correlates of this phenotype
and then turn to animal models for deeper biological
study.

Under the restricted decision-making landscape that we
have painted, RL models provide a natural example of a
type of computational model that could be used in such
phenotyping. Moreover, we sketched briefly how game-
theoretic probes also allow for new forms of computational
modeling and hence new ways to computationally pheno-
type humans. Through their built-in principles of opera-
tion and notions of optimal performance, RL models
provide constraints that help bridge the aforementioned
gap between molecular and behavioral levels of descrip-
tion. However, the behavioral underpinning of these mod-
els is extremely shallow at present, especially in human
subjects. As suggested by the examples above, the estima-
tion and use of computational variables, such as these, will
require new kinds of behavioral probes, combined with an
ever-evolving capacity to make neural measurements in
healthy human brains. Not only is better phenotyping
77
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through the development of new probes needed, but also
unprecedented levels of phenotyping of cognitive function.
Many of the best ideas about mental performance and
function derive primarily from studies in other species.
While these animal models have been strikingly successful
at uncovering the biology underlying learning, memory
and behavioral choice, the human behavioral ‘software’
is likely to be significantly different in important ways
that the probes will need to capture. Large-scale computa-
tional phenotyping will require radical levels of openness
across scientific disciplines and successful models for data
exchange and data sharing.

Concluding remarks
If the computational approacheswehave outlined turn out
to be effective in psychiatry, then what might one expect?
The large-scale behavioral phenotyping project sketched
above involves substantial aspects of data analysis and
computational modeling. The aim of the data analysis will
be to link precise elements of the models to measurable
aspects of behavior and to molecular and neural sub-
strates that can be independently measured. A strong
likelihood here is that the models will offer a set of cate-
gories for dysfunction that are related to, but different
from, existingnotions of disease and thiswill lead to aneed
for translation.

Although we did not focus on them here, there are also
implications for mathematical modeling. A simulation-
based account of measurable brain dynamics, anatomical
pathways and brain regions could be expected, equipped
with visualization and analysismethods to helpmake sense
of theoutput.Theultimatehope is for adetailed,multi-level,
model that allows prediction of the effects of malfunctions
andmanipulations. However, making this sufficiently accu-
rate at the scales thatmatter for cognition and behavior is a
long way off. One critical, though as yet unproven, possibili-
ty is that a computational understanding will provide its
own kind of short-circuit, with, for instance, rules of self-
organization of neural elements based on achieving partic-
ular computational endpoints, thereby removing the re-
quirement for detailed specification.

Finally, the most pressing requirement is for training.
Broad and deep skills across cognitive neuroscience,
computational neuroscience, cellular and molecular neu-
roscience, pharmacology, neurology, and psychiatry itself,
in addition to computer science and engineering, are re-
quired for the emergence of the richly interdisciplinary
field of computational psychiatry. Optimistically, how to
achieve this may become clearer as thoughts mature about
restructuring education to achieve breadth across the
brain-related clinical disciplines of neurology and psychia-
try [88].
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Press

18 Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman

19 Friston, K.J. (2010) The free-energy principle: a unified brain theory?
Nat. Rev. Neurosci. 11, 127–138

20 Kamil, A.C. et al. (1987) Foraging Behavior, Plenum Press
21 Uhlhaas, P.J. and Singer, W. (2011) The development of neural

synchrony and large-scale cortical networks during adolescence:
relevance for the pathophysiology of schizophrenia and
neurodevelopmental hypothesis. Schizophr Bull. 37, 514–523

22 Servan-Schreiber, D. et al. (1990) A network model of catecholamine
effects: gain, signal-to-noise ratio, and behavior. Science 249,
892–895

23 Montague, P.R. et al. (1994) Foraging in an uncertain environment
using predictive Hebbian learning. Adv. Neural Inform. Proc. Sys. 6,
598–605

24 Montague, P.R. et al. (1995) Bee foraging in uncertain environments
using predictive Hebbian learning. Nature 377, 725–728

25 Montague, P.R. et al. (1996) A framework for mesencephalic dopamine
systems based on predictive Hebbian learning. J. Neurosci. 16,
1936–1947

26 Montague, P.R. et al. (2004) Computational roles for dopamine in
behavioral control. Nature 431, 760–767

27 McCulloch, W. and Pitts, W. (1943) A logical calculus of the ideas
immanent in nervous activity. Bull. Math. Biophys. 5, 115–133

28 Rosenblatt, F. (1958) The perceptron: a probabilistic model for
information storage and organization in the brain. Psychol. Rev. 65,
386–408

29 McClelland, J. and Rumelhart, D. (1989) Explorations in Parallel
Distributed Processing: A Handbook of Models, Programs, and
Exercises, MIT Press

30 O’Reilly, R. and Munakata, Y. (2000) Computational Explorations in
Cognitive Neuroscience: Understanding the Mind by Simulating the
Brain, MIT Press

31 Hopfield, J.J. (1982) Neural networks and physical systems with
emergent collective computational abilities. Proc. Natl. Acad. Sci.
U.S.A. 79, 2554–2558

32 Hopfield, J.J. (1984) Neurons with graded response have collective
computational properties like those of two-state neurons. Proc. Natl.
Acad. Sci. U.S.A. 81, 3088–3092

33 Hopfield, J.J. and Tank, D.W. (1986) Computing with neural circuits: a
model. Science 233, 625–633



Review Trends in Cognitive Sciences January 2012, Vol. 16, No. 1
34 Hinton, G.E. and Sejnowski, T.J. (1983) Optimal perceptual inference,
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Washington DC. pp. 448–453

35 Cohen, J.D. and Servan-Schreiber, D. (1992) Context, cortex and
dopamine: a connectionist approach to behavior and biology in
schizophrenia. Psychol. Rev. 99, 45–77

36 Cohen, J.D. and Servan-Schreiber, D. (1993) A theory of dopamine
function and cognitive deficits in schizophrenia. Schizophr. Bull. 19,
85–104

37 Cohen, J.D. et al. (1996) A computational approach to prefrontal
cortex, cognitive control, and schizophrenia: Recent developments
and current challenges. Phil. Trans. R. Soc. Lond. B: Biol. Sci. 351,
1515–1527

38 Braver, T.S. et al. (1999) Cognition and control in schizophrenia: a
computational model of dopamine and prefrontal function. Biol.
Psychiatry 46, 312–328

39 Carter, C.S. et al. (1998) Anterior cingulate cortex, error detection, and
the on line monitoring of performance. Science 280, 747–749

40 Carter, C.S. et al. (2001) Anterior cingulate cortex and impaired self-
monitoring of performance in patients with schizophrenia: an event-
related fMRI study. Am. J. Psychiatry 1423–1428

41 Frank, M.J. et al. (2004) By carrot or by stick: cognitive reinforcement
learning in Parkinsonism. Science 306, 1940–1943

42 O’Reilly, R.C. (2006) Biologically-based computational models of high-
level cognition. Science 314, 91–94

43 O’Reilly, R.C. and Frank, M.J. (2006) Making working memory work: a
computational model of learning in the prefrontal cortex and basal
ganglia. Neural Comput. 18, 283–328

44 Hazy, T.E. et al. (2007) Toward an executive without a homunculus:
bomputational models of the prefrontal cortex/basal ganglia system.
Philos. Trans. R. Soc. Lond. B: Biol. Sci. 362, 1601–1613

45 Smith, A.J. et al. (2007) Linking animal models of psychosis to
computational models of dopamine function.
Neuropsychopharmacology 32, 54–66

46 Corlett, P.R. et al. (2011) Glutamatergic model psychoses: prediction
error, learning, and inference. Neuropsychopharmacology 36, 294–315

47 Redish, A.D. et al. (2008) A unified framework for addiction:
vulnerabilities in the decision process. Behav. Brain Sci. 31, 415–

437 (discussion pp. 437-487)
48 Kumar, P. et al. (2009) Abnormal temporal difference reward-learning

signals in major depression. Brain 131, 2084–2093
49 Gradin, V.B. et al. (2011) Expected value and prediction error

abnormalities in depression and schizophrenia. Brain DOI:
10.1093/brain/awr059

50 Dayan, P. andHuys, Q.J.M. (2009) Serotonin in affective control.Annu.
Rev. Neurosci. 32, 95–126

51 Soubrie, P. (1986) Reconciling the role of central serotonin neurons in
human and animal behavior. Behav. Brain Res. 9, 319–364

52 Boureau, Y-L. andDayan, P. (2011)Opponency revisited: competition and
cooperation betweendopamine and serotonin.Neuropsychopharmacology
DOI: 10.1038/npp.2010.151

53 Cools, R. et al. (2008) Acute tryptophan depletion in healthy volunteers
enhances punishment prediction but does not affect reward prediction.
Neuropsychopharmacology 33, 2291–2299

54 Deakin, J.F.W. (1983) Roles of brain serotonergic neurons in escape,
avoidance and other behaviors. J. Psychopharmacol. 43, 563–577

55 Deakin, J.F.W. and Graeff, F.G. (1991) 5-HT and mechanisms of
defense. J. Psychopharmacol. 5, 305–316

56 Robinson, T.E. and Berridge, K.C. (2000) The psychology and
neurobiology of addiction: an incentive-sensitization view. Addiction
95, s91–s117

57 Robinson, T.E. and Berridge, K.C. (2008) The incentive sensitization
theory of addiction: some current issues. Philos. Trans. R. Soc. Lond. B:
Biol. Sci. 363, 3137–3146

58 Flagel, S.B. et al. (2009) Individual differences in the attribution of
incentive salience to reward-related cues: implications for addiction.
Neuropharmacology 56 (Supp. 1), 139–148

59 Seligman, M.E.P. (1975) Helplessness on Depression, Development and
Death, W.H. Freeman & Co.

60 Maier, S. and Seligman, M. (1976) Learned helplessness: Theory and
evidence. J. Exp. Psychol. Gen. 105, 3–46

61 Miller, W.R. and Seligman, M.E. (1975) Depression and learned
helplessness in man. J. Abnorm. Psychol. 84, 228–238
62 Goodkin, F. (1976) Rats learn the relationship between responding and
environmental events: An expansion of the learned helplessness
hypothesis. Learn. Motiv. 7, 382–393

63 Maier, S.F. and Watkins, L.R. (2005) Stressor controllability and
learned helplessness: The roles of the dorsal raphe nucleus,
serotonin, and corticotropin-releasing factor. Neurosci. Biobehav.
Rev. 29, 829–841

64 Tenenbaum, J.B. et al. (2011) How to grow amind: statistics, structure,
and abstraction. Science 331, 1279–1285

65 Sutton, R.S. (1990) Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming, In
Proceedings of the 7th International Conference on Machine
Learning, Morgan Kaufmann. pp. 216–224

66 Kakade, S. and Dayan, P. (2002) Dopamine: generalization and
bonuses. Neur. Netw. 15, 549–559

67 Daw, N.D. et al. (2011) Model-based influences on humans’ choices and
striatal prediction errors. Neuron 69, 1204–1215

68 Baron-Cohen, S. (2001) Theory of mind and autism: a review. Int. Rev.
Res. Ment. Retard. 23, 169–184

69 Frith, C.D. and Frith, U. (1999) Interacting minds – a biological basis.
Science 286, 692–1695

70 Gallagher, H.L. and Frith, C.D. (2003) Functional imaging of ‘theory of
mind’. Trends Cogn. Sci. 7, 77–83

71 Rilling, J.K. et al. (2002) A neural basis for social cooperation. Neuron
35, 395–405

72 Rilling, J.K. and Sanfey, A.G. (2011) The neuroscience of social
decision-making. Annu. Rev. Psychol. 62, 23–48

73 King-Casas, B. et al. (2005) Getting to know you: reputation and trust
in a two-person economic exchange. Science 308, 78–83

74 Tomlin, D. et al. (2006) Agent-specific responses in cingulate cortex
during economic exchanges. Science 312, 1047–1050

75 Chiu, P.H. et al. (2008) Self responses along cingulate cortex reveal
quantitative neural phenotype for high-functioning autism.Neuron 57,
463–473

76 Hampton, A.N. et al. (2008) Neural correlates of mentalizing-related
computations during strategic interactions in humans. Proc. Natl.
Acad. Sci. U.S.A. 105, 6741–6746

77 King-Casas, B. et al. (2008) The rupture and repair of cooperation in
borderline personality disorder. Science 321, 806–810

78 Ray, D. et al. (2008) Bayesian model of behavior in economic games.
Adv. Neural Inform. Proc. Sys. 21, 1345–1353

79 Yoshida, W. et al. (2008) Game theory of mind. PLoS Comput. Biol. 4,
DOI: 10.1371/journal.pcbi.1000254

80 Yoshida, W. et al. (2010) Neural mechanisms of belief inference during
cooperative games. J. Neurosci. 30, 10744–10751

81 Yoshida, W. et al. (2010) Cooperation and heterogeneity of the autistic
mind. J. Neurosci. 30, 8815–8818

82 Bhatt, M. and Camerer, C. (2005) Self-referential thinking and
equilibrium as states of minds in games: FMRI evidence. Games
Econ. Behav. 52, 424–459

83 Coricelli, G. and Nagel, R. (2009) Neural correlates of depth of strategic
reasoning inmedial prefrontal cortex.Proc. Natl. Acad. Sci. U.S.A. 106,
9163–9168

84 Bhatt, M.A. et al. (2010) Neural signatures of strategic types in a two-
person bargaining game. Proc. Natl. Acad. Sci. U.S.A. 107, 19720–

19725
85 Lee, D. (2008) Game theory and neural basis of social decision making.

Nat. Neurosci. 11, 404–409
86 Fehr, E. and Schmidt, K.M. (1999) A theory of fairness, competition,

and cooperation. Q. J. Econ. 114, 817–868
87 Koshelev, M. et al. (2010) Biosensor approach to psychopathology

classification. PLoS Comput. Biol. 6, e1000966
88 Insel, T.R. and Wang, P.S. (2010) Rethinking mental illness. JAMA

303, 1970–1971
89 Sutton, R.S. and Barto, A.G. (1998)Reinforcement Learning, MIT Press
90 Daw, N.D. and Doya, K. (2006) The computational neurobiology of

learning and reward. Curr. Opin. Neurobiol. 16, 199–204
91 Dayan, P. and Daw, N.D. (2008) Decision theory, reinforcement

learning, and the brain. Cogn. Affect. Behav. Neurosci. 8, 429–453
92 Tolman, E.C. (1948) Cognitive maps in rats and men. Psychol. Rev. 55,

189–208
93 Doya, K. (1999)What are the computations of the cerebellum, the basal

ganglia, and the cerebral cortex. Neural Netw. 12, 961–974
79

http://dx.doi.org/10.1093/brain/awr059
http://dx.doi.org/10.1093/brain/awr059
http://dx.doi.org/10.1038/npp.2010.151
http://dx.doi.org/10.1371/journal.pcbi.1000254


Review Trends in Cognitive Sciences January 2012, Vol. 16, No. 1
94 Dickinson, A. and Balleine, B. (2002) The role of learning inmotivation,
In Stevens’ Handbook of Experimental Psychology, vol. 3: Learning,
Motivation and Emotion (3rd ed.) (Gallistel, C.R., ed.), pp. 497–533,
Wiley

95 Killcross, S. and Coutureau, E. (2003) Coordination of actions and
habits in themedial prefrontal cortex of rats.Cereb. Cortex 13, 400–408
80
96 Daw, N.D. et al. (2005) Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral control.
Nat. Neurosci. 8, 1704–1711

97 Glascher, J. et al. (2010) States versus rewards: dissociable neural
prediction error signals underlying model-based and model-free
reinforcement learning. Neuron 66, 585–595



Erratum: Computational psychiatry
[Trends in Cognitive Sciences 16 (2012), 72–80]

P. Read Montague1,2, Raymond J. Dolan2, Karl J. Friston2 and Peter Dayan3

1 Virginia Tech Carilion Research Institute and Department of Physics, Virginia Tech, 2 Riverside Circle, Roanoke, VA 24016, USA
2 Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK
3 Gatsby Computational Neuroscience Unit, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK

P. Read Montague was supported by National Institute on Drug Abuse grant no R01DA011723-11. The author apologizes
for the omission.

1364-6613/$ – see front matter � 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.tics.2012.04.003 Trends in Cognitive Sciences, May 2012, Vol. 16, No. 5

Erratum

§ DOI of original article: 10.1016/j.tics.2011.11.018.
Corresponding author: Montague, P.R. (read@vt.edu).
306

http://dx.doi.org/10.1016/j.tics.2012.04.003
mailto:read@vt.edu

	Montague et al  Computational psy.. 2012
	Computational psychiatry
	The explanatory gap
	Contrasting mathematical and computational modeling
	Mathematical modeling
	Computational modeling
	Computational modeling in decision-making

	Early connectionist models of mental dysfunction
	Recent efforts toward computational characterization of mental dysfunction
	Reinforcement learning (RL) models of mood disorders and anxiety
	Using games to phenotype autism spectrum disorder

	Computational phenotyping of human cognitive function
	Concluding remarks
	References


	Erratum Montague et al  2012
	Erratum: Computational psychiatry


