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Action-Specific Value Signals in Reward-Related Regions of

the Human Brain

Thomas H. B. FitzGerald, Karl J. Friston, and Raymond J. Dolan
Wellcome Trust Centre for Neuroimaging, London WCIN 3BG, United Kingdom

Estimating the value of potential actions is crucial for learning and adaptive behavior. We know little about how the human brain
represents action-specific value outside of motor areas. This is, in part, due to a difficulty in detecting the neural correlates of value using
conventional (region of interest) functional magnetic resonance imaging (fMRI) analyses, due to a potential distributed representation of
value. We address this limitation by applying a recently developed multivariate decoding method to high-resolution fMRI data in subjects
performing an instrumental learning task. We found evidence for action-specific value signals in circumscribed regions, specifically
ventromedial prefrontal cortex, putamen, thalamus, and insula cortex. In contrast, action-independent value signals were more widely
represented across a large set of brain areas. Using multivariate Bayesian model comparison, we formally tested whether value-specific
responses are spatially distributed or coherent. We found strong evidence that both action-specific and action-independent value signals
are represented in a distributed fashion. Our results suggest that a surprisingly large number of classical reward-related areas contain
distributed representations of action-specific values, representations that are likely to mediate between reward and adaptive behavior.

Introduction

Adaptive decision-making requires an agent to link their evalua-
tion of current and future states to the actions that might cause
them. One needs to know that one wants to drink a cup of tea and
which actions are needed to realize this goal. On standard ac-
counts, linking the two involves assigning values to particular
actions, which are then compared and used to guide choice (one
opens the tea caddy rather than the coffee jar). In addition, track-
ing action-specific values is useful for rapid and appropriate up-
dating during learning (Gershman et al., 2009), for example, in
Q-learning (Watkins and Dayan, 1992). Thus, action-specific
values assume great importance for understanding decision-
making in humans and other animals.

Despite the importance of such information, few studies have
directly considered how it is encoded. Primate studies demon-
strate the existence of action-specific value signals in the striatum
(Samejima et al., 2005; Pasquereau et al., 2007; Lau and Glimcher,
2008; Hori et al., 2009; Seo et al., 2012) and parietal cortex (Platt
and Glimcher, 1999; Sugrue et al., 2004) but not, to our knowl-
edge, elsewhere. In humans, there is evidence of such representa-
tions in motor areas (Wunderlich et al., 2009), but not those most
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often associated with valuation, such as the striatum. One expla-
nation for this is that the conventional univariate fMRI analysis
methods used in most studies are insensitive to signals with
subject-specific profiles.

Multivariate analysis, by contrast, is sensitive to signals from
distributed neuronal populations with subject-specific profiles,
and does not require focal, spatially coherent activations (Nor-
man et al., 2006). Importantly, here we applied multivariate
Bayes (MVB) (Friston et al., 2008), a decoding technique that
allowed us to test for representations of parametric variables.
Additionally, MVB allows the comparison of different spatial-
encoding models, enabling us to test whether or not value signals
show local spatial coherence. For example, one can ask whether
adjacent voxels encode value-related signals in a similar manner,
or whether there is a distributed pattern of encoding best mod-
eled by considering voxels in isolation (Fig. 1) (Friston et al.,
2008).

Subjects performed an instrumental learning task (Fig. 1),
responding with either their right or left index finger. Value sig-
nals related to each action (Q and Q,, respectively) were esti-
mated using a Q-learning algorithm. To model action-specific
values, we defined a quantity AV as (Qgz — Q). This models
differential responding to one action value compared with the
other—indicating the presence of action-specific value signals.
To test for action-independent value signals, we defined CV (|Qy
— Q;)) (Boorman et al., 2009; FitzGerald et al., 2009), which
models the comparison between different options along a com-
mon value scale (Padoa-Schioppa and Assad, 2006).

We acquired high-resolution fMRI data from cortical and
subcortical structures known to be important in processing
value. Our guiding hypothesis, based on the increased sensi-
tivity of multivariate analysis to reward-related activity, was
that action-specific value signals would be found across sev-
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A, Instrumental learning task. Subjects were presented with an arbitrary stimulus and had 2500 ms to make one of two responses via a button box in either hand. Each stimulus—action

pairing was associated with a certain probability of reward (10 pence) versus no reward. Outcomes were signaled with two different sounds, which were presented for 1000 ms, followed by a variable
intertrial interval (1000 —3000 ms, uniform distribution). B, Proportion of trials on which subjects chose the objectively higher-valued action, pooled over all subjects, sessions, and cues. Subjects
chose the objectively better action on an increasing proportion of trials—showing that they were able to learn the task contingencies. Error bars indicate bootstrapped 95% confidence intervals. €,
Schematic of distributed and coherent coding schemes on a two-dimensional surface. Under a distributed encoding scheme (left), nearby voxels do not show similar responses, in contrast to a
scheme with local coherence (right), where clumping of responses is observed. Red/orange, positive response to arbitrary parameter; blue, negative response; green, no response.

eral regions, in particular the striatum and ventromedial pre-
frontal cortex (vmPFC), and would show a distributed pattern
of encoding over voxels.

Materials and Methods

Subjects. Twenty-six (10 female) right-handed subjects, age range
19-28 years, participated in the study. All subjects were free of neu-
rological or psychiatric disease and consented to participate. The
study was approved by the Joint National Hospital for Neurology and
Neurosurgery (University College London Hospitals NHS trust) and
Institute of Neurology (University College London) Ethics Commit-
tee. After scanning, subjects received a sum of money according to
their performance during the task (£21.80-£28.80).

Stimuli and task. Subjects performed an instrumental learning task
with visual cues and auditory feedback (Fig. 1). On each trial of the
experiment, a colored box was presented and the subjects were required
to make either a “left” or a “right” response by pressing a button on the
corresponding keypad. After 2.5 s, they heard either a higher pitched,
game-show-like “win” sound, or a lower “no win” sound, each lasting for
1 s. The box disappeared at the end of the sound. There was then a
variable intertrial interval of 1-3 s before the next trial began. Subjects
were instructed (truthfully) that every time they heard a “win” sound,
they would receive 10 pence, but they would receive nothing for a “no
win” sound. These winnings were summed and given to the subjects at
the end of the task.

Boxes differed according to their outcome contingencies. There were
four types, with win probabilities [0.05 0.30], [0.05 0.55], [0.3 0.55], and

[0.4 0.9]. In the course of the experiment, six cues were presented with
each of the four sets of contingencies, three where P(Win|Chose Right) >
P(Win|Chose Left), and three where the converse was the rule. The ex-
periment was separated into blocks of 44 trials. In each block, two boxes
appeared in pseudorandomized order (presentation was constrained so
that no box was presented more than three trials in a row). Outcome
contingencies were selected such that each pair of contingency types was
presented four times throughout the experiment (cues with identical or
mirror image contingencies were never presented together in the same
block).

There were six blocks in each of two scanning sessions (12 in total).
Each box was presented in only one block, and the contingencies assigned
to each box were counterbalanced across subjects. Contingency types
over blocks were also fully counterbalanced across subjects. At the end of
each block, subjects were asked to indicate which box they thought was
better, and were then given 4.5 s to rate how confident they were in this
judgment. They were then shown a running total of their winnings for
4.5 s before the next block started.

Behavioral analysis. Three subjects who reported using deterministic
strategies were excluded from further analysis, leaving a total of 23 sub-
jects. To generate the regressors used to analyze the imaging data, each
subject’s behavior was fit with a Q-learning model (Watkins and Dayan,
1992) incorporating a softmax decision rule. Q-learning updates the val-
ues of individual stimulus action pairs, Q(s, a), according to a reward
prediction error weighted by a learning rate a.

Q(st + D%+ 1) = Q(St,ﬂt) + C((Rt - Q(St:ar))
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Crucially, this generates trial-by-trial estimates (Qy and Q; ) for the value
of each of the two actions available to a subject, given the stimulus that
was on screen at the time.

The softmax decision rule gives the probability of choosing action R (Py)
based on the difference in value between action R and action L (Q, — Q,),
and the temperature parameter 3, which determines the preference sensitiv-
ity between the two options.

1
Pr= @k
The learning rate « and softmax temperature 3 parameters were fitted
individually for each subject using maximum likelihood (accuracy)
estimators.

Learning was assessed by comparing the estimated probability of
choosing the correct (higher value) action during their first five expo-
sures to a stimulus with their last five exposures. To check for value-
related effects on reaction times, we used a general linear model in which
the absolute difference in value between the two options (CV) was re-
gressed on reaction time. We performed this separately for each subject,
with group level inference implemented using a single-sample ¢ test on
the ensuing parameter (regression slope) estimates in the standard (sum-
mary statistic) way.

fMRI data acquisition. Three-dimensional gradient-echo T2*-
weighted echo-planar (EPI) images were acquired on a 3T Trio Siemens
scanner with a resolution of 1.5 mm isotropic. Thirty-two slices were
acquired (echo time, 32.86 ms; repetition time, 3.2 s; interleaved acqui-
sition order), which allowed data acquisition from a partial volume of
thickness 48 mm that was angled and positioned in each subject to ensure
coverage of the vmPFC, ventral striatum, and dopaminergic midbrain.

Data were acquired using a gradient-echo 3D EPI sequence on a 3T
Trio Siemens scanner with an isotropic resolution of 1.5 mm. At this
resolution, this 3D EPI sequence was shown to yield improved fMRI
sensitivity compared with standard 2D EPI sequences (Lutti et al., 2012).
Data were acquired from a partial volume that was angled and positioned
in each subject to ensure coverage of the vmPFC, ventral striatum, and
dopaminergic midbrain. Acquisition parameters were identical to these
used in Lutti et al., (2012). Thirty-two slices (partitions) were acquired
with 25% oversampling along the partition direction to avoid wrap-
around of excited signal outside the field-of-view into the image vol-
umes. The resulting volume was 3.2 s. Parallel imaging was used to
optimize the fMRI sensitivity of the 3D EPI sequence. Images were re-
constructed using the GRAPPA algorithm (Griswold et al., 2002) avail-
able on the scanner console. The resulting echo time was 32.86 ms. The
image field-of-view was 192 X 192 X 48 mm. No dropout compensation
methods were used, since signal dropout is reduced at the high image
resolution used here (Weiskopf et al., 2006). In each session, 485 images
were collected (~25 min each, two per subject). Subjects lay in the scan-
ner with foam head-restraint pads to minimize any movement. They
responded using two fMRI-compatible button boxes, one held in each
hand. To optimize coregistration, five whole-brain EPIs were collected
with identical scanning parameters. Whole-brain multiparameter maps
were collected at 1 mm isotropic resolution (Helms et al., 2009).

Preprocessing and statistical analysis were performed using SPM8
(Wellcome Trust Centre for Neuroimaging, London, UK, www.fil.ion.
ucl.ac.uk/spm). After discarding the first five images from the task ses-
sions to allow for T1 equilibration effects, EPI images were realigned with
the first volume and unwarped using field maps generated using the
Fieldmap toolbox as implemented in SPM8 (Hutton et al., 2002). This
corrects for both static distortions and motion-related alterations in
these distortions. The mean whole-brain EPI was then coregistered with
the T1-weighted structural EPI, and the smaller-volume EPIs coregis-
tered to the whole-brain EPI. To allow the comparison of data between
subjects in a common space, the DARTEL (Ashburner, 2007) toolbox
was used to normalize structural scans and coregistered EPIs to MNI
space.

Regions of interest. Where appropriate, anatomical regions of interest
(ROIs) were based on the Automatic Anatomical Labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002). The vmPFC ROI was created by combin-
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Table 1. Group-level ROl average results

pvalue

ROI AV v

vmPFC, right 0.445 <0.001
vmPFC, left 0.343 <0.001
Putamen, right 0.276 0.392
Putamen, left 0.219 0.028
NA, right 0.835 0.003
NA, left 0.489 0.095
Insula, right 0.429 0.237
Insula, left 0.306 0.351
Thalamus, right 0.273 0.409
Thalamus, left 0.849 0.673
Hippocampus, right 0.118 0.236
Hippocampus, left 0.306 0.017
Amygdala, right 0.976 0.371
Amygdala, left 0.290 0.514
SNAVTA 0.869 0.046

No regions showed a significant response to AV, while bilateral vmPFC, left putamen, right NA, left hippocampus,
and SN/VTA showed significant responses to CV. p values are taken from two-tailed tests. Bold text indicates results
which were significant at p << 0.05 uncorrected.

ing the medial orbital part of the superior frontal gyrus and the gyrus
rectus AAL regions. Putamen ROIs were based on the AAL putamen
region, excluding regions that overlapped with the nucleus accumbens
(NA) ROI (see below). Hippocampus, amygdala, insula, and thalamus
ROIs were taken directly from the appropriate AAL regions.

The NA ROIs were defined as 8 mm spheres centered at [11.11, 11.43,
—1.72] and [—11.11, 11.43, —1.72], exclusively masked to remove over-
lap (all coordinates in MNI space) (Guitart-Masip et al., 2011). The
midbrain ROI, taken to comprise the substantia nigra and ventral teg-
mental areas (SN/VTA) was manually defined on the mean magnetiza-
tion transfer structural image for the group (Bunzeck and Diizel, 2006;
Helms et al., 2009; Guitart-Masip etal., 2011). As a check analysis, we also
used a substantia nigra ROI taken from the WFU Pickatlas (Maldjian et
al,, 2003). The same pattern of MVB results was observed in both mid-
brain regions, so we report those from the hand-drawn ROL Finally, a
check analysis was performed using a sphere of 6 mm radius placed in the
ventricles (center, [—1, —37, 5]). No above-chance decoding was possi-
ble from this region.

Multivariate Bayes analysis. MVB is a hierarchical Bayesian decoding
scheme that solves the ill-posed many-to-one (here, voxel-to-target vari-
able) mapping by invoking empirical priors on data features, specified by
a second level of the model of the mapping. Prior spatial covariance is
separated into spatial patterns U, specified a priori, and pattern weights n
that are estimated during Bayesian model inversion. This means that
different spatial patterns of activity (for example, distributed vs locally
clustered models) can be compared by changing the spatial patterns U
(Fig. 1) (Morcom and Friston, 2012). Our preferred model was a distrib-
uted model, in which patterns are single voxels that show no character-
istic spatial coherence; in other words, U is the identity matrix.

MVB assumes that coding is sparse in pattern space. In other words,
only a small proportion of patterns make a large contribution to the
decoding. The set of pattern weights is iteratively partitioned into subsets
based on the size of the weights, where all patterns within a subset are
assumed to have the same variance. This optimization of subsets consti-
tutes a greedy search using a standard variational scheme (Friston et al.,
2007). The variational approximation to model evidence increases with
each iteration until the optimal set size is reached. The final set of patterns
then constitutes the decoding model with the greatest evidence for the
pattern weights. Different models (spatial patterns) can then be com-
pared directly in terms of their log evidence, without the need for cross-
validation. Note that this inference pertains to different models or
hypotheses about distributed representations in the brain and it is not an
inference about whether the representations exist or not. In what follows,
we compare distributed and spatially coherent representations of value.
However, we first establish the existence of these representations using a
randomization procedure that converts the log evidence for any partic-
ular model (relative to a null model) into a classical p value (see below).


http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm

16420 - ). Neurosci., November 14, 2012 - 32(46):16417-16423

Table 2. Regional responses to AV in the group-level MVB analysis
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pualue Exceedance probability

ROI AV AV orthogonalised to Act AVrej Qq Q, (distributed > local)
vmPFG, right <0.001 <0.001 <0.001 <0.001 <0.001 >0.999

vmPFC, left <0.001 <<0.001 <<0.001 <<0.001 <<0.001 >0.999

Putamen, right <0.001 <0.001 <0.001 <0.001 <0.001 >0.999

Putamen, left <0.001 0.001 <<0.001 <<0.001 <<0.001 >0.999

NA, right 0.609 — — — — —

NA, left 0.522 — — — — —

Insula, right <0.001 <<0.001 <<0.001 <<0.001 <<0.001 >0.999

Insula, left <0.001 <0.001 <0.001 <0.001 <0.001 >0.999

Thalamus, right <0.001 <<0.001 <<0.001 <<0.001 <<0.001 >0.999

Thalamus, left <0.001 <0.001 <0.001 <0.001 <0.001 >0.999
Hippocampus, right 0.029 0.012 0.144 <<0.001 0.019 >0.999
Hippocampus, left 0.182 — — — — —

Amygdala, right 0.609 — — — — —

Amygdala, left 0.574 — — — — —

SNAVTA 0.325 — — — — —

Bilateral vmPFC, putamen, insula, and thalamus showed a significant response to AV, as did the right hippocampus. All areas showing a significant response to AV survived a check analysis where the model included a binary choice regressor
(Act). Action-specific rejected value signals (AVrej) were present in all regions, as was information about both the value of the right action (Q,) and the left action (Q,). In all regions, Bayesian model selection strongly favored distributed
models, suggesting that the coding of AV lacks clear spatial clustering. Bold text indicates decoding that was significant at a threshold of p < 0.05, FDR-corrected. We only present FDR-corrected results for AV, since the other analyses are

post hoc analyses designed to either check or qualify our inferences.

Table 3. Regional responses to CV in the group-level MVB analysis

Exceedance probability

ROI pvalue (CV) (distributed > local)
vmPF(, right <0.001 >0.999
vmPFC, left <0.001 >0.999
Putamen, right <0.001 >0.999
Putamen, left <0.001 >0.999
NA, right 0.007 >0.999
NA, left 0.036 >0.999
Insula, right <0.001 >0.999
Insula, left <0.001 >0.999
Thalamus, right <0.001 >0.999
Thalamus, left <0.001 >0.999
Hippocampus, right <0.001 >0.999
Hippocampus, left 0.005 >0.999
Amygdala, right 0.009 >0.999
Amygdala, left 0.017 >0.999
SNAVTA 0.643 —

Bilateral vmPFC, putamen, NA, insula, thalamus, hippocampus, and amygdala showed a significant response to CV.
In all regions, Bayesian model selection strongly favored distributed models, suggesting that the coding of CV lacks
clear spatial clustering. Bold text indicates decoding that was significant at a threshold of p < 0.05, FDR-corrected.

MVB analysis can be based upon the same design matrices used in a
conventional mass-univariate SPM analysis (Friston et al., 1994). In a
conventional SPM, the design matrix (X) is used to predict the time
course at a particular voxel (Y). Here, activity in several voxels is used to
predict a target variable in the design matrix, specified with a contrast in
the usual way. To remove confounding or uninteresting effects, the re-
sulting null space of the design matrix is used to adjust the target and
predictor variables.

To provide a classical p value testing for the significance of the map-
ping over subjects, we used a randomization procedure to produce a null
distribution over the log evidence ratio for each model. Here, the target
vector is phase shuffled 20 times and the log evidence ratio (the difference
between the log evidence under a prior of no mapping and the log evi-
dence generated by the greedy search) is recalculated each time. This null
distribution was used to convert the log evidence ratio into a p value for
each region and for each subject.

Group level inference was performed using Fisher’s method for com-
bining independent p values (Fisher, 1925). Here, for k-independent p
values, a statistic x? is calculated as:

k
X= - ZZIn(p,-)

Under the null hypothesis, this has a ? distribution with 2k degrees of
freedom. This statistic is then used to generate a group-level p value.
Multiple-comparison correction was performed using the false discovery
rate (FDR) procedure (Benjamini and Hochberg, 1995).

To test whether the value signals were spatially coherent, we per-
formed additional analyses using three encoding models with differing
degrees of local spatial structure, parameterized respectively as 1 mm?, 2
mm? and 4 mm?> FWHM Gaussians (Friston et al., 2008; Morcom and
Friston, 2012). We then performed Bayesian model selection (BMS) on
an ROI-by-ROI basis using log evidence ratios and a random effects
procedure that accounts for group heterogeneity (Stephan et al., 2009).

Design matrix specification. Based on our behavioral analysis, we created a
number of subject-specific regressors to model the imaging data. To estab-
lish the presence of an action-specific value signal, it is not enough simply to
find activity correlated with the value of one or another action (Qy or Q;)
considered independently, as this also picks out regions encoding both val-
ues equivalently. The key variable is thus the difference between the two
action values (AV:= Q, — Q,), since this reflects only action-specific values.
In addition, we calculated the comparative value of the actions (FitzGerald et
al., 2009), defined as the absolute difference between their values (CV:= |Qy
— Q;]), and the reward prediction error (PE) associated with each outcome.
The existence of such a signal implies that the brain compares the values of
the options available to it, which in turn requires the existence of some form
of common currency within which this comparison can be made. CV is
action independent because it will take the same value regardless of which
action is valued more highly, provided that the difference between action
values is the same. The presence of such a signal thus does not necessitate that
aregion contain action-specific value information, hence providing a useful
companion (and comparison) to our analyses of action-specific value.

Design matrices were created as for a standard SPM analysis. A general
linear model was specified with events at cue onset times (Cue), modu-
lated by parametric regressors encoding CV and AV, as well as events at
outcome time (Out) modulated by PE. To test whether the responses
correlated with AV could be explained by simple action signaling, we
created another model that included an additional binary regressor, en-
coding the action taken on each trial (Act). This ensures that any signif-
icant decoding of AV could be attributed to action-specific value, having
accounted for action per se.

To test whether the signals we observed truly reflected the values of
both actions (Boorman et al., 2009; FitzGerald et al., 2009), or whether
they simply reflected the chosen value modulated by action (Plassmann
et al., 2007; Wunderlich et al., 2009), we created a model with separate
action-specific regressors for the chosen and rejected options (AVchs and
AVrej, respectively). Significant decoding of AVrej suggests that the value
of both options is signaled in an action-specific way.
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Secondary analyses showed that, in all
of these regions, this mapping could not
be explained simply by action (Act)
(Table 2).

We next tested whether these signals re-
flected true action-specific value signaling,
which could be used to influence choice, or
whether they simply reflected action-
specific chosen value signals that evolve
postdecision (Wunderlich et al., 2009). To
do this, we tested for the presence of action-
specific signals relating to the value of the

e

Figure2.

To ascertain whether regions from which AV could be decoded con-
tained information about Qy, Q;, or both, we created a model where
instead of CV and AV, Cue was modulated by Qp and Q;. Because of the
computationally intensive nature of MVB, we did not run these extra
analyses for regions that did not show a significant response to AV.

The resulting stimulus functions were then convolved with a hemody-
namic response function. Regression was performed using standard
maximum likelihood in SPM. Low-frequency fluctuations were removed
using a high-pass filter (cutoff, 128 s) and remaining temporal autocor-
relations were modeled with a two parameter auto-regression model.

Conventional ROI averaging. For comparison with our MVB analysis,
wealso applied conventional ROT averaging to our data, using the models
described above. Parameter estimates were averaged over voxels within
each ROI, and a two-tailed t test was applied to the group-level data.
Because the purpose of the univariate analyses was an illustrative com-
parison with our MVB results, we did not apply a multiple-comparisons
correction to maximize sensitivity at the expense of specificity. Generally,
we would not recommend this (straw man) analysis of regional averages
over the use of ROIs to provide a small search volume for (mass-
univariate) effects within the ROI.

Results

Behavior

Averaging over all stimuli, each and every subject selected the
higher value action more often in the last five trials compared
with the first five (p < 0.0001, Wilcoxon rank sum test; Fig. 1).
Reaction times showed a strong negative effect of CV (p <
0.0001, Wilcoxon signed rank test), consistent with our previous
findings (FitzGerald et al., 2009). This means subjects responded
more quickly when there was a greater disparity (clarity) in the
value of the options available to them.

Conventional ROI averaging

None of the ROIs showed a significant correlation with AV (Ta-
ble 1). This remained true even at a liberal threshold of p < 0.1.
Activity in bilateral vmPFC, SN/VTA, left putamen, left hip-
pocampus, and right NA showed a significant correlation with
CV (p < 0.05, two-tailed t test) (Table 1).

MVB analysis
We observed a significant decoding of AV bilaterally in vmPFC,
putamen, insula, thalamus and right hippocampus (Table 2).

2

Voxel weights (1) from the MVB analysis for AV in the right vmPFCROI for Subject 5. A, Voxels with positive (red) and negative
(blue) voxel weights overlaid on Subject 5's T1-weighted structural scan (x = 3 mm). Voxels with a positive weight show a positive
response to AV and voxels with a negative weight show a negative response to AV according to our multivariate analysis. Image thresholded
at ) > 0.00005 for positive weights and 1) << 0.00005 for negative weights. Positive and negative weights are interspersed without any
obvious pattern, suggesting a lack of spatial coherence. B, Histogram of voxel weights. Only a small proportion of voxels have large weights,
showing that only a small proportion are important for decoding (this is the hallmark of sparse distribution).

1 0 1 2 3 1

: I rejected option (AVrej). Such signals were
Voxel weight ’

present in bilateral vmPFC, putamen, in-
sula, and thalamus (Table 2), suggesting
that activity in these regions is driven at least
in part by true AV signals. Note that AVrej
could not be decoded from right hippocam-
pus at a rate significantly above chance. Be-
cause of this, and because we only found
evidence for AV unilaterally rather than bi-
laterally (in this and only this region), we
regard evidence for AV in the right hip-
pocampus as weaker than in other areas.

All ROIs from which AVs were significantly decoded also per-
mitted decoding of Q; and Qy, considered individually. This sug-
gests that essential information about the value of both actions
was available to these regions in both hemispheres.

A significant decoding of CV was possible from bilateral
vmPFC, putamen, NA, insula, thalamus, hippocampus, and
amygdala ROIs (Table 3). Interestingly, although we observed a
significant CV response in our SN/VTA ROI using conventional
ROI averaging, decoding was not above chance in this region
using MVB. This suggests that our distributed decoding model
was not appropriate for detecting spatially coherent correlates of
CV, or that the ROI average result was a false positive (given the
multiple comparisons we performed).

Spatial distributions of activity

In addition to testing for the presence of a signal, MVB allows one to
examine its spatial distribution (Morcom and Friston, 2012). This is
based on comparing evidence for models containing different priors
on the spatial distribution of activity using BMS (Friston etal., 2008).
We examined whether value signals show spatial coherence (where
nearby voxels have similar responses) or not (voxels are best consid-
ered in isolation from their neighbors) (Fig. 1). For both AV and CV,
distributed encoding models were strongly favored over spatially
coherent models (Tables 2, 3; Fig. 2). This suggests that, at least at the
resolution of our 1.5 mm isotropic voxels, representations of both
value signals are spatially distributed (which would render them dif-
ficult to detect with ROI averages).

Discussion

Action-specific value signals play a key role in both learning and
choice behavior. Previous studies in humans and other primates
suggest the existence of such signals in a small number of structures.
These studies are limited, on the one hand, by the restricted brain
coverage of single-unit recording studies and, on the other hand, by
an inherent difficulty in detecting many kinds of signal using
mass-univariate and ROI-averaging techniques. Exploiting re-
cent developments in multivariate analysis, we provide evidence
of action-specific value signals in the vmPFC, putamen, insula,
and thalamus that are spatially distributed.
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In accordance with single-unit studies, which report both action-
specific value signals (Samejima et al., 2005; Pasquereau et al., 2007;
Lau and Glimcher, 2008; Hori et al., 2009; Seo et al., 2012) and
action-specific prediction errors (Stalnaker et al., 2012) in the stria-
tum, we found evidence for action-specific value signals in the puta-
men. This is consistent with a key role for this region in linking
reward to action (Redgrave et al., 2010), as well as action planning
in general (Monchi et al., 2006). It is also consistent with recent
evidence that this region encodes habit as opposed to goal-
directed value during choice behavior (Wunderlich et al., 2012).
A previous study reported evidence of effector-specific outcome
signaling in the ventral striatum, but not action-specific value
signals per se (Gershman et al., 2009). Interestingly, we did not
observe any evidence for AV in the NA, perhaps suggesting that
this region is more involved in generalized, or stimulus-locked,
signaling of value. A similar observation pertains to the SN/VTA,
which showed no evidence of AV. We are mindful here that it is
unwise to draw conclusions from the negative results, but we note
that these observations agree with direct recording data from
dopaminergic midbrain neurons, which likewise failed to find
evidence for action-specific PE signals (which would be needed to
update action-specific values) (Nakahara et al., 2004; Morris et
al., 2006; Roesch et al., 2007).

Activity in the vimPFC was strongly modulated by AV. Al-
though there has been speculation about this previously
(O’Doherty, 2011) and some neuroimaging findings are consis-
tent with the idea that the vmPFC encodes such values (Glidscher
et al., 2009; Palminteri et al., 2009; Wunderlich et al., 2009), to
our knowledge, this is the first clear demonstration that such
signals do exist in vimPFC. Palminteri et al. (2009) showed that
activity in the vmPFC tracked the value of contralateral options in
an instrumental learning task, but since subjects were always pre-
sented with two stimuli to choose between, it is difficult to sepa-
rate the effects of spatial attention or lateralized stimulus-value
processing from action-specific valuation. A similar caveat ap-
plies to the activity consistent with action-specific value signaling
in the lateral intraparietal sulcus reported in Gershman et al.
(2009). The lack of such spatial- or stimulus-bound effects may
explain why we did not observe a significant correlation between
AV and activity in the vmPFC in our ROI analyses, contrary to
what might be predicted based on Palminteri et al. (2009).

Our MVB findings are consistent with a number of single-unit
studies that suggest that the activity in the vmPFC (or regions of
the orbitofrontal cortex) contain information about spatial goals
(Feierstein et al., 2006) and a range of parameters important for
economic choice (Padoa-Schioppa and Assad, 2006; Kennerley
and Wallis, 2009; Kennerley et al., 2009). Although our results
suggest that action-specific value information is present in the
vmPFC, we do not see this as invalidating previous claims that the
region is involved in pure stimulus- (or goods-) based choices
(Wunderlich et al., 2010). Instead, our results provide evidence
for heterogeneity of vmPFC function, consistent with its putative
central role in both valuation and choice.

Bilateral thalamus and insula both showed activity that corre-
lated with AV, in keeping with previous findings linking these
structures both to action (Anderson et al., 1994; Fink et al., 1997)
and reward (Gottfried et al., 2003; Balleine, 2005; Vickery et al.,
2011). In contrast, we did not find evidence for action-specific
value signals in the amygdala and left hippocampus, and only
relatively weak evidence for AV in the right hippocampus. This
was despite the fact that we found strong evidence of action-
independent value (CV) signals in these regions. This may sug-
gest that these structures are more involved in stimulus- or
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goods-based evaluation, rather than roles directly involving ac-
tion (Balleine, 2005).

CV signals were more widespread than AV, being found in bilat-
erally in vmPFC, putamen, NA, insula, thalamus, hippocampus, and
amygdala. This fits with previous multivariate fMRI studies that
have found activity across large swathes of the brain for anticipated
value, acquired through stimulus-outcome learning (Kahnt et al.,
2010, 2011), and for outcome signaling (Vickery et al., 2011). Our
results extend these findings to the domains of instrumental learning
and economic choice. They also speak to the fact that value informa-
tion is likely to impact upon a large variety of cognitive processes,
and should thus be disseminated widely.

Comparing the results we obtained using ROI averaging with
those from the MVB analysis suggests that, for certain questions,
MVB can be more sensitive to AV, which argues that multivariate
techniques are likely to be important for studies examining the
properties of action-specific value signals. MVB was also more
sensitive to CV, except in the SN/VTA ROL. This may be because
encoding in the SN/VTA is actually spatially uniform and coher-
ent. However, without further study, it is difficult to be sure what
the precise explanation for this difference in inference.

Our Bayesian model comparison suggests that, rather than
being spatially coherent and clustered (at least at the scale of our
fMRI voxels), value-signaling is spatially distributed. This lack of
spatial coherence fits with the observation that multiple decision-
or value-related parameters are often encoded by neurons re-
corded from the same sites (Padoa-Schioppa and Assad, 2006;
Lau and Glimcher, 2008; Kennerley and Wallis, 2009; Kennerley
etal.,2009). It can also explain why multivariate analysis methods
are more sensitive to such activity (Vickery et al., 2011), since
mass-univariate analysis typically involves spatial smoothing,
and thus assumes local coherence—at least over a few voxels.

One limitation of multivariate analyses is their lack of spatial
resolution, depending— Dby definition—on responses in ROIs.
This can easily be addressed by using smaller ROIs, as in search-
light procedures (Kriegeskorte and Bandettini, 2007; Kahnt et al.,
2010). Because we focused our high-resolution data acquisition
on the vmPFC, midbrain, and other deep structures associated
with reward, we were unable to test for the presence of AV signals
in other brain areas associated with action and reward, such as the
anterior cingulate cortex and the caudate nucleus.

In conclusion, our analyses provide evidence for representations
of action-specific value in the vmPFC, putamen, thalamus, and in-
sula. Understanding how valuation processes influence action is crit-
ical for explaining the neurobiology of choice, and we suggest that
action-specific value signals are likely to provide a critical link. Our
findings thus represent a step toward a broader goal of understand-
ing how organisms in general, and humans in particular, use and
encode value information to guide their behavior.
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