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The subjective confidence we have in our decision-making, and that 
of others, has far-reaching consequences. For example, the recom-
mendations of a financial advisor who expresses high confidence in 
a particular investment option will carry more weight than one who 
is ambivalent. An expression of doubt in or caution concerning a par-
ticular course of action can lead one to question or revisit a previous 
decision. Previous work has established that the vmPFC has a central 
role in computing the value of potential choice options1–5, with activ-
ity in this region reflecting the dynamic evolution of a value com-
parison6. However, this work has focused exclusively on the choice 
process, without considering the subject’s level of confidence in the 
decision. Consequently, it is unknown how a process of value com-
parison, instantiated in vmPFC, relates to subjective confidence.

Previous studies have reported neural correlates of decision con-
fidence in brain regions associated with a value representation. For 
example, firing rates in rat orbitofrontal cortex7 and functional 
magnetic resonance imaging (fMRI) signal in human vmPFC8 show 
graded changes as perceptual decisions become more difficult. 
However, as these studies delineate confidence in terms of factors gov-
erning choice, they are unable to tease apart the relationship between 
trial-to-trial subjective confidence and decision value. In contrast, the 
field of perceptual decision-making has noted that confidence can 
be measured independently of the choice process itself 9,10, where it 
is conceptualized as reflecting a ‘second-order’ metacognitive evalu-
ation. Critically, dissociating confidence from other features of the 
decision process requires acquisition of separate measures of choice 
and confidence11.

Here we implement such an approach to dissociate value and confi-
dence during decision-making and to identify their respective neural 
substrates. We collected trial-by-trial estimates of decision confidence 
while healthy volunteers chose between pairs of snack items. We also 
measured the subjective value of each snack item by means of a standard  
incentive-compatible bidding procedure. This allowed us to dissociate 

confidence from value, and in so doing provide evidence that confi-
dence reflects an assessment of choice accuracy.

To explore systematic relationships between confidence, accuracy, 
choice and reaction time, we modeled our data using a variant of a 
race model7,12 (one of a larger class of dynamic models of decision- 
making13). This model predicts that subjective confidence reflects 
the stochastic accumulation of evidence during the value comparison 
process. As is consistent with this prediction, we show that the same 
anatomical region in ventromedial prefrontal cortex (vmPFC) not only 
reflects a difference in value between available options, but also the 
confidence associated with a value comparison process. Finally, we 
show that individual differences in participants’ abilities to relate con-
fidence to decision performance is linked to increased functional con-
nectivity between vmPFC and rostrolateral prefrontal cortex (RLPFC), 
a region previously shown to function in metacognitive appraisal14.

RESULTS
We scanned twenty hungry participants while they made choices 
between food items that they could consume later (Fig. 1a). After 
making each choice, participants reported the degree of confidence in 
their decision (choice confidence). Note that confidence, or certainty, 
in the present study is conceptually distinct from risk, in that each 
choice determined a known outcome. Confidence here reflects the 
degree of subjective certainty in having made the best choice, which 
equates to choosing the higher valued item. To establish value for indi-
vidual items, we asked participants at the end of the scanning session 
to place a bid for each food item using a standard incentive-compat-
ible procedure, the Becker-DeGroot-Marschak (BDM) mechanism15. 
BDM is widely used in behavioral economics and neuroeconomics 
to elicit nonstrategic reservation prices, also known as willingness-
to-pay. In this phase subjects were required to state their maximum 
willingness-to-pay for each food item (see Online Methods). Several 
studies have shown that this mechanism reliably elicits goal values 
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Decisions are never perfect, with confidence in one’s choices fluctuating over time. How subjective confidence and valuation of 
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noise in value comparison and metacognitive awareness of choice, enabling us both to want and to express knowledge of what we want.
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that are used by the decision maker to guide choice16–18. Participants 
also provided a rating of their confidence in each bid (bid confi-
dence). Participants’ bids for the leftmost items were then subtracted 
from bids for the rightmost items to calculate a signed difference 
in value (DV) between each pair of items, which was then entered 
into a logistic regression to predict the probability that the subject 
chose the rightmost item on each trial (Fig. 1b). In line with previous 
studies2,19, we found that DV was a reliable predictor of participants’ 
choices, with the slope of the logistic regression being a measure of 
choice accuracy, or noise in the choice process20.

Choice, confidence and reaction time
Unsigned |DV| only accounted for an average of 17.7% of the vari-
ance in participants’ confidence ratings (r = 0.42 ± 0.19, s.d.). This 
partial independence between confidence and |DV| allowed us to ask 
whether confidence reflects changes in choice accuracy (the selec-
tion of items with higher subjective value). By splitting our logistic 
regression fit into high- and low-confidence trials, we showed that 
higher confidence was consistently associated with increased choice 
accuracy (Fig. 1b,c and Supplementary Fig. 1). This effect of confi-
dence on choice was also reflected in reaction time (RT), with main 
effects of both |DV| and confidence (both P < 0.001) but no interac-
tion (Fig. 1d). The three-way relationship between |DV|, confidence 
and RT is plotted in Figure 1e. We recognize that other factors (inter-
nal and external) besides |DV| and RT are likely to affect subjective 
confidence. We report a limited set of these factors (Supplementary 
Table 1) for which we could exercise good experimental control.

Using logistic regression, we next compared models of the interaction 
between confidence and value comparison. Choice confidence, unlike 
DV, is in itself not a predictor of choice (right or left item) but instead 
refers to accuracy of the decision. We thus expected choice confidence 
to modulate the link between DV and choice. Model 1 predicted choice 
using DV alone; model 2 included choice confidence (that is, confi-
dence at the decision time) as a modulator of DV (DV × confidence); 
models 3–5 examined whether bid confidence (that is, confidence at 
the bid time) could explain additional variance in the link between DV 
and choice (see Online Methods). In accordance with our predictions, 

model 2 provided a better account (that is, lower Bayesian information 
criterion (BIC)) of participants’ choices than the other four models 
(Fig. 2a), as shown by the difference in BIC relative to model 2: model 
1, 214.6; model 3, 196.2; model 4, 251.7; model 5, 111.9. Furthermore, 
model 2 was a better fit than the canonical model 1 in 19 of 20 par-
ticipants as assessed by a likelihood ratio test (α = 0.05). This analysis 
confirms that a critical modulator of choice accuracy is second-order 
confidence arising in the context of the comparison process (model 2) 
as opposed to first-order confidence in the item values (models 3–5).

Stability of confidence over time
We next examined whether the relationship between confidence and 
choice was stable over time. Splitting the logistic regression analysis into 
separate sessions revealed a robust main effect of confidence (F1,19 =  
39.75; P < 0.0001) but a nonsignificant main effect of session (F3,57 = 
0.3; P = 0.7) and a lack of interaction between session and confidence 
(F3,57 = 0.13; P = 0.9; Supplementary Fig. 2). To examine whether local 
fluctuations in attention affected confidence, we constructed a serial 
autocorrelation regression model that predicted the current confidence 
rating from the confidence ratings given on the immediately preceding 
five trials, in addition to |DV|. None of the autocorrelation coefficients 
reached group-level significance (all t < 1.2, P > 0.27). Together these 
results indicate that confidence is a stable predictor of choice accuracy 
and that it does not reflect local changes in attention.

As each item pairing was presented twice (once in each spatial con-
figuration), it was also possible to examine the relationship between 
confidence ratings given for identical choice pairs. As confidence is 
partly determined by absolute difference in value (|DV|, which does 
not vary across choice pairs), we expected some stability purely driven by 
DV. Thus, to address this question, we computed the partial correlation 
between first and second confidence ratings, controlling for DV. There 
was no significant difference between mean confidence ratings for the 
first and second presentations of the same item pairs (t19 = −0.64, P = 
0.53). For 19 of 20 subjects, there was a significant partial correlation (P < 
0.05) between confidence ratings for repeated item pairs after controlling 
for the influence of |DV|, indicating stability in confidence for judgments 
of particular item pairs that cannot be accounted for by |DV| alone.
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Figure 1  Task and behavioral results. (a) fMRI  
task (top): subjects were presented with a choice 
between two snacks and were then required to 
choose (2.5 s) one item to consume at the end 
of the experiment. After each choice, subjects 
indicated their level of confidence in having 
made a correct decision (choice confidence). 
Post-scanning task (bottom): subjects were 
presented with each item individually and had 
to submit a bid to buy each item. After each bid, 
they were asked to rate their level of confidence 
in having provided a correct bid price (bid 
confidence). (b) Probability of choosing the 
item on the right as a function of DV (that is, bid 
price) between the two items (logistic fit) for an 
exemplar subject (see Supplementary Fig. 2 for 
all individual subjects). Dashed line, all choices; 
black line, low-confidence choices; gray line, 
high-confidence choices. The red double-headed 
arrow indicates the increase in choice accuracy 
(change in slope) for high- versus low-confidence 
trials used in the between-subjects analyses 
(Figs. 4b and 5b). (c) The slope of the logistic 
fit is systematically higher (sharper) in high-
confidence compared to low-confidence trials (**P < 0.005; ***P < 0.0001). (d) Average RT as a function of confidence and |DV|. (e) Heat map showing 
mean z-scored confidence (color bar) across subjects, as a function of subject-specific |DV| and RT quantiles. Error bars represent s.e.m.
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We then examined whether choices were stable over time. On aver-
age, 14.7% of choices (± 5.7% s.d.) were reversed on the second pres-
entation. Choices that would be subsequently reversed were associated 
with significantly lower initial confidence than those that would sub-
sequently be repeated (in arbitrary units: reversal confidence = 3.11 
± 0.72 (s.d.); repetition confidence = 4.40 ± 0.54 (s.d.); t19 = 12.1,  
P < 10−10). In a logistic regression model predicting subsequent 
reversal from both |DV| and initial confidence, initial confidence 
was a significant negative predictor of choice reversal (mean stand-
ardized regression coefficient −0.99 ± 0.40 (s.d.); one-sample  
t-test t19 = −11.2, P < 10−9). These data support a hypothesis that low 
confidence is associated with subsequent changes of mind.

Race model
Our best-fitting regression model suggested 
that confidence reflects accuracy in a value 
comparison. This led us to explore in more 
detail the precise mechanism by which confi-
dence and value interact during the decision 
process. We adapted a race model12,21 wherein 
evidence in favor of each of the options (the 
snacks presented on the left and right sides 
of the screen) is accumulated over time and 
the decision is made on the basis of the first 
option to reach a threshold (Fig. 2b). In this 
model, confidence is defined as the absolute 
difference between the two accumulators at 
decision time (∆e). Such a model predicts 
that when ∆e is large, then choice accuracy 
is increased, reflected by a sharper slope in 
the logistic regression (Fig. 2c). Thus, the 
race model neatly accounts for an increase in 
choice accuracy we observed behaviorally in 
the high-confidence condition (Fig. 1b and 
Supplementary Table 2). Furthermore this 
model predicts a decrease in RT when either 
|DV| or ∆e are increased (Fig. 2d), as seen in 
the behavioral data (Fig. 1d). The intuition is 
that, even within a particular level of initial DV, 

inter-trial noise in the value comparison process results in some trials 
having greater final DV values (higher confidence) than others. Such 
decisions will tend to be made more quickly, be more accurate and be 
associated with higher confidence (Fig. 2e). Indeed, this predicted rela-
tionship among RT, |DV| and confidence closely matched the behavioral 
data (Fig. 1e). Finally, since the model predicts that confidence reflects 
the stochastic evolution of a value comparison process, it will only be 
weakly related to initial DV. This feature of the model provides a parsi-
monious explanation for why DV and confidence are dissociable in our 
behavioral data.

Confidence and value in vmPFC
We next hypothesized that if choice confidence is an emergent prop-
erty of a value comparison process, the same brain regions involved 
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Figure 2  Computational model. (a) Comparison of regression models. Plotted are BIC scores (model 1: 5,424;  
model 2: 4,995; model 3: 5,388; model 4: 5,498; model 5: 5,291). Smaller numbers indicate a better model fit.  
See Results and Online Methods for details of each model. (b) Dynamic (race) model of value comparison for an  
example trial. Evidence in favor of each option accumulates over time, with a choice in favor of one or other option  
being made when threshold is reached. In this model, decision confidence is derived from the absolute difference  
between the two accumulators at the time of the decision (∆e). a.u., arbitrary units. (c–e) Model predictions. (c) When  
∆e is large (that is, high confidence) choice accuracy is predicted to increase, reflected by a sharper curve in the logistic  
regression. (d) RT values are predicted to decrease when either |DV| or ∆e increase. (e) Matrix representing how model  
confidence changes across |DV| and RT quantiles. Note the similarity between the model predictions and behavior (Fig. 1c–e).
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in value-based decision-making should also represent subjective con-
fidence in a value estimate. In other words, if a brain region involved 
in value comparison is implementing a process akin to a race model6, 
then activity in that region should be modulated by both initial |DV| 
and noise (confidence) on that trial. To test this hypothesis, we con-
structed a general linear model (GLM) of our fMRI data in which 
each trial was modulated by two parametric regressors: |DV| and 
confidence orthogonalized with respect to |DV|. We show that activ-
ity in vmPFC was indeed modulated by both value and confidence 
(Fig. 3a,b and Supplementary Table 3; P < 0.05 family-wise error 
(FWE) corrected at cluster level). This pattern is consistent with the 
established function of this region in encoding goal-values1,2 and 
with our hypothesis that this region also represents the confidence 
associated with a value comparison.

We next investigated whether |DV| and confidence interacted in 
vmPFC by splitting the model into high- and low-confidence trials,  
both parametrically modulated by |DV| 
(Fig. 2c). This analysis showed main effects 

of |DV| and confidence in vmPFC but no interaction between them  
(2 × 2 ANOVA with factors value, confidence: main effect of value 
F1,19 = 5.1, P < 0.05; main effect of confidence F1,19 = 7.6, P < 0.05; 
interaction F1,19 = 0.7, P > 0.5) (Fig. 3c). The absence of an inter
action at the neural level is consistent with a theoretical independence 
between value and noise in the choice process, such that one can have 
high confidence in a low-value choice and vice versa. Furthermore, 
the pattern across conditions closely resembles that seen for RT 
values (Fig. 1d) providing convergent evidence that vmPFC activity 
is tightly linked to behavior. We also confirmed that the response 
to confidence was not driven by a categorical response to errors8  
(Supplementary Fig. 3).

Confidence in right rostrolateral prefrontal cortex
A key question is how confidence-related information represented 
in vmPFC becomes available for self-report. One computationally 
plausible hypothesis is a hierarchical model wherein confidence in a 
comparison process is ‘read out’ by an anatomically distinct second-
order network22–24. Right rostrolateral prefrontal cortex (rRLPFC) is 
a likely candidate, as this region is implicated in metacognitive assess-
ments of perceptual decisions9,14,25. Consequently, we tested whether 
this region acts more generally in metacognitive appraisal by enabling 
explicit report of confidence in a value comparison.

We first established that rRLPFC tracked changes in reported con-
fidence but did not code for DV (Fig. 4a,b, Supplementary Fig. 4 and 
Supplementary Table 3; P < 0.005, small-volume corrected (SVC)), 
as expected for a region providing a readout of decision confidence. 
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DISCUSSION
Here we show that decision confidence emerges from a value com-
parison process in vmPFC and that this region is in turn accessed 
by rRLPFC to enable a subjective assessment of confidence. Our 
neural findings are consistent with previous evidence showing that 
choice difficulty is coded by vmPFC in humans and analogous OFC 
neurons in rodents7,8. There is also an established body of work 
showing that this brain area represents the expected value of an out-
come1–6. However, as previous studies defined confidence in terms 
of factors governing choice, they were unable to tease apart the 
relationship between value and confidence. Our results go beyond 
these studies by dissociating subjective confidence from DV. In so 
doing, we demonstrate that neural activity in the same anatomical 
region represents both variables, suggesting that confidence and 
DV are separate behavioral manifestations of the same underlying  
decision variable.

Choice confidence can be seen to emerge from the dynamics of 
noisy accumulators in the race model7,12,21, leading to dual effects 
of DV and RT on confidence27. The race model has previously been 
proposed to account for decision confidence in perceptual decision-
making. In keeping with recent research efforts that have incorpo-
rated dynamic models into the field of economic decision-making28, 
we find that this model captures several features of the relationship 
between choice, RT and confidence in a value-based choice model. 
The separation between confidence and BDM values in the present 
study provides a new perspective on how an underlying decision vari-
able can be fractionated into distinct behavioral components. Given 
that DV and confidence had independent effects on vmPFC activity, 
this result provides convergent support for the idea that vmPFC acts 
as a dynamic accumulator of choice values6. Our findings also accord 
with a theoretical Bayesian scheme in which uncertainty, or precision, 
is an inherent property of the neural code29–31.

A central problem for computational models of metacognition is 
how confidence information is read out for appraisal and communica-
tion to others. It has been proposed22,24 that such a computation can 
be achieved by a two-layer neural network architecture, in which the 
second-order network receives information about the performance of 
the first-order network and uses this information to generate reports 
of confidence. Our fMRI data can be interpreted in this framework 
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Figure 6  Schematic of network relating 
confidence to subjective report. Summary of the 
relationship between our computational model 
and neuroimaging analyses. (a) Confidence in the 
decision (∆e) emerges from the value comparison 
process instantiated in vmPFC. (b) To reach 
metacognitive awareness (and be reported by 
the participant), this information is transferred 
to rRLPFC. The parameter σconf governs the 
noise in the readout of ∆e (that is, decision 
confidence). If σconf is zero, the information 
about confidence (∆e) is uncorrupted, resulting 
in a pronounced shift in the choice accuracy 
between high-confidence and low-confidence 
trials (red double-headed arrows). As the level 
of metacognitive noise increases (higher values 
of σconf) the shift between the two curves (low 
and high confidence) diminishes. Differences 
in σconf account for the inter-subject variability 
in metacognitive reportability we observed 
behaviorally. a.u., arbitrary units.

We next harnessed individual differences in metacognition to provide 
a more stringent test for the role of rRLPFC. We defined an indivi
dual’s metacognitive accuracy as the change in choice accuracy (slope 
of the logistic fit) between low- and high-confidence trials (Fig. 1b). 
We reasoned that if rRLPFC acts in the metacognitive appraisal of 
confidence, activity in this region and/or its coupling with vmPFC 
should predict this change in slope across individuals. To test our 
first prediction, we entered change in slope as a between-subjects 
covariate in the whole-brain analysis of confidence-related activity, 
finding that this parameter significantly modulated the response to 
confidence in rRLPFC (P < 0.05; SVC for multiple comparisons).  
In other words, participants manifested a neurometric-psychometric 
match between their behavioral and neural responses to change in 
confidence level (Fig. 4c).

Metacognitive access: interaction between vmPFC and rRLPFC
To test our second prediction, that these two regions are part of the 
same functional network (in the context of our task), we performed 
a psychophysiological interaction (PPI) analysis using rRLPFC 
as a seed (Fig. 5a). This analysis revealed a robust modulation of 
connectivity between rRLPFC and vmPFC (P < 0.05 small-volume 
FWE corrected) by confidence level (Fig. 5a,b). Furthermore, the 
strength of connectivity between these two regions also predicted 
metacognitive accuracy across subjects (vmPFC; P < 0.05; SVC for 
multiple comparisons) (Fig. 5b). Thus, both activity in rRLPFC itself 
and its coupling strength with vmPFC influenced the degree to which 
confidence was effectively read out for metacognitive report.

How might this readout process relate to our computational model 
of confidence? Intuitively, if reported confidence is a noisy facsimile 
of the confidence inherent in a decision process, the relationship 
between confidence and behavior will weaken and metacognitive 
accuracy will decrease26. We were able to modify the race model, 
introduced previously, to account for the inter-subject variability in 
metacognitive reports observed experimentally. We introduced an 
additional parameter (σconf) governing the noise in the read-out of ∆e 
(that is, decision confidence) computed during the value comparison. 
Variation in this parameter captured variability in the change in slope 
between high- and low-confidence conditions, despite overall choice 
accuracy remaining equal (Fig. 6). Together with our imaging results, 
this analysis suggests that rRLPFC may indeed mediate variability in 
reported confidence (see Fig. 6 and Discussion).
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and suggests that rRLPFC is a plausible locus for this second-order 
network. First, rRLPFC represented confidence but not DV, as pre-
dicted for a brain region that has access to information about confi-
dence but is not directly involved in value comparison. Second, both 
confidence-related activity in rRLPFC and coupling between rRLPFC 
and vmPFC predicted the relationship between confidence and accu-
racy across individuals. This result can be explained if the coupling 
between vmPFC and rRLPFC reflects the fidelity with which reported 
confidence tracks the evolution of a putative accumulator process 
in vmPFC (Figs. 2b and 6). Notably, confidence-related activity in 
rRLPFC is also seen in perceptual decision-making14, together with 
a modulation of connectivity with visual cortex. This pattern of find-
ings suggests that rRLPFC might have a domain-general role in meta-
cognitive evaluation of decision-making, supporting the notion of a 
segregated neural process governing metacognitive access22,24,26.

An alternative interpretation of our data is that information about 
choice confidence is coded elsewhere, perhaps in parallel to the con-
struction of choice values, and is then communicated to vmPFC (pos-
sibly via rRLPFC), where it is incorporated into the choice process. This 
mechanism would be analogous to a modulation of the vmPFC value 
signal during self-control by dorsolateral PFC32. Resolving this possibil-
ity is beyond the design of the current study and will require techniques 
with high temporal resolution, such as magnetoencephalography, that 
can track the evolution of confidence and valuation in the brain.

Our data show that humans have metacognitive access to noise in 
a value comparison and that increased choice accuracy is associated 
with high subjective confidence. In other words, although choices 
often appear noisy from the point of view of the experimenter20,33, 
subjective confidence ratings reveal systematic changes in this noise, 
reflected by changes in choice accuracy. Metacognitive access to con-
fidence in a value comparison is likely to be useful for revisiting a 
choice that did not turn out as expected. Alternatively, but not mutu-
ally exclusively, metacognitive access may facilitate communication 
of confidence to others34, as when a financial advisor directs a client 
toward one stock option over another.

By integrating computational modeling with neural analysis, we pro-
vide evidence that subjective confidence is integral to the brain’s repre-
sentation of value in the vmPFC. Our work outlines a neural schema 
for how confidence-related information is computed and transferred 
to a distinct brain region (rRLPFC), supporting metacognitive report. 
Far from being a blind process of selection corrupted by noise, it would 
appear that value-based choices are accompanied by fluctuations in 
subjective confidence. A metacognitive access to value computation 
enables us not only to want but also to know what we want.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Participants. Twenty-eight participants (mean age 24.24) took part in the study. 
Four participants were excluded because of excessive head motion. Three partici-
pants were excluded for erratic choice patterns that prevented reliable estimation 
of a logistic fit (an inverse temperature parameter five or more times larger than 
the average of the group). Participants were only included if they used a sufficient 
range of confidence ratings (s.d. > 0.8) to allow estimation of metacognitive abil-
ity. This criterion led to the exclusion of one more subject. Twenty participants 
were included in the final analysis.

Scanning task. Participants were required to fast for 4 h before the study. During 
scanning they were required to make a series of binary choices between 19 com-
mon snack items (2,000 ms) to consume later (see Supplementary Table 4 for 
a list of items). Participants were asked to choose between each combination of 
items (n = 170) twice, counterbalanced across left-right spatial configurations 
(total number of choices = 340) and divided into four sessions. After each choice, 
participants were asked to indicate their confidence in their decision (that is, 
“How confident are you that the choice you made was the right one for you?”) on 
a continuous sliding scale between 1 (low confidence) and 6 (high confidence). 
Participants had 3,500 ms to move the pointer to the position that accurately 
reflected their confidence in the previous decision.

Post-scanning BDM task. Participants were presented each item on a computer 
screen and asked to submit a bid (from £0 to £3, using a sliding scale) to buy the 
item (unlimited time). After each bid, participants were asked to indicate their 
confidence in the bid they had just submitted (that is, “How confident are you 
that the bid you made was the right one for you?”; bid confidence) on a continu-
ous sliding scale between 1 (low confidence) and 6 (high confidence). At the 
end of the experiment, one choice from the scanning phase was played out and 
the subject had the opportunity to buy the chosen item by means of an auction 
administered according to the Becker-DeGroot-Marschak (BDM) procedure15. 
More specifically, the experimenter randomly extracted a price from a uniform 
distribution (£0 to £3)—the ‘market price’ of that item. If the participant’s bidding 
price (willingness-to-pay) was above the market price, no transaction occurred.  
If the subject’s bidding price was below the market price, the participant bought the 
snack item at the market price. At the end of the experiment, participants had to 
remain in the lab for an additional hour. During this hour, the only food they were 
allowed to consume was the item purchased in the auction, if any. This procedure 
encouraged subjects to choose preferred snacks during the scanning phase16,18. 
Participants were compensated £40 for participation in the study. The price of any 
item purchased by a subject was deducted from this £40 participation fee.

Behavioral analysis and model. To examine the effect of value and confidence on 
choice we compared five candidate logistic regression models. All had the form

P(c = R|X) = (Xβ)

where (x) is the logistic cumulative distribution function: 
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The simplest candidate model predicts the probability of choosing the rightmost 
option from the signed difference in value (DV), defined as VR−VL:

Model 1: X = DV

The slope of this function is assumed to result from randomness in choice20. 
If, on the other hand, subjects have metacognitive access to the noise in their 
decision process, we might expect choice confidence to modulate the impact 
of DV on choice:

Model 2: X = [DV (DV × confchoice)]

A second set of models examined whether confidence in the item price (bid 
confidence) modulates the link between DV and choice. On each trial there were 
two bid confidences (one for each item). Model 3 modulated DV by the mean 
bid confidence to enable direct comparison with model 2; model 4 split the DV 
predictor by bid confidence (low, high and mixed low/high, based on a subject-
specific median split); model 5 extended model 4 by including additional regres-
sors for the modulation of choice confidence (that is, model 2 split by different 
bid confidences): X DV DV
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Models were compared via BIC scores using a fixed-effects analysis, where a 
difference in BIC of 5 indicates strong evidence for one model over another35. 
Two subjects were excluded from the analysis in models 4 and model 5 owing to 
a low variability in item confidence, precluding a median split. In addition, we 
assessed the improvement in model fit obtained for model 2 over nested model 
1 for each subject individually using a likelihood ratio test (χ2, 1 d.f.).

Dynamic model of value comparison (race model). To predict how value, confi-
dence and reaction time interact during decision-making, we harnessed a dynamic 
model of the value comparison process7,21. In the race model, separate decision var-
iables accumulate evidence for distinct options, with the final decision determined 
by which accumulator reaches threshold first. On each time step during accumula-
tion, a new evidence sample is drawn from a normally distributed random variable 
st = N(ustim,σstim). ustim is positive if the correct choice (higher value item) is the 
righthand item, negative if the correct choice is the left item. Because st is drawn 
from a normal distribution, the actual value of st at each time step may be positive 
or negative. The accumulators evolve according to the following equations: 
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The race terminates when either Rt or Lt reach a predetermined threshold, θ, 
with the decision being determined by which accumulator reaches threshold 
first. Therefore at decision time, t(θ), either Rt or Lt = θ. The finishing point of 
the losing accumulator depends on the values of ustim and σstim.

An estimate of decision confidence, ∆e, can be recovered from the race model 
as the distance between the two accumulators Rt and Lt at the time the race is 
terminated (Fig. 2b; refs. 7,12).

We simulated the model using the same parameters as in ref. 7. We simu-
lated 1,000 trials at each level of ustim and recorded mean choice, confidence and 
reaction time. We display the simulation output in an identical manner to the 
behavioral data (Fig. 2c–e).

Even for identical levels of decision performance, it is known that the rela-
tionship between subjective confidence and decision-making varies between 
tasks and individuals9,36. We sought to account for this variability by introducing 
an additional parameter relating model confidence to subjective confidence, 
σconf. On each trial, reported confidence was drawn from a Gaussian distribu-
tion centered on ∆e: conf = N(∆e,σconf). This feature of our model is consistent 
with the notion that reported confidence is derived from a higher-order stage of 
decision-making corrupted by noise26. We note that other functional forms for 
the link between model confidence and reported confidence are possible, but 
we do not investigate these here. We repeated the simulation three times with 
three levels of σconf, for a fixed σstim. Examination of psychometric function 
plots (Fig. 6b) shows that σconf can account for the variability in change in slope 
observed across individuals.
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Image acquisition and analysis. Scanning acquisition was performed using a 
Siemens 3.0 T Allegra MRI Scanner (Erlangen, Germany). Gradient echo T2*-
weighted EPI (echoplanar) functional images with BOLD-sensitive contrast were 
acquired (imaging parameters: 48 transverse slices; TR, 2.88 s; TE, 30 ms; 3 × 
3 in-plane resolution; 2-mm slice thickness; 1-mm gap between adjacent slices; 
z-shim −0.4 mT/m; positive phase encoding direction; slice tilt −30°), optimized 
to detect changes in orbitofrontal cortex. For each subject, 228 volumes per ses-
sion were collected (total number of volumes over four sessions = 912), followed 
by a whole brain high-resolution T1-weighted anatomical structural scan and 
local field maps. Image analysis was performed using SPM8 (http://www.fil.
ion.ucl.ac.uk/spm/). The first five volumes from each session were discarded to 
allow for T1 equilibration. Raw functional, structural and field map files were 
reconstructed using TBR. Field maps were reconstructed into a single phase file. 
This field map file was then used to realign and unwarp EPI functional images. 
Structural images were reregistered to mean EPI images and segmented into gray 
and white matter. These segmentation parameters were then used to normalize 
and bias correct the functional images. Normalized images were smoothed using 
a Gaussian kernel of 8 mm full-width at half-maximum.

General linear model 1 (parametric). Onset regressors beginning at the presen-
tation of the two items were modulated by two parametric regressors: (i) unsigned 
difference in value (|DV|), defined as the absolute difference in value between 
the item presented on the right (VR) and the item presented on the left (VL), with 
values VR and VL ascertained from subjects’ bids in the post-scanning phase (|DV| 
= |VR − VL|); and (ii) post-choice confidence ratings, which ranged from 0 to 500 
on an arbitrary scale. In this model, confidence is orthogonalized with respect to 
|DV| by the SPM8 software. Second, for each subject we constructed a separate 
GLM using a factorial design.

General linear model 2 (factorial). Events were split into regressors based on 
confidence level (that is, low and high confidence) using a median split for each 
individual subject. Each of these regressors was modulated by a |DV| parametric 
regressor (defined above).

Statistical inference. Second-level group contrasts from GLM 1 were calculated 
as one-sample t-tests against zero for each first-level linear contrast. Activations 

were reported as significant if they survived family-wise error correction (FWE) 
for multiple comparisons across the whole brain at the cluster level. For rRLPFC, 
we employed small-volume correction using an 8-mm sphere centered on the 
coordinates (36, 44, 28) taken from ref. 14. For GLM 2, rfxplot37 (http://rfxplot.
sourceforge.net/) was used to extract percentage signal change at each region of 
interest defined by 6-mm spheres around the vmPFC and rRLPFC peak voxels  
from GLM 1. These values were entered into 2 × 2 ANOVAs (factors value, 
confidence) to further clarify the pattern of activity seen in GLM 1. In analy-
sis of individual differences we employed small-volume correction (SVC) using  
8-mm spheres centered on the peak activations in vmPFC and rRLPFC taken 
from GLM 1.

Psychophysiological interaction analysis. To assess changes in connectivity 
between rRLPFC and vmPFC as a function of confidence, we carried out a psy-
chophysiological interaction (PPI) analysis. PPI is a measure of context-dependent  
connectivity, explaining the regional activity of other brain regions (here, vmPFC) 
in terms of the interaction between responses in a seed region (here, rRLPFC) 
and a cognitive or sensory process. We used the second GLM (factorial) to run 
our PPI analysis (for details, see paragraph above). We carried out PPI analysis 
using the Generalised PPI toolbox for SPM (gPPI; http://www.nitrc.org/projects/
gppi/). gPPI creates a new GLM in which the deconvolved activity of the seed 
region is assigned to separate regressors dependent on the status of the origi-
nal psychological variable (high or low confidence), and reconvolved with the 
hemodynamic response function. Average time courses were extracted from all 
voxels in a 6-mm sphere surrounding the rRLPFC peak coordinate (39, 41, 16).  
The main effects of high and low confidence, the seed-region time course and 
motion parameters were included as regressors of no interest. The PPI contrast 
compares high_conf * rRLPFC (+1) with low_conf * rRLPFC (−1). This analysis 
showed a significant activation in vmPFC (9, 50, −11) that reflects the increased 
connectivity between vmPFC and rRLPFC during high compared to low  
confidence trials.

35.	Kass, R. Bayes factor. J. Am. Stat. Assoc. 430, 773–795 (1995).
36.	Song, C. et al. Relating inter-individual differences in metacognitive performance 

on different perceptual tasks. Conscious. Cogn. 20, 1787–1792 (2011).
37.	Gläscher, J. Visualization of group inference data in functional neuroimaging. 

Neuroinformatics 7, 73–82 (2009).
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Supplementary Figures 

 

Supplementary Figure 1 – Choice plots for all participants 

 

Probability of choosing the item on the right as a function of the difference in value (i.e. bid 
price) between the 2 items (logistic fit; black line = low confidence choices; grey line = high 
confidence choices). 
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Supplementary Figure 2 – Stability of the behavioural effect over time 

  

Slope from a logistic regression model predicting choice from DV, separately for high and 
low confidence and split by session. 

Supplementary Figure 3 – Effect of correct/incorrect choice on the confidence signal 
in vmPFC 

 

Here we ask whether the vmPFC response to confidence can be explained by a categorical 
difference between correct and error trials. We constructed another GLM similar to GLM 2 
(see Methods) in which we split the categorical confidence regressor into two further 
regressors: one for correct trials (i.e. trials in which the participant chose the item with higher 
value – red in the figure) and one for incorrect trials (i.e. the participant chose the item with 
lower value – green in the figure). This analysis revealed a significant response in vmPFC to 
confidence in both conditions, confirming that the effect of confidence we identified was not 
driven by a categorical responses to errors. 
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Supplementary Figure 4 – Effect of bid confidence on the response of rRLPFC to |DV| 
 

 

In this analysis each item was categorized (using a median split) into high or low bid 
confidence (using the bid confidence measured at the end of the experiment). This allowed 
us to construct a new parametric GLM (see Methods) in which each regressor is split into 
three new regressors: low bid confidence pairs, high bid confidence pairs, and mixed bid 
confidence pairs. Each regressor was parametrically modulated by both choice confidence 
and |DV|. Note that 2 subjects had to be excluded from this analysis due to a reduced 
variability in the bid confidence that did not allow a median split. This new model established 
that the activity of rRLPFC is insensitive to |DV| across all levels of bid confidence (in each 
of the 3 conditions the parametric response to |DV| in rRLPFC is not significantly different 
from zero -- one sample t-test p>0.1). This analysis excludes the possibility that a |DV| signal 
in rRLPFC may have been masked by weak value signals in low bid confidence trials.  The 
plot shows the parameter estimates for the LowBDMconf condition (green), the 
HighBDMconf condition (red) and the MixedBDMconf condition (blue). 
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Supplementary Tables 

Supplementary Table 1 – Analysis of additional factors affecting confidence and value 

Factor Analysis Results 
Item familiarity* Linear regression of 

familiarity and |DV| on 
confidence 

Mean familiarity was a 
significant predictor of choice 
confidence (t19=3.09, P<0.01, 
individually significant in 13 
out of 20 subjects); as 
established previously, |DV| 
also significantly predicted 
choice confidence in this 
model (t19=8.55, P<0.001) 

Actual retail price** Pearson correlation between 
price and BDM bid 

1 out of the 20 participants 
showed a significant positive 
correlation between the 
actual retail price of each 
item and the bids they 
submitted for these items 
(group mean r = 0.0064 ± 
0.24). 

Belief about retail price* Pearson correlation between 
price and BDM bid 

4 out of 20 subjects showed 
a significant correlation 
between their beliefs about 
retail prices and the bids they 
submitted for these items 
(group mean r = 0.23 ± 
0.27). 

Taste† One-way repeated measures 
ANOVA of mean confidence 
by factor sweet/salty/mixed 

Confidence ratings were not 
affected by item type (F(1.273, 

24.182) = 1.001, P = 0.347). 
Calorie content‡ One-way repeated measures 

ANOVA of mean confidence 
by factor high/low/mixed 
calorie 

Confidence ratings were not 
affected by calorie level 
(F(1.141, 21.671) = 0.681, P 
=0.437). 

 

*Item familiarity and belief about retail price were collected in post-experiment 
questionnaires. **Actual retail prices were taken from a UK supermarket website. †Taste was 
determined by categorising each item as sweet or salty, and dividing post-choice confidence 
ratings into 3 groups: sweet (where both items in the choice pair comprised items 
categorised as sweet); salty (where both items in the choice pair comprised items 
categorised as salty); mixed (where a choice pair consisted of one item categorised as 
sweet and one item categorised as salty). ‡Calorie content was determined by categorising 
items as high or low calorie (median split), and dividing post-choice confidence ratings into 3 
groups: high calorie (where both items in the choice pair comprised items categorised as 
high calorie); low calorie (where both items in the choice pair comprised items categorised 
as low calorie); mixed calorie (where a choice pair consisted of one item categorised as high 
calorie and one item categorised as low calorie). 
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Supplementary Table 2 – Race model fits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our race model simulations provide qualitative insight into the inter-relationship between 
confidence, DV and RT that we observe in the behavioural data (Fig. 1). Here we explore 
individual fits of model predictions to subject data. We held threshold constant, leaving two 
free parameters, σstim and σconf. For each subject, we fit 3 data features – the average 
psychometric function, the difference between psychometric functions under high and low 
confidence [P(right_hi) – P(right_lo)] and the RT-confidence relationship. Choice 
probabilities were binned into 5 quantiles; RT was z-scored and binned into 7 quantiles. The 
normalised discrepancy function between model and data was calculated as follows: 

𝐸 =
|𝑒!,! −𝑚!,!|

𝑛!𝑁!!,!

 

where E is the total discrepancy for a particular parameter setting, e and m are experimental 
and model values, respectively, i indexes each function, and j indexes each point on the ith 
function. ni is the number of points in the ith curve, and Ni is its range of values. This 
denominator ensures the contribution of each curve to the total discrepancy is expressed as 
a fraction between 0 and 1. Fits were carried out using exhaustive gridsearch across a 2-
dimensional parameter surface. Error surfaces were inspected to avoid local minima. Best-
fitting parameters from each individual subject are included in the Table below. We observed 

Subject σstim σconf 

1 1.33 0.22 
2 1.33 0.35 
3 1.13 0.11 
4 2.15 0.27 
5 1.54 0.14 
6 2.15 0.80 
7 1.33 0.11 
8 1.74 0.27 
9 2.36 0.27 
10 1.13 0.22 
11 1.13 0.11 
12 1.33 0.19 
13 1.74 0.16 
14 1.13 0.19 
15 0.72 0.16 
16 N/A N/A 
17 1.54 0.32 
18 1.74 0.47 
19 1.33 0.19 
20 1.33 0.24 

Mean 1.50 0.27 
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that E was less sensitive to changes in σconf than σstim. The fit for one subject did not result in 
a clearly-defined global minimum, and is thus excluded. 

 

Supplementary Table 3 – BOLD activation 

Contrast Region                         p – value MNI [ x, y, z] KE P - value 
Difference in 
value (increase) 
 

vmPFC [12, 56, 4] 190 p < 0.005* 

 Precuneus [– 6, – 52, 16] 444 p < 0.0001* 

 Left STS [– 45, – 67, – 25] 136 p < 0.05* 

Difference in 
value (decrease) ACC [9, 20, 49] 184 p < 0.005* 

Confidence 
(increase) vmPFC   [12, 47, -11] 190 p < 0.005* 

 Precuneus  [– 3, – 46, 34] 113 p < 0.05* 

Confidence 
(decrease) ACC [9, 17, 40] 198 p < 0.0001* 

 Left anterior 
Insula [– 48, 11, -2] 233 p < 0.0001* 

 Right anterior 
Insula [51, 8, 4] 135 p< 0.0001* 

 
Left subthalamic 
nucleus (STN) 
 

 
[– 6, – 10, 7] 

 
34 

 
p< 0.005* 

 Right RLPFC    
[27, 47, 28] 

 
42 

 
p < 0.005§ 

 

KE  = cluster size ; * = FWE cluster corrected  ; § = small volume corrected (SVC) within 8-mm sphere centred on the            
coordinates [36, 44, 28] taken from [Fleming et al 2012] 
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Supplementary Table 4 – List of items 

Item name 
Kettle Chips (Sweet Chilli) 
Wotsits Crisps 
Twix Bar 
M&Ms 
Lion Bar 
Bounty 
Walkers Cheese & Onion Crisps 
Milky Way Bar 
Brunch Bar 
Cadburys Twirl 
Monster Munch Crisps 
Skittles 
Nestle Milky Bar 
Nestle Kit Kat 
Mars Bar 
Dairy Milk Turkish Delight 
Cadbury Crunchie 
KP Salted Peanuts 
Doritos Cool Original Crisps 
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