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Analytic tools for psychophysiological signals often make implicit assumptions that are unspecified. In
developing a mathematical framework for analysis of skin conductance responses [SCRs], we formalise our
assumptions by positing that SCRs can be regarded as the output of a linear time-invariant filter. Here, we
provide an empirical test of these assumptions. Our findings indicate that a large component of the variance
in SCRs can be explained by one response function per individual. We note that baseline variance (i.e.
variance in the absence of evoked responses) is higher than variance that could not be explained by a linear
time-invariant model of evoked responses. Furthermore, there was no evidence for nonlinear interactions
among evoked responses that depended on their temporal overlap. We develop a canonical response
function and show that it can be used for signals from different recording sites. We discuss the implications
of these observations for model-based analysis of SCRs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The essence of psychophysiology is to infer psychological processes
from measured physiological signals. Rendering such inference plau-
sible rests on assumptions about how these signals are generated, albeit
in many instances without a formal specification. For example, the
amplitude of event-related skin conductance responses [SCRs] is used to
infer sympathetic arousal, where we know that SCRs are generated by
sweat secretion initiated by distinct bursts of sudomotor nerve activity
(Boucsein, 1992). These sudomotor firing bursts directly relate to
autonomic arousal, but the amplitude of the ensuing SCRs is only
informative if there is a (linear) mapping from sudomotor firing (and
hence, arousal) to SCR amplitude. The most parsimonious biophysical
system that produces such a mapping would generate SCRs that are
scaled versions of a template. Also, when two responses overlap, it is
frequently posited that if some baseline can be estimated for the second
response, its amplitude is not affected by the preceding response
(Boucsein, 1992; Barry et al., 1993; Lim et al., 1997; Alexander et al.,
2005). This amounts to assuming that the compound response is simply
the sum of two single responses.

Model-based analysis for SCR has been proposed for responses
that occur in rapid succession (Barry et al., 1993; Lim et al., 1997;

Alexander et al., 2005; Bach et al., 2009; Benedek and Kaernbach, in
press). The use of explicit mathematical models (Bach et al., 2009)
makes it necessary to formalise the underlying assumptions. The
advantage of such explicit models is that assumptions underlying
both classical and model-based methods are fully specified and can
thus be tested. Here, we provide a test of the aforementioned
assumptions about SCRs in order to show the validity of our model-
based approach. Although similar assumptions have been made in
previous approaches, they have not been tested formally.

We assume that SCRs are generated by a linear time-invariant [LTI]
system (Bach et al., 2009), a standard concept in signal processing.
Time-invariance in this context corresponds to saying that within any
individual and experimental condition, SCRs are scaled versions of a
template. Linearity means that the response to any number of events
equals to the sum of responses to each individual event. To
substantiate these assumptions, we have shown that (a) under the
linearity assumption, SCRs can be deconvolved even at inter stimulus
intervals [ISIs] as short as 3 s, and (b) that in non-overlapping
responses, about 75% of the total signal variance can be explained by
one impulse response function, where the residual variance incorpo-
rates noise and spontaneous fluctuations. Finding (a) suggests that
violations of the linearity assumption do not necessarily compromise
analysis but does not provide a rigorous test of linearity. Likewise,
while finding (b) suggests that the impulse response function can be
regarded as largely time-invariant, it does not provide a quantitative
estimate of violations of time-invariance. This is because the residual
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variance could not be partitioned into noise and variations in the
response function per se. Furthermore, we have suggested that the
time-invariance property generalises to a stereotyped response across
individuals and stimulus types; thus making the use of a canonical
response function feasible. We have however only tested two
stimulus classes, that is, aversive white noise and negative, arousing
(i.e. aversive) pictures, and used recordings from one electrode site
(thenar/hypothenar). Here, we test linear and time-invariance
assumptions in a more rigorous way by (a) quantifying resting-state
signal variance in relation to residual variance in event-related
responses; (b) testing the time-invariance assumption for more
classes of stimuli; (c) testing linearity by presenting paired stimuli
and comparing repetition effects at different ISIs; and (d) generalising
these findings to other recording sites.

Event-related SCRs in various experimental contexts are sum-
marised in Boucsein (1992) and can be grouped into different classes:
(a) phasic orienting responses to simple stimuli, often elicited by
white noise sounds with loudness between 20 dB and 100 dB, usually
requiring a motor reaction; (b) defensive reactions to potentially
harmful stimuli, e.g. elicited by sounds around 100 dB loudness; and
(c) responses to stimuli requiring more complex information
processing and reflecting stimulus significance, e.g. by experimental
instructions, or per se, for example when viewing emotional pictures.
We have previously tested the time-invariance of responses to simple
loud noises [category (a)] and emotional picture viewing [category
(c)]. Here, we sought to test potentially harmful stimuli that fall into
category (b), and responses to stimuli that are rendered significant by
experimental instructions. Therefore, we measured responses to
electric shocks slightly below the pain threshold, and to targets in
an auditory oddball and a visual detection paradigm. We report data
from these experiments, together with responses to single white
noise bursts and compare themwith responses from two experiments
published previously (Bach et al., 2009).

As we sought to quantify baseline variance of the skin conductance
signal we needed a context where baseline responses are comparable
to spontaneous fluctuations during evoked responses. In pilot
experiments, we observed that baseline activity decreases rapidly
when no stimulus is present for more than 30–40 s. Therefore, to
obtain a comparable estimate of spontaneous fluctuations in the
presence and absence of evoked responses, we chose to measure
these in the visual detection paradigm; where a continuous stream of
stimuli is presented, only one of which is to be attended. During the
baseline period, the distractor stimuli were presented, but no target
occurred. We hoped to show that spontaneous fluctuations (as
indexed by variance in the absence of target stimuli) were a sufficient
explanation for the residuals of a time-invariant model of evoked
responses. In other words, we hoped to show that the baseline
variance was equal or greater than the residual variance, under the
assumption that the shape of the evoked responses did not vary from
trial to trial.

In order to test the linearity assumption, we presented two stimuli
with an inter stimulus interval [ISI] of 2, 5.5, or 9 s. Expected responses
were estimated from responses to single stimuli during separate trials.
Nonlinear responses imply that the SCR to the second stimulus depends
on the response to the first, provided they occur sufficiently close
together. This attenuation of the second response as a function of the
firstdependson theelapsed time (ISI)between them.Thus, it represents
a repetition×ISI interaction. We expected to see a simple repetition
effect (that can be attributed to adaptation of the underlying neuronal
response) but were more interested in the interaction with ISI, which
should be negligible under linear (i.e., superposition) models.

To ensure that the results obtained in these tests are not confined
to palmar (thenar/hypothenar) recordings, we conducted a further
experiment with simultaneous recordings from palm, fingers, and
foot, in order to compare explained variance and the response
function across recording sites.

In addition to testingmodel assumptions, we were able to develop a
refined canonical response function (CRF), based on 1278 SCRs from
64 individuals, and analytically modelled as an exponentially modified
Gaussian function. Similar functions have been used previously for
example in modelling chromatographic peaks (for a review see e.g.
DiMarco and Bombi, 2001) and nutrient uptake in mammary glands
(Qiao et al., 2005). This synthetic CRF is now included in the functions
scr_bf_crf and scr_bf_infbs in the Matlab software SCRalyze that has
been released under the GNU General Public License and is obtainable
from http://scralyze.sourceforge.net.

2. Methods

2.1. Participants

We recruited healthy unmedicated participants from the general
population who all received monetary compensation for participation.
Twenty individuals (10 male, 10 female, mean age±standard devia-
tion: 21.8±3.3 years, range 19–30 years) took part in experiments 1
and 2, and 22 individuals (11 male, 11 female, mean age±standard
deviation: 24.7±4.5 years, range 19–34 years) participated in experi-
ments 3 and 4. Both subject samples were independent of each other
and those in previous experiments (Bach et al., 2009). Twenty-six
participants, partly overlapping with previous experiments, took part
in experiment 5 (12 male, 14 female, mean age±standard deviation:
24.4±4.9 years, range 19–35 years). All participants gave written
informed consent, and the study was approved by the local ethics
committee.

2.2. Stimuli and apparatus

2.2.1. Experiment 1
We used 10 uncomfortable electric shocks to elicit SCRs, delivered

via a pin-cathode/ring-anode configuration attached to the dominant
forearm as a 500 Hz current train with individual square pulse width of
0.5 ms, varying current amplitudes (mean±SD: 0.78 mA±0.43 mA)
for 100 ms. Before the experiment, discomfort and pain thresholdswere
assessed with increasing stimulation intensity, with stimulation
intensity being set as just below the pain threshold. Two epochs from
one participant were missing due to a faulty trigger. This experiment
always preceded experiment 2 in order to avoid spontaneous responses
associated with prolonged anticipation of electric shocks.

2.2.2. Experiment 2
This experiment used an auditory oddball task with 10 oddball

stimuli. Every second, one of two sine tones (50 ms length; 10 ms
ramp; ∼75 dB; 440 or 660 Hz, respectively) was delivered via
headphones (PX-660 Pro Luxe, Fujikon, Hong-Kong, China). The
participant was instructed to press a computer key on hearing the
oddball tone, the pitch of which was balanced across participants.

2.2.3. Experiment 3
In this visual detection task, a white letter was flashed on a black

screen for 200 ms with 800 ms blank intervals. A red cross target
stimulus was embedded in this stream and participants were asked to
press a computer key when they detected the target. An additional
baseline period of 60 s without targets was added to the beginning or
end of the experiment (balanced across participants). To habituate
participants to the distractor stimuli, each part of the experiment was
preceded by 20 distractor stimuli. This experiment always preceded
experiment 4, which we thought would be less prone to habituation.

2.2.4. Experiment 4
This experiment involved white noise sounds in four experimental

conditions: single stimuli and double stimuli with an ISI of 2 s, 5.5 s, or
9 s. To avoid different subjective expectations about subsequent
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stimuli (between the first and the second stimulus), we additionally
presented triple stimuli with ISIs randomly determined to be 2 s, 5.5 s,
or 9 s. These trials were not analysed. For each experimental condition
and for the triple stimuli, 10 trials were realised, summing to 50 trials
in randomised order, and 100 sound stimuli. These were white noise
sounds of 1 s length (10 ms onset and offset ramp, ∼85 dB sound
pressure level), delivered via headphones (PX-660 Pro Luxe).
Participants were instructed to press a button on a computer
keyboard as quickly as possible when they heard a sound. A fixation
crosswas visible on the screen all the time. The first trial was preceded
by 2 s of silence, and the last stimulus of each trial was followed by
30, 35, or 40 s of silence.

2.2.5. Experiment 5
The same stimulus type and equipment as in experiment 4 were

used. Participants heard 20 single white noise bursts over head-
phones, and participants were asked to make a response to each
sound with a pedal for the dominant foot.

2.2.6. Common settings
For experiments 1–3 and 5, ISI was randomly chosen to be 29 s,

34 s, or 29 s, with a mean of 34 s for each participant. All experiments
were programmed in Cogent (Version 2000v1.25; www.vislab.ucl.ac.
uk/Cogent) on Matlab 6.5 (MathWorks; Natick MA; USA), and run
on a personal computer with a Pentium 4 processor and a SoundMax
soundcard (Analog Devices, Norwood MA, USA).

Skin conductance was recorded on the thenar/hypothenar of
the non-dominant hand using 8 mm Ag/AgCl cup electrodes (EL258,
Biopac Systems., Goleta CA, USA) and 0.5%-NaCl electrode paste
(GEL101; Biopac Systems). In experiment 5, additional recordings
were made from the volar middle phalanx of the dominant 2nd/3rd
finger, and the medial plantar surface of the non-dominant foot
as described in Boucsein (1992, p.99) Recordings were conducted
in a magnetically shielded room (MSR), using a custom-built
constant voltage coupler (2.5 V), based on a differential amplifier
and DC-powered by a 12 V battery to minimise electromagnetic noise.
The output of the coupler was converted into an optical pulse
frequency. This varies sampling rate over time, such that the effective
time resolution is determined by the lowest transmission frequency.
The lowest sampling rates encountered in any participant were
93.9 Hz, 68.7 Hz, 24.0 Hz, 2.7 Hz, and 16.1 Hz, respectively for the five
experiments (note that for the 5 participants with sampling rates
smaller than 10 Hz in experiment 4, some aliasing might have been
introduced during A/D conversion). This pulse signal was transmitted
using fibre optics, digitally converted outside the MSR with 2 μs time
resolution (Micro1401, Cambridge Electronic Design, Cambridge, UK),
and recorded (Spike2, Cambridge Electronic Design, Cambridge, UK).
Stimulus onset was signalled by TTL pulses of 10 ms length via
the stimulus computer's parallel port, and recorded simultaneously
with the same time resolution. Temperature and relative humidity
of the experimental room were between 18–21.6 °C and 31–51%
(experiments 1–2), 20.0–26.0 °C and 31–64% (experiment 3–4), and
21.6–27.6 °C and 45–68% (experiment 5).

2.3. Data analysis

Data analysis was carried out inMatlab 7.4 using custom code that is
available from the authors. Prior to analysis, skin conductancedatawere
converted back to a waveform signal with 100 Hz time resolution,
filtered with a bidirectional first-order Butterworth bandpass filter and
cut-off frequencies of 5 Hz, and 0.0159 Hz (corresponding to a time
constant of 10 s), respectively, and down-sampled to 10 Hz sampling
rate. The time series was then z-transformed to account for between-
subjects variance in SCR amplitude, which can be due to peripheral
factors such as skin properties (note that z-transformation for
experiment 3 included both event-related and baseline responses).

The 30 s following each event onset was extracted and analysed. In
experiment 5, 14 out of 520 epochs were excluded due to recording
equipment malfunction (i.e. periods where no data was recorded). To
ensure a conservative estimate of residual variance, we did not exclude
potential artefacts or non-responses. Note that this does not influence
the shape of the estimated response function, as unsystematic noise
would not be represented in the first principal component used to
characterise the response function. Despite filtering, skin conductance
level can differ between trials and consequently data from each trial
was mean-centred. Baseline responses in experiment 3 was extracted
during 60 s, divided into two periods of 30 s and analysed similarly.
ANOVAs of parameter estimates were conducted in SPSS 14.0
(Chicago IL, USA). We report ε- and corrected p-values according to
Greenhouse–Geisser.

3. Results

3.1. Test of the time-invariance assumptions

For each experiment and each participant, we performed a
principal component analysis [PCA] of SCRs to determine the response
function that explained the maximum variance, and quantify
unexplained residuals. Results are summarised in Fig. 1. Across all
experimental paradigms, the variance explained was above 60%,
albeit with considerable between-subjects differences, as evident in
the box plots. Thus, for some participants, almost all variance could be
explained by one response function, whereas for others, the residual
variance was as high as 70%. Across the group, baseline variance in the
visual detection experiment amounted to 64% of the total variance
during evoked responses, well above the corresponding residual
variance.

The same procedure was then applied to the combined responses
from all participants in each experiment. This enabled us to quantify
the between-subject variance in response shape (note that this does
not speak to the time-invariance assumption but quantifies how
stereotyped the responses were across individuals). These response
functions explained more than 40% of total variance for each
experiment. The response functions are depicted in the lower panel
of Fig. 1 and look similar, with the exception of a later peak for the
aversive picture viewing experiment and a broader peak for the visual
detection and auditory oddball experiment.

By combining all data, we created a canonical response function
(CRF) based on 1278 SCRs from 64 participants, and a basis set,
accounting for interindividual differences. The procedure is similar to
the one used in Bach et al. (2009) and is described in Appendix A. The
three basis functions of this set depicted in Fig. 2 explained 48.4%,
10.6%, and 5.0%, respectively, of the total variance, leaving 36.0%
residual variance.

One issue to consider is how the high-pass filter influences the
apparent response. High-pass filtering is necessary as we assume a
finite response, but the raw skin conductance signal does not
necessarily return to zero after an SCR. We therefore explored how
the cut-off frequency of the high-pass filter impacts the explained
variance within participants and experimental conditions. By apply-
ing filter frequencies between 0 and 0.025 Hz in 0.005 Hz steps, we
show that across the whole group, the explained variance was
estimated at 70% if no filter was applied and decreased, almost
linearly, to 67.5% at the highest filter frequency. This shows that the
filtering does not have an appreciable impact on the modelling of
responses.

3.2. Test of the linearity assumptions

For each participant from experiment 4, we determined a response
function by performing PCA on responses to single stimuli. The first
PCA component was then fitted to trials with double events by
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convolving it with two stick functions for each event onset, and
combining this with a constant component. Parameter estimates
controlling the height of the two stick functions are depicted in
Fig. 3 and present the amplitude of the fixed-form responses for each
trial type. Responses to the first (i.e. 30–40 s after the last stimulus)
were larger than responses to the second sound, regardless of ISI;
an effect that reached trend-level significance in a 2 (repetition)×3
(ISI)-ANOVA (F1, 21=3.29; ε=1; p=0.08). When controlling
for individual responsiveness by entering (mean-centred) single-
response parameter estimates as a covariate, this effect was still
significant at the trend level (F1, 20=3.89; ε=1; p=0.06). Addition-
ally, individuals with higher responses to single stimuli had a higher
repetition difference (F1, 20=4.82; ε=1; pb0.05). However, there
was no main effect of ISI (all Fsb1.2) or interaction involving ISI (all
Fsb1) in any of the analyses. This suggests that we were observing
repetition suppression that did not depend on ISI or nonlinear
interactions among stimulus-specific SCRs.

It is conceivable that within an individual, a refractory period scales
with the amplitude of the first response, or in other words, that the
second response is suppressed more when the first response is bigger.
We tested this for each ISI separately and for all ISIs together by
computing within-subjects regression slopes between the first and
secondresponse. A stronger suppressionof the secondafter a biggerfirst
response would imply negative regression slopes. The regression slopes
were however positive across all ISIs (t21=4.4; pb0.001). In other
words,when thefirst responsewas relatively larger, the secondwasalso
increased. Within single ISIs, none of the regression slopes was
significantly negative across subjects (all pN0.80). There was no linear
(pN0.50) or quadratic (pN0.05) relationship of the regression slope
with ISI. Therefore, if there is any relation between first and second

response within individuals, it is consistently positive, thus arguing
against an amplitude-dependent refractory period.

In our previous study (Bach et al., 2009), we deconvolved the
response function using an uninformed finite impulse response model.
Parameter estimates from this model showed a time×ISI interaction,
whichmight indicate a different response shape atdifferent ISIs, but also
overfitting of the data. In the present study, there was no indication of
different response shape at different ISIs, such that our previous results
can most likely be regarded as stemming from overfitting. Fig. 3 shows
predicted and observed responses from the model described above.
There is a systematic residual in the fit of the response peaks, but this
does not differ between the first and the second response.

3.3. Generalisation to other recording sites

For experiment 5, we assessed time-lagged correlations between
different recording sites across the complete unfiltered time series.
Averaged across participants, palmar and finger recordings shared
50.3% variance at a time lag of 0.4 s, and palmar and foot recordings
shared 30.4% at a time lag of 1.3 s. After filtering, PCA revealed similar
within and between-subjects variance estimates and similar response
functions for the recording sites as shown in Fig. 4. The mean peak
latencies of the response functions were 3.9 s for palmar, 4.3 s for
finger and 5.0 s for plantar recordings, thus closely resembling the lag
values obtained for the whole, unfiltered time series. Across subjects,
the latency differences between recording sites were significantly
related to the distance between head and recording site. Between-
subjects differences in this distance however had no effect on
individual peak latencies into the predicted direction for any of the
recording sites. Thus, it is not possible to predict the peak latency in

Fig. 1. Variance partitioning and response functions were estimated for different stimulus classes. Top panel: bar charts show variance components across subjects; that is, variance
explained by one common response function (black), between-subjects variance (grey) and residual variance (white) for each experiment. Light grey: baseline variance in the
absence of evoked responses for the visual detection experiment. Box plots depict explained variance within subjects, showing median (line), quartiles (box), and range (whiskers).
Outliers (values outside the 1.5×interquartile range) are shown as individual dots; whiskers then represent the data within the interquartile range. Bottom panel: empirical (PCA)
response functions across participants for the different experiments.
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one person's response function from the individual head/recording
site distance.

The aforementioned CRF could explain on the average 50.0%,
53.7%, and 48.9% of the variance for palmar, finger, and foot
recordings. The whole basis set explained 68.9%, 67.3%, and 66.0%.
Adjusting the CRF to account for longer peak latencies in finger and
foot recordings did not improve the amount of explained variance,
possibly due to the fact that it was built from different experimental
conditions, some of which already involved longer peak latencies than
the ones obtained with white noise sounds. The estimated response
amplitude was highest for palm recordings, followed by the finger
(factor 0.60) and the foot (factor 0.33).

4. Discussion

In this paper, we tested the time-invariance and linearity of SCRs
as these constitute two central assumptions for SCR analysis both in

classical methods (Boucsein, 1992) and in model-based strategies, for
example in a general linear convolution framework (Bach et al., 2009).
We conclude that the time-invariance assumption seems to be met.
While there was trend-level evidence for repetition suppression even
at ISIs of 9 s, we found no evidence that this suppression depended on
ISI and therefore no convincing evidence for nonlinear interactions
among overlapping SCRs, although CNS mechanisms might lead to
repetition suppression independent of peripheral factors.

We previously reported residual variance between 20% and 40% on
orienting responses to loud noise and aversive pictures, and could
extend this now to defensive reactions and responses to events that
are rendered salient by experimental instruction alone. In a visual
detection task, we included a baseline period without target stimuli
that was used to estimate baseline fluctuations. This exceeded the
residual variance during evoked responses by almost a factor two.
That is, it appears that spontaneous fluctuations are suppressed when
SCRs are elicited by external events. This suggests that a major

Fig. 2. A canonical response function was derived from observed responses (shown as the first PCA component±standard deviation across all observations), and was described
analytically as an exponentially modified Gaussian function (top panel). Time and dispersion derivatives were constructed to account for differences in response shape between
participants and experimental conditions (middle panel); the complete basis set could explain 64.0% of the total variance. Latency and rise time are comparable to the function
proposed by Lim et al. (1997).
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component of residual variance during evoked responses stems from
spontaneous fluctuations (i.e. the components that contribute to
baseline variance). In other words, spontaneous or non-specific
fluctuations are more than a sufficient explanation for variability in
evoked SCRs, and the time-invariance assumption can be regarded as
met for practical purposes. This generalises to recordings from foot
and middle phalanx of the fingers where very similar results were
obtained.

Across participants, the estimated response functions looked
comparable in different experimental paradigms. On this basis, we
were able to estimate a canonical response function (CRF), derived
from 1278 SCRs from 64 individuals. This was extended to form an
informed basis set that can account for between-subject differences in
response shape, and for between-condition differences; such as
slightly later responses to aversive pictures (see Fig. 2). In comparison
with previously reported response functions (Lim et al., 1997;
Alexander et al., 2005) our CRF has a much longer recovery time
(see Fig. 2). It is however encouraging to note that our onset latency

and peak are comparable with Lim et al. (1997). This is particularly
important because their data were sampled at a fixed interval and
adequately over-sampled, whereas we used a suboptimal (variable)
sampling rate. The much shorter latency of the response function
proposed by Alexander et al. (2005) is due to the fact that their
function does not include the time due to sensory processing and
sudomotor transmission (which occurs prior to the measurable SCR
response). It is worth noting that our CRF can also be used for foot and
finger recordings without compromising model fit, indicating that the
between-subject variance in response shape within one recording site
dominates over the variance caused by latency differences between
recording sites. Finger and foot recordings might be advantageous as
thenar/hypothenar recordings are prone to movement artefacts.
Recordings from distal phalanges of the fingers have been reported
in the literature, and although we only acquired data from the middle
phalanx, one might tentatively speculate that the time-invariance
property and the canonical response function also apply at the distal
phalanx.

Fig. 3. The linearity assumption was tested by presenting either single white noise sounds, or a sequence of two sounds with differing ISIs, separated by silent periods of 30–40 s. For
each individual, a response function was estimated from their responses to single events, and responses to double events were estimated under time-invariance assumptions. It turns
out that responses to second events are smaller than to the first event in each sequence, regardless of ISI (2–9 s); however, there is no evidence for dependency of the repetition
suppression on ISI. Averaged residuals are similar for the first and second event, thus indicating no systematic alterations of response shape at different ISIs.
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Also, we found the linearity principle seems to hold, providing one
allows for categorical differences in the underlying neuronal response
to an initial stimulus, relative to subsequent stimuli. Between 3 s and
10 s after an event onset, responses to a second event of the same type
were attenuated. Although this effect was not statistically significant,
it speaks to a classical repetition suppression that may be useful to
model in some designs (see below). Crucially, however, there was no
effect of ISI, suggesting that the SCR to the second stimulus does not
depend on the overlap with the SCR to the first. This is consistent with
a linear model, provided the model incorporates simple repetition
effects. It seems plausible that this kind of repetition effect reflects
central adaption to the stimulus (for an overview see Boucsein, 1992)
but it could also be due to peripheral (e.g. sympathetic nerve)
adaptation. Previous work (Bach et al., 2009) suggested that the
response shape might be different at different ISIs but we could not
confirm this in the present study. This does not rule out non-
linearities in the SCR response function, but they are probably difficult
to detect without a clear hypothesis about their form.

Repetition effects could be an issue for any form of SCR analysis, be
it semi-visual or mathematical. Here, we suggest how they can be
dealt with in the framework of a linear convolutionmodel (Bach et al.,
2009). If events engage a responsive system that has systematic
variability, such that distinct levels of repetition are associated with
different response amplitude, these levels can be encoded in different
regressors (or, in classical analysis, in distinct levels of the
experimental factor) (see Friston et al., 1998 for a discussion in the
context of fMRI responses). Second, if there are systematic non-
linearities in the responsiveness of the system, one can explicitly
model these within the linear convolution framework using a Volterra
series. Here, non-linearities are parameterised as coefficients of sec-
ond and higher order Volterra kernels; together with the coefficients

of the standard response function (first-order kernels). However, this
is only necessary for more complex paradigms where there is no
experimental control over repetition effects, or if we are specifically
interested in such non-linearities, such as in studies of peripheral
adaptation. Further work is needed to validate such models for the
analysis of SCR and can be motivated by the fact that response
habituation implies that the system we are modelling has memory.

An interesting possibility arises from the individual response
functions depicted in Fig. 1, where aversive pictures evoke responses
slightly later than other stimulus classes. There is no reason why the
peripheral output system should exhibit a different response to one
stimulus class than to any other. Given that images contain much
more information than any other of the studied stimuli, this longer
latency may reflect longer processing time in the central nervous
system. The twist is that it might be possible to estimate character-
istics of central nervous function by deconvolving the observed signal
given a canonical response function. Recently proposed deconvolu-
tion/decomposition methods (Alexander et al., 2005; Benedek and
Kaernbach, in press) have addressed this issue by attempting to
recover the sudomotor time series; however they did not provide a
model for how this sudomotor activity relates to processes in the CNS.
We will pursue this in future work.

We emphasise that the present approach not only assists in
analysis of SCRs, but also connects to the broader literature on
psychophysiological responses and sets out a framework of how
analysis assumptions and research questions can be formulated
mathematically. For example, it has been proposed that a higher
rate of biphasic as opposed to monophasic SCRs might differentiate
defensive from orienting responses (Uno and Grings, 1965). In order
to test this assumption, instead of visually scoring and counting
responses (see Boucsein, 1992), the present framework allows one to

Fig. 4. Variance portioning and response functions for hand (thenar/hypothenar), finger (volar surface, 2nd/3rd finger, middle phalanx), andmedial foot (medial plantar) recordings.
The ratio of explained variance is similar, and the response functions mainly differ in peak latency. Note that the canonical response function depicted in Fig. 2 can explain responses
from all three recording sites almost equally well.
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parameterise condition-specific response functions and test for their
differences.

In conclusion, we have investigated two central assumptions of
SCR analysis that are usually not made explicit, but which are entailed
for example in a general linear convolution framework (Bach et al.,
2009). The time-invariance assumption could be supported, and there
was no evidence for a violation of the linearity assumption, given
repetition suppression is modelled. We suggest that repetition
suppression does not preclude SCR analysis; indeed, non-linear
methods can be incorporated into the linear framework, even if we
do not have control over ISI. Thus, explicit modelling methods appear
to be more powerful for SCR analysis than classical, semi-visual
methods. Our findings pertain to many models that could be used for
SCR. Indeed one might anticipate more refined models in the future,
whichmight even relax the need for filtering the data prior to analysis.
As noted by one of our reviewers, an interesting challenge here is to
accommodate fluctuations in tonic skin conductance level, which can
be substantially larger in amplitude than the SCR itself.
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Appendix A

In a previous paper, the canonical response function (CRF) was
modelled as a Gaussian smoothed probability density function of a
Gamma distribution (Bach et al., 2009). It turns out with the present
dataset that the polynomial part of this function is estimated to be
one, such that the CRF can be more parsimoniously described by a
Gaussian smoothed exponential function, or exponentially modified
Gaussian function. Using a bi-exponential function provided better fit
across all single experiments and for the combined dataset than a
mono-exponential function or other related functions, such as the
exponential-Gaussian hybrid function used in chromatography (Lan
and Jorgenson, 2001), or a (smoothed) sigmoid-exponential function
as proposed by Lim et al. (1997). We now phenomenologically define
the CRF as:

h̃can tð Þ = N tð Þ⊗ E1 tð Þ + E2 tð Þð Þ = ∫
+∞

−∞
N t−τð Þ E1 τð Þ + E2 τð Þð Þdτ

where ⊗ denotes the linear convolution operator, N(t) is a Gaussian
function with standard deviation σ, centred at τ

N tð Þ = 1ffiffiffiffiffiffiffiffiffiffi
2πσ

p e− t−τð Þ2 =2σ2

and E(t) are exponential functions of the form

E1 tð Þ = e−λ1t; E2 tð Þ = e−λ2t

The parameters of this analytical form of the CRF are estimated
using the full dataset from this and a previous paper (Bach et al., 2009)
with a least-square approach and gradient search. The estimated
parameters are:

τ̂ = 3:0745
σ̂ = 0:7013

λ̂1 = 0:3176

λ̂2 = 0:0708

8>>><
>>>:

Note that the parameters have an approximate biophysical
meaning, in the sense that τ defines the event-to-peak time, σ relates
to the rise time, and the two exponential constants approximately
define the decay.

We define an informed basis set {h̃inf
i (t)}i=1…N, given that the CRF

does not fit all individuals equally well. This basis set is generated by
performing a multivariate first-order Taylor expansion of the CRF
along time and dispersion parameters. Thus, for the construction of

the temporal derivative
∂h̃can
∂t , the canonical function is differentiated

with respect to time. The dispersion derivative
∂h̃can
∂σ is obtained by

computing the difference between the original CRF and the same one
convolved with a Gaussian function of greater variance (σ′=1.2623).

The informed basis set capturing the CRF is therefore:

h̃inf
i tð Þ

n o
i=1…3

= h̃can;
∂h̃can
∂t ;

∂h̃can
∂σ

( )

This basis set was orthogonalised using a serial Gram–Schmidt
process as implemented in the SPM software (spm_orth.m). The CRF
is included in the SCRalyze software as function scr_bf_crf.m, and the
basis set as scr_bf_infbs.m. The dataset on which this parameterisa-
tion was built is also included in the software distribution package.
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