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From Kardar-Parisi-Zhang scaling to explosive desynchronization in arrays of limit-cycle oscillators
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Phase oscillator lattices subject to noise are one of the most fundamental systems in nonequilibrium physics.
We have discovered a dynamical transition which has a significant impact on the synchronization dynamics
in such lattices, as it leads to an explosive increase of the phase diffusion rate by orders of magnitude. Our
analysis is based on the widely applicable Kuramoto-Sakaguchi model, with local couplings between oscillators.
For one-dimensional lattices, we observe the universal evolution of the phase spread that is suggested by a
connection to the theory of surface growth, as described by the Kardar-Parisi-Zhang (KPZ) model. Moreover,
we are able to explain the dynamical transition both in one and two dimensions by connecting it to an apparent
finite-time singularity in a related KPZ lattice model. Our findings have direct consequences for the frequency
stability of coupled oscillator lattices.
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I. INTRODUCTION

Networks and lattices of coupled limit-cycle oscillators
do not only represent a paradigmatic system in nonlinear
dynamics, but are also highly relevant for potential ap-
plications. The reason is that the coupling can serve to
counteract the effects of the noise that is unavoidable in
real physical systems. Synchronization between oscillators
can drastically suppress the diffusion of the oscillation
phases and can therefore improve the overall frequency
stability. Experimental implementations of coupled oscillators
include laser arrays [1], coupled electromagnetic circuits (e.g.,
Refs. [2,3]), and the modern recent example of coupled
electromechanical and optomechanical oscillators [4–8]. In
this work, we will deal with the experimentally most relevant
case of one-dimensional (1D) and two-dimensional (2D)
lattices.

Naive arguments indicate that the diffusion rate of the
collective phase of N synchronized oscillators is suppressed
as 1/N , which leads to the improvement of frequency stability
mentioned above. However, it is far from guaranteed that this
ideal limit is reached in practice [9,10]. The nonequilibrium
nonlinear stochastic dynamics of the underlying lattice field
theory is sufficiently complex that a more detailed analy-
sis is called for. In this context, it has been conjectured
earlier that there is a fruitful connection [11] between the
synchronization dynamics of a noisy oscillator lattice and
the Kardar-Parisi-Zhang (KPZ) theory of surface growth
[12,13].

We have been able to confirm that this is indeed true,
particularly for 1D lattices. However, the most important
prediction of our analysis is that a certain dynamical instability
can take the lattice system away from KPZ-like behavior
during the time evolution. As we will show, this instability
is related to an apparent finite-time singularity in the related
KPZ lattice model. It has a significant impact on the phase
dynamics because the phase spread is increased by several
orders of magnitude. As such, this phenomenon represents
an important general feature of the dynamics of oscillator
lattices.

II. EFFECTIVE PHASE MODEL

We will describe the time evolution of the coupled limit-
cycle oscillators by the Kuramoto-Sakaguchi model [14,15].
This is an effective model for the slow phase dynamics in the
system (see Fig. 1), which describes the physics well if the
amplitude fluctuations are small. The model can actually be
derived by integrating out those fluctuations in the microscopic
equations, which has recently been done for electromechan-
ical [16] and optomechanical [17–19] oscillators. Effective
phase models are studied widely in the context of synchro-
nization and pattern formation; see Refs. [11,14,15,20–24].

Here we focus on the ideal case of a nondisordered lattice,
with uniform natural frequencies and local coupling. Thus,
our system is described by the following noisy Kuramoto-
Sakaguchi model for the oscillator phases ϕj (t):

ϕ̇j = S
∑
〈k,j〉

sin(ϕk − ϕj ) + C
∑
〈k,j〉

cos(ϕk − ϕj ) + ξj , (1)

where ξj (t) is a Gaussian white noise term with correlator
〈ξj (t)ξk(0)〉 = 2Dϕδ(t)δjk , and S and C are the coupling
parameters. The sums run over nearest neighbors. We will
often call this model the “phase model”. In this article, we
focus on the time evolution from a homogeneous initial state
[ϕj (0) = 0], to track the roughening of the phase field.

How does the interplay of noise and coupling affect the fre-
quency stability of the oscillators? This is a central question for
synchronization and metrology. It can be discussed in terms of
the average frequencies �j (t) = t−1

∫ t

0 dt ′ϕ̇j (t ′) = ϕj (t)/t .
Here the ϕj (t) are the phases accumulated during the full time
evolution (see also Refs. [15,25]). They have an important
physical meaning in the present setting, essentially indicating
the number of cycles that have elapsed. Important insights can
be obtained from studying the evolving spread of the average
frequencies, w�(t) = 〈N−1 ∑N

j=1 [�j (t) − �̄(t)]2〉1/2, where

�̄(t) = N−1 ∑N
j=1 �j (t) is the mean average frequency of a

lattice with N sites. This spread turns out to be directly related
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FIG. 1. (a) Scheme of an oscillator array. We consider 1D and 2D
lattices of limit-cycle oscillators, which are described individually by
their phases ϕj (t). These phases are influenced by noise ξj (t) and by
the coupling to their nearest neighbors; see Eq. (1). (b) Stochastic
time evolution of the phase field in a 2D array of coupled oscillators
(smoothed for clarity). The field is flat initially and roughens with
time.

to the spread of the phase field, wϕ(t), with

w2
ϕ(t) =

〈
1

N

N∑
j=1

[ϕj (t) − ϕ̄(t)]2

〉
= t2w2

�(t), (2)

where ϕ̄(t) = �̄(t) t is the mean (spatially averaged) phase.
The angular brackets denote an ensemble average over
different realizations of the noise.

For the simple case of uncoupled identical oscillators
subject to noise, one finds wϕ(t) = √

2Dϕt and hence w�(t) ∼
t−1/2. This indicates a strong tendency towards synchroniza-
tion because there is no disorder. We will see that the coupling
between the oscillators can lead to different exponents,
depending on the parameter regime, and that it can either
enhance or hinder the synchronization process. We expect that
this finding translates also to systems with small disorder in
the natural frequencies.

III. RELATION TO THE KARDAR-PARISI-ZHANG MODEL

Much of our discussion of the initial stages of evolution will
rely on small phase differences between neighboring sites.
Then the phase model [Eq. (1)] is well approximated by a
second-order expansion (see also Ref. [11]), which can be
recast in dimensionless form using a single parameter g1D,2D =
4DϕC2/S3. In a 1D array, the resulting model reads

∂hj

∂τ
= (hj+1 + hj−1 − 2hj )

+ 1

4
[(hj+1 − hj )2 + (hj−1 − hj )2] + √

g1Dηj , (3)

where we have rescaled both the time, τ = St , and the
phase field, hj = −(2C/S)(ϕj − 2Ct). The noise correlator
is 〈ηj (τ )ηk(0)〉 = 2δjkδ(τ ).

Equation (3) can be readily identified as a lattice version of
the Kardar-Parisi-Zhang (KPZ) model [12,13,26], a universal
model for surface growth and other phenomena. This nonlinear
stochastic continuum field theory describes the evolution of a
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FIG. 2. Dynamics in the 1D Kuramoto-Sakaguchi model
[Eq. (1)]. (a) Typical time evolution of the phase field from
homogeneous initial conditions. We subtracted a trivial global drift
of the phases. (b) Time evolution of the phase spread wϕ(t). The
magenta curves (two lowest solid lines) show the results for g1D = 8
(upper curve) and g1D = 1 (lower curve). After initial transients,
they approach an asymptotic KPZ scaling of wϕ(t) ∝ t1/3 (dashed
black lines). For g1D = 50, we plot examples of the phase spread
from single simulations as thin gray lines. The red curve (thick dark
gray line) shows a small-ensemble average. After a rapid increase, it
eventually approaches diffusive behavior, wϕ(t) ∝ t1/2 (dotted black
line; S/C = 0.001 in all simulations). For comparison, we show the
green curve (thick light gray line), where S/C = 0.1 and g1D = 25.
Note the logarithmic scale of the axes. (See Appendix D for more
details.)

height field h(�r,t),

ḣ = ν
h + λ

2
(∇h)2 + η, (4)

with white noise η(�r,t), where 〈η(�r1,t)η(�r2,0)〉 = 2Dδd (�r2 −
�r1)δ(t). The diffusive term smoothes the surface, while both
the noise and the nonlinear gradient term tend to induce a
roughening. Surface growth dynamics has been found to obey
universal scaling laws [12,27].

The continuum KPZ model in one dimension can be
rescaled to become parameter-free. Its lattice version, how-
ever, depends on one dimensionless coupling constant g1D =
aDλ2/ν3 [13,28,29], where a is the lattice spacing (see also
Appendix A).

The relation of the KPZ model to coupled oscillator lattices
has been pointed out before [11]. However, up to now it has
remained unclear how far this formal connection is really able
to predict universal features of the synchronization dynamics.
We will tackle this question in the following, focusing on the
regime S/C 
 1, which is the regime where KPZ dynamics
turns out to be most fruitful for understanding the behavior of
the full phase model (see Appendix A).

IV. DYNAMICS IN ONE-DIMENSIONAL SYSTEMS

First insights can be gained by numerical simulations
of the phase model. The outcome of a single simulation
of a 1D array is displayed in Fig. 2(a). The typical time
evolution of the phase spread wϕ(t) is shown in Fig. 2(b).
We can distinguish two parameter regimes from the long-time
evolution. In one regime, we find wϕ(t) ∼ t1/3 after initial
transients [see magenta curves (two lowest solid lines)]. This
power-law growth can be identified as universal KPZ behavior:

012220-2



FROM KARDAR-PARISI-ZHANG SCALING TO EXPLOSIVE . . . PHYSICAL REVIEW E 96, 012220 (2017)

In the continuum KPZ model, the scaling exponent can be
calculated analytically in one dimension and turns out to be
1/3 [12]. Hence, we conclude that 1D arrays of limit-cycle
oscillators, as described by the noisy Kuramoto-Sakaguchi
phase model, indeed show KPZ scaling in certain parameter
regimes.

Far more surprising is the other regime (red and green
curves (thick gray lines)), where one observes diffusive
growth, wϕ(t) ∼ t1/2, for long times. This clearly deviates from
any KPZ predictions. Additionally, the short-time behavior
is remarkable: In the trajectories of single simulations, we
see an explosive growth of wϕ(t) at some random interme-
diate time (thin gray lines). At this time, the variance of
the phase field suddenly grows by several orders of magnitude.
This corresponds to an explosive desynchronization of the
oscillators.

To understand this important dynamical feature better, we
now briefly turn away from the full phase model and study
the evolution of the related lattice KPZ model [Eq. (3)]. The
result of a single simulation is shown in Fig. 3(a). We see
that an instability develops, which now leads to an apparent
(numerical) finite-time singularity.

The occurrence of such an instability is a random event. In
Fig. 3(b), we plot the probability of an instability during the
evolution, as a function of the time τ and the coupling g1D.
In principle, instabilities can occur at all coupling strengths,
but we find that for the lattice size employed here (1000
sites) they become much less likely (happen much later) for
g1D < 40. To extrapolate to larger lattices, we may assume
that the stochastic seeds for the instabilities are planted
independently in different parts of the system. Hence, one
could calculate the probabilities for any N from our results.

It is worthwhile to note that divergences had been identified
before in numerical attempts to solve the KPZ dynamics on a

FIG. 3. Instabilities in the 1D lattice KPZ model as given by
Eq. (3). (a) Typical time evolution of the height field hj (τ ) for
large coupling parameter g1D = 50, on a lattice with 1000 sites. We
plot the height field for increasing times from bottom to top. The
curves are vertically offset for clarity. The numerical divergence
occurs at the point marked with a red star. The selected time points
approach the divergence time logarithmically, as indicated in the inset.
There we also show the evolution of the maximum nearest neighbor
difference, δhmax

NN , just before the divergence. (b) The probability of
encountering an instability up to time τ , as a function of the coupling
g1D. We see that an instability is more likely to occur earlier for
increasing values of g1D. Note that the probability of instabilities
depends on the lattice size.

lattice [30–32] (see also Refs. [33,34]). In those simulations,
this behavior was considered to be a numerical artefact
depending on the details of the discretization because it
does not show up in the continuum model, at least in one
dimension [31]. On the contrary, our phase model, describing
synchronization in discrete oscillator lattices, is a genuine
lattice model from the start. Hence, the onset of instabilities
has to be taken seriously (see also Ref. [35]). In the full phase
model, Eq. (1), the incipient divergences are eventually cured
because the trigonometric functions in Eq. (1) are bounded.
Instead of resulting in a finite-time singularity, they will lead
the system away from KPZ-like behavior and make it enter a
new dynamical regime.

To find out for which parameters this happens, we have
determined numerically the probability of encountering large
growth of nearest-neighbor phase differences. We find that
we can distinguish between a “stable” regime, where no large
phase differences (>π ) show up in most simulations, and an
“unstable” regime, where large differences occur with a high
probability. We indeed get quantitative agreement with the
results discussed above for the lattice KPZ model [Fig. 3(b)]
for small S/C (<0.001).

In a single simulation in the unstable parameter regime
of the stochastic phase model (from homogeneous initial
conditions), we typically observe that the phase field develops
as in the corresponding KPZ lattice model initially. Then,
a KPZ-like instability induces large nearest-neighbor phase
differences within a certain region. There, turbulent dynamics
takes over, which is a feature already present in the purely
deterministic phase model. Moreover, in this region the
average phase velocity is very large. The turbulent region then
expands over the whole lattice quickly. Eventually, we observe
turbulence everywhere, which leads to a rapid phase diffusion
(see Appendix C for more details). This time evolution is
reflected in the phase spread; see the thin gray lines in
Fig. 2(b): The expansion of the turbulent region leads to an
explosive growth, whereas the subsequent diffusion leads to
the asymptotic scaling wϕ ∼ t1/2.

We emphasize that the phenomenon of explosive desyn-
chronization is not rooted in simple stochastic phase slips
(where the phase difference between two neighboring sites
increases by roughly 2π ). Rather, the instabilities we find
consist in rapidly growing phase differences that occur already
when the phase differences themselves are still much smaller
than π . Thus, phase slips are not yet relevant during this stage
of the dynamics. Eventually, at a later stage, the instabilities
lead to phase differences comparable to π , and then also to
phase slips. In other words, the instabilities responsible for
explosive desynchronization precede phase slips, not the other
way around.

To make this point even clearer, note that the relevant
parameter for distinguishing the stable regime from the
unstable regime in the phase model is g1D = 4DϕC2/S3. In
particular, this means that one can get large phase differences
also for small noise strength Dϕ , if g1D is chosen to be large. If
the KPZ-like dynamics were not present, one would only get
occasional phase slips in this case, and the time scale for such
slips would be very long.

Hence, we conclude that in the unstable regime of the
1D phase model, the onset of KPZ-like instabilities triggers
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deterministic turbulence and thus induces an explosive desyn-
chronization of the oscillators. This is followed by diffusive
growth of wϕ(t) with a large diffusion coefficient.

V. DYNAMICS IN TWO-DIMENSIONAL SYSTEMS

We now consider 2D lattices. This promises to be interesting
because the related physics of surface growth depends crucially
on the dimensionality. This can be seen in the continuum
KPZ model: An appropriately rescaled form contains a single
dimensionless parameter (in contrast to 1D), which is g2D =
Dλ2/ν3. As a consequence, there are different time regimes in
the growth of the surface width [36]. In particular, KPZ power-
law scaling w ∼ tβ sets in beyond a time scale t∗ that becomes
exponentially large at small couplings, t∗ ∼ exp(16π/g2D).
This is important in numerical attempts to observe this scaling,
as in Ref. [37].

The lattice version of the 2D KPZ model, as obtained
by extending Eq. (3) to two dimensions, also contains the
single coupling parameter g2D. We study the probability
of encountering instabilities [see Fig. 4(c)] and find that it
increases rapidly with larger coupling. This is qualitatively the
same as in the 1D situation. However, there are additional,
crucial consequences: the instabilities occur much earlier than
the exponentially late onset of KPZ power-law scaling. We
note that there are discretizations of the KPZ model which
show different behavior, allowing the observation of KPZ
scaling [37,38], but these do not correspond to physical models
of coupled phase oscillators. The early onset of instabilities
in our model is illustrated in the inset of Fig. 4(c), where
the hatched region is the KPZ scaling regime from the
continuum theory for infinite systems. Moreover, in finite
systems, the surface width saturates eventually, for times
(λ2/ν)t � (λL/ν)z. This implies that for small g2D, saturation
sets in long before the projected onset of KPZ scaling for any
reasonable lattice size. As an example, the dotted line shows

FIG. 4. Dynamics in 2D models. (a) The phase model [Eq. (1)]
displays a slow logarithmic growth of the phase spread for g2D = 1
(red curve (solid line); S/C = 0.001). The linear theory would lead to
a slightly different behavior; see the dashed black lines in (a) and (b).
(b) Same quantity for a slightly larger coupling, g2D = 1.5 [red curve
(thick dark gray line); S/C = 0.001]. Due to explosive instabilities
(single trajectories shown as thin gray lines), there is a rapid increase
to much larger values. (c) Lattice KPZ: Probability of instability in
the lattice KPZ model, the 2D version of Eq. (3). The inset shows that
the power-law 2D KPZ scaling (hatched region) would be expected at
much later times than the instabilities (note the logarithmic scaling of
the time axis). This makes the scaling unobservable also in the phase
model, where the instabilities induce a different dynamical regime.

the saturation time for N = 106. Overall, we predict that in 2D
the power-law KPZ scaling regime will be irrelevant for the
synchronization dynamics of oscillator lattices.

This is confirmed in simulations of the full phase model
[Eq. (1)] in two dimensions [Figs. 4(a) and 4(b)]. Like in
one dimension, we focus on small values of S/C. As long as
the phase differences remain small and no instabilities occur,
which is the case for small g2D = 4DϕC2/S3, the behavior is
analogous to the lattice KPZ model; see Fig. 4(a). However, as
suggested above, the KPZ scaling regime cannot be reached.
Instead, we observe slow, logarithmic growth of the phase
field spread, similar to the expectation from the linearized
KPZ equation (dashed line; this is called Edwards-Wilkinson
scaling; see also Refs. [36,39] and Appendix D). According to
Eq. (2), the slow growth of wϕ implies quick synchronization,
w� ∼ √

ln(t)/t .
As long as phase slips do not come into play, the Edwards-

Wilkinson scaling of the phase field spread also shows up in
simulations of the phase model with parameter C = 0, where
there is no term corresponding to the KPZ nonlinearity in the
equation of motion. This special limiting case of our model is
just the XY model [40], which has been studied thoroughly.

At larger couplings g2D, we observe explosive desynchro-
nization [see Fig. 4(b), red curve (thick dark gray line)], like
in one dimension, and the diffusive growth for long times
(not shown here). This behavior is also displayed in the
extreme case S = 0, which corresponds to g2D → ∞. The
deterministic model with S = 0 has been studied in detail in
Ref. [35].

VI. CONCLUSION

In conclusion, we have studied the phase dynamics of 1D
and 2D lattices of identical limit-cycle oscillators, described
by the noisy Kuramoto-Sakaguchi model. We have shown that,
depending on parameters, the coupling can either enhance or
hinder the synchronization. In one dimension, for sufficiently
small noise and at short times, one can observe roughening
of the phase field as in the Kardar-Parisi-Zhang model, with
the corresponding universal power-law scaling. At larger
noise, or for larger times, explosive desynchronization sets
in, triggering a transition into a different dynamical regime.
We have traced back this behavior to an apparent finite-time
singularity of the approximate (KPZ-like) lattice model. This
is especially relevant for two dimensions, where it will occur
before the long-term KPZ scaling sets in, although the initial
slow logarithmic growth still makes 2D arrays favorable for
synchronization.

Our predictions will be significant for all studies of
synchronization in locally coupled oscillator arrays, when
the phase-only description is applicable. This can be
the case in optomechanical arrays (e.g., in extensions
of the work presented in Ref. [5]). Our results may also become
important for the study of nonequilibrium driven-dissipative
condensates, described by the stochastic complex Ginzburg-
Landau equation or Gross-Pitaevskii-type equations, where
a connection to the KPZ model has been explored recently
[41–47] for the continuum case. Once these studies are
extended to lattice implementations of such models (e.g., in
optical lattices), one may encounter the physics predicted here.
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Indeed, for 1D systems, dynamical instabilities similar to the
ones discussed in our work have been identified to play an
important role recently (see Ref. [48]).
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APPENDIX A: RESCALING THE MODELS

In the main text, we used rescaled versions of the various
models. Here we will explain how to arrive at these rescaled
equations.

In the continuum KPZ model [Eq. (4)] in one dimension,
we can construct the length scale x0 = ν3/Dλ2, the time scale
t0 = l2

0/ν, and a scale for the height, h0 = ν/λ. Using this,
we get the dimensionless quantities x̃ = x/x0, t̃ = t/t0, and
h̃ = h/h0. In terms of those variables, the 1D KPZ equation
becomes parameter-free and reads

∂h̃

∂t̃
= ∂2h̃

∂x̃2
+ 1

2

(
∂h̃

∂x̃

)2

+ η̃, (A1)

with the rescaled noise term η̃(x̃,t̃) with correlator
〈η̃(x̃,t̃)η̃(0,0)〉 = 2δ(x̃)δ(t̃). In the KPZ model in two dimen-
sions, we cannot construct independent scales for the height
and the space variables. Hence, after rescaling, we are left with
one parameter g2D = Dλ2/ν3.

In contrast to the continuum model, discretized versions
of the KPZ equation in one dimension will contain one
dimensionless parameter. To arrive at our particular lat-
tice model [Eq. (3)], we define a lattice constant a and
rescale time, τ = (ν/a2)t , and height, hj (τ ) = (λ/ν)h(x,t), in
Eq. (4). Additionally, we discretize the derivatives according
to 
h → hj+1 + hj−1 − 2hj and (∇h)2 → (hj+1 − hj )2 +
(hj−1 − hj )2. The resulting model contains the coupling
constant g1D = aDλ2/ν3.

A similar procedure was also performed in Ref. [28]. Note,
however, that in this article (and for other numerical studies)
the derivatives were discretized in a different way, which also
leads to drastically different stability properties. In our study,
we want to compare the behavior of the phase model to the
one of the lattice KPZ model. Because Eq. (3) was derived as
an approximation of the phase model, this dictates the way of
discretizing the KPZ model.

In the derivation of Eq. (3) from the phase model, Eq. (1),
we rescaled the time, τ = St , and the phase field, hj =
−(2C/S)(ϕj − 2Ct). If this rescaling is done in the full phase
model in one dimension, we arrive at

∂hj

∂τ
= 2

C

S

∑
〈k,j〉

sin

⎛
⎝ S

2C
(hk − hj )

− 2
C2

S2

∑
〈k,j〉

{
cos

[
S

2C
(hk − hj )

]
− 1

}
+ √

g1Dξ̃j

⎞
⎠,

(A2)

with the rescaled noise term ξ̃j (τ ) with correlator
〈ξ̃j (τ )ξ̃k(0)〉 = 2δ(τ )δjk . We see that this equation contains
two parameters, g1D = 4DϕC2/S3 and S/C.

In our studies, the nearest-neighbor differences hk − hj

are initially small and evolve according to Eq. (3). With time,
those differences increase (in general). The equation displayed
here [Eq. (A2)] shows that Eq. (3) is a particularly good
approximation to the phase model (i.e., it is viable up to
longer times) for small values of the parameter S/C. This
is because (for given differences hk − hj ), the arguments of
the trigonometric functions will be small. Hence, we choose to
focus our analysis on the regime S/C 
 1. For example, this
enables us to observe KPZ scaling wϕ(t) ∼ t1/3 in simulations
of the 1D phase model [see Fig. 2(b)]. We note that this is not
possible for arbitrary values of S/C because the KPZ scaling
might not set in before phase differences become large and the
resemblance to KPZ dynamics in general is therefore lost.

APPENDIX B: SCALING BEHAVIOR OF THE KPZ
SURFACE WIDTH

In the theory of surface growth, the surface width w(L,t)
is defined as

w2(L,t) =
〈

1

Ld

∫
ddr [h(�r,t) − h̄(t)]2

〉
, (B1)

with the average surface height h̄(t) = L−d
∫

ddr h(�r,t) in a
system of linear size L. The surface width has been found to
obey a scaling law w2(L,t) ∼ L2ζ F (t/Lz) [27]. In particular,
for times (λ2/ν)t 
 (λL/ν)z, we have w2(L,t) ∼ t2β with
β = ζ/z. In one dimension, the scaling exponent β can be
calculated analytically and is β = 1/3 [12].

APPENDIX C: DETAILS ON THE DEVELOPMENT
AND CONSEQUENCES OF INSTABILITIES

We discussed the development and consequences of insta-
bilities both in the lattice KPZ model and in the phase model
in the main text. Here we will give some more details.

For the KPZ model, we displayed the time evolution in
a single simulation with large parameter g1D in Fig. 3(a). In
addition to the normal roughening process, which we expect
from the continuum theory, we see the rapid growth of single
peaks. Those can send out shocks of large height differences,
which then propagate through the system, as can be seen in the
center of Fig. 3(a). The collision of such shocks can produce
larger peaks. We commonly observe that eventually very large
shocks grow during propagation, which leads to the singularity
in the numerical evolution (marked with a red star in the figure).
The details of the instability development depend on the lattice
size and the coupling parameter. For example, for very small
lattices with periodic boundary conditions, the shocks which
were sent out from a single peak might collide after crossing
the boundaries. This can produce a divergence easily. We note
that for larger lattices, this somewhat trivial self-amplification
is typically not the process which leads to the divergences.

We now turn to the 1D phase model with large parameter
g1D. Figure 5 shows snapshots of the phase field from a simu-
lation with g1D = 50 for different points in time. As explained
in the main text, the onset of KPZ-like instabilities induces
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FIG. 5. Phase field time evolution in the 1D phase model, Eq. (1),
in a simulation where instabilities occur. We show snapshots of the
phase field for increasing times. After a KPZ-like time evolution with
small phase differences in the beginning, we see the onset of insta-
bilities. This leads to the rapid development of a triangular structure,
which gets diffused on very long time scales. This phenomenon can be
explained by turbulent deterministic dynamics (in the gray regions).
Note the very different scale of the vertical axes in the subsequent
panels. Parameters: S/C = 0.001, Dϕ/S = 1.25 × 10−5 (resulting
in g1D = 50), S
t = 10−4.

large phase differences locally. Because of the deterministic
dynamics, this part of the phase field becomes turbulent. As
a consequence of the large phase differences, the turbulent
region will have a very different phase velocity from the
KPZ-like region (on average). At the same time, the turbulent
part of the lattice (shaded areas in the plots of Fig. 5) grows
in space, roughly linearly with time. These two processes
lead to a triangular phase field shape covering the whole
lattice. Additionally, the turbulent dynamics keeps increasing
the phase differences, including wrap-arounds by 2π .

The consequences of this time evolution are evident in
the evolution of the average phase field spread; see the red
curve (and also the individual gray curves) in Fig. 2(b): The
formation of the triangle is responsible for a rapid increase.
Afterwards, the ubiquitous turbulence leads to phase diffusion.
To be more precise, the behavior of wϕ (red curve) after the
rapid increase can be fitted very well with wϕ(t) = √

A + Bt ,
with fit parameters A and B. The diffusion coefficient B turns
out to be much larger than the noise strength Dϕ . We found the
same value of the diffusion coefficient in simulations of the
deterministic Kuramoto-Sakaguchi model with random initial
conditions (and the same parameter value S/C), which shows
turbulent behavior. This indicates that the diffusive behavior
of wϕ(t) for long times in the stochastic simulations is indeed
due to deterministic turbulence.

APPENDIX D: METHODS

The numerical time integration of the coupled Langevin
equations on the lattice was performed with the algorithm
presented in Ref. [49]. In the following, we provide further
details on the parameters employed for the simulations whose
results are shown in the figures.

For the simulations of the full phase model in one
dimension in Fig. 2, we employed the following parameters:
Fig. 2(a): S/C = 0.001, Dϕ/S = 2 × 10−6, (resulting in

g1D = 8), S
t = 0.01, N = 5 × 103. We only show a part
of the phase field. Fig. 2(b): Parameters for the upper magenta
curve: S/C = 0.001, Dϕ/S = 2 × 10−6, S
t = 0.01, N =
104. Lower magenta curve: S/C = 0.001, Dϕ/S = 2.5 ×
10−7, S
t = 0.1, N = 104. For both magenta curves, the
average was taken over 300 simulations. For the red curve:
S/C = 0.001, Dϕ/S = 1.25 × 10−5, S
t = 0.001, N =
103. For the green curve: S/C = 0.1, Dϕ/S = 0.0625, S
t =
0.001, N = 103. For those two curves, the average was taken
over 120 simulations.

We now turn to the simulations of the KPZ model. In
general, direct numerical simulations of this model where the
scaling properties are extracted are always performed for stable
evolution. Hence, they are done in the small-coupling regime,
also for slightly different lattice realizations with quantitatively
different stability properties; see Ref. [28]. There, it is also
found that the parameter g1D has an influence on the transient
dynamics in one dimension (see also Ref. [29]), which explains
the transients that we observed in the phase model, in Fig. 2(b)
(magenta curves).

In Fig. 3(b) we plot the probability of encountering instabil-
ities in the 1D KPZ lattice model as given by Eq. (3), for a wide
range of the coupling parameter g1D. The data are extracted
from 300 simulations for each value of g1D = 1,2, . . . ,50,
running up to time τ = 100, with a time step 
τ = 10−4.
The probability of instability is just the ratio of unstable
simulations. We checked that the results for this quantity do
not change at g1D = 50 if we go to a smaller time step of

τ = 10−5. A simulation was considered unstable when one
of the nearest-neighbor height differences at one lattice site
exceeded a large value, which was chosen to be 105. We used
a lattice size of N = 1000. The probability of an instability
generally increases for larger lattices. An exception are very
small lattices, where boundary effects can become important
(see the example above).

Figure 4(c) shows the results for the probability to find an
unstable simulation in the 2D KPZ lattice model. The data
for the plot are from 300 simulations for each value of g2D =
0.1,0.2, . . . ,4, on a lattice of size N = 642 with time step

τ = 0.01. A simulation was considered unstable when one
of the nearest neighbor height differences at one lattice site
exceeded a large value, which was chosen to be 108. As in
one dimension, the probability of instability depends on the
lattice size.

Regarding the results for the 2D phase model, the red curve
in Fig. 4(a) shows the phase field spread from an average
over 300 simulations with the following parameters: S/C =
0.001, Dϕ/S = 2.5 × 10−7, N = 2562, S
t = 0.1. For the
300 simulations for the red curve in Fig. 4(b), we used the
parameters S/C = 0.001, Dϕ/S = 3.75 × 10−7, N = 642,
S
t = 0.1.

We commented in the main text on the relation of the
results for the phase model, which are shown in Fig. 4(a),
to predictions from the linearized KPZ equation. This linear
model is the Edwards-Wilkinson model [39], which produces
a slow logarithmic growth of the surface width in a continuum
system [36]. Because the model is linear, we can also
straightforwardly take into account the effects of the lattice
discretization and the finite size of the lattice. The resulting
analytical prediction is shown as the dashed line in Fig. 4(a).
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The red curve shows a good initial fit and some deviations
only at later times. Further investigation reveals that the 2D
lattice version of the KPZ model [in analogy to Eq. (3)] shows
the same deviations. We checked that another lattice version

of KPZ (as in Ref. [28]) does indeed agree with the result
from the linear equation. The reason for the discrepancy in
different lattice models might be more subtle influences of the
nonlinearity, as also reported in Ref. [50].
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