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We study the dynamics of screening in photodoped Mott insulators with long-ranged interactions using a
nonequilibrium implementation of the GW plus extended dynamical mean-field theory formalism. Our
study demonstrates that the complex interplay of the injected carriers with bosonic degrees of freedom
(charge fluctuations) can result in long-lived transient states with properties that are distinctly different from
those of thermal equilibrium states. Systems with strong nonlocal interactions are found to exhibit a self-
sustained population inversion of the doublons and holes. This population inversion leads to low-energy
antiscreening which can be detected in time-resolved electron-energy-loss spectra.
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The development of time-resolved spectroscopic tech-
niques provided important insights into the properties of
complex materials [1–5], where charge, spin, orbital, and
lattice degrees of freedom are intertwined. A particularly
exciting prospect is the nonequilibrium manipulation of
material properties on electronic time scales and the
exploration of transient states that cannot be realized under
equilibrium conditions. Prominent examples of this devel-
opment are the laser-induced switching to a hidden state [6]
in 1T-TaS2 and an apparent increase of the superconduct-
ing Tc in phonon-driven cuprates and fulleride super-
conductors [7,8].
Essential for the understanding of such experiments and

phenomena is the ability to simulate relevant model
systems using techniques that capture correlation effects
in highly nonthermal states. Of particular importance is a
proper description of the time-dependent screening proc-
esses, which determine the interaction parameters in such
model Hamiltonians. The photoinduced change of screen-
ing was considered, e.g., as the cause of the collapse of the
band gap in VO2 [9] and the enhancement of excitonic
order in Ta2NiSe5 [10]. Moreover, screening originates
from charge fluctuations, which, similar to other bosonic
modes like phonons [11–14] or spin fluctuations [15,16],
profoundly affect the relaxation pathway of the electronic
distribution. As we will show in this Letter, the fermionic
dynamics and the bosonic screening modes are so strongly
coupled, that their mutual interplay can lead to long-lived
transient states which are entirely different from those
characterizing equilibrium phases. These nonthermal
states, with partially inverted populations, thus provide
an intriguing pathway to novel light-induced properties.
A promising formalism to address these questions in

strongly correlated solids is the combination of the GW
method and the extended dynamical mean-field theory
(GW þ EDMFT) [17]. Hedin’s GW method [18,19] is a

weak-coupling approach in which the self-energy is
approximated by the product of the Green’s function G
and the screened interactionW. It captures nonlocal physics
resulting from charge fluctuations, like screening, plas-
monic collective modes, and charge density waves. It
however fails to describe strong correlation effects, like
the Mott metal-insulator transition, which in turn are well
described by the nonperturbative dynamical mean-field
theory (DMFT) [20] and extended DMFT (EDMFT)
[21]. GW þ EDMFT is a fully diagrammatic approach,
which allows a self-consistent calculation of the screened
interaction and its effect on the electronic properties in
systems with long-ranged Coulomb interactions. In combi-
nation with a GW-based ab initio calculation it enables a
parameter-free simulation of weakly and strongly corre-
lated materials. The recent equilibrium application of
GW þ EDMFT to model systems [22–24] and real materi-
als [25] demonstrated the importance of dynamical screen-
ing effects originating from nonlocal interactions, e.g., for
the proper interpretation of spectral features such as
Hubbard bands and plasmon satellites. Here, we develop
the nonequilibrium extension of the GW þ EDMFT for-
malism and use it to study the effect of nonlocal inter-
actions on the transient states and the relaxation dynamics
of photoexcited carriers in Mott insulators.
As a simple but generic system with intersite inter-

actions, we consider the single-band U-V Hubbard model
on the two-dimensional square lattice:
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where ciσ is the annihilation operator of a fermion with spin
σ on lattice site i, ni ¼ ni↑ þ ni↓, μ is the chemical
potential, U is the on-site interaction, and V is the
interaction between electrons on neighboring sites [26].
The hopping integral JeiϕijðtÞ (restricted to nearest neigh-
bors) has a time-dependent Peierls phase ϕijðtÞ ¼R
t
0 dt̄ E⃗ðt̄Þðr⃗i − r⃗iÞ originating from an in-plane electric

field E⃗ðtÞ. In the following, we will use the hopping
amplitude J ≡ 1 as the unit of energy and rewrite the
interaction as 1

2

P
ijvij ~ni ~nj, where ~n ¼ n − 1 is the density

fluctuation operator and vij ¼ Uδij þ Vδhiji.
The dynamics of the system is described in terms of

the momentum-dependent electron Green’s function
Gkðt;t0Þ¼−ihTCckðtÞc†kðt0Þi and the charge correlation
function χqðt; t0Þ ¼ −ihTC ~nqðtÞ ~n−qðt0Þi, which determines
the (inverse) dielectric function ε−1q ¼ 1þ vq � χq and the
screened interactionWq ¼ ε−1q � vq, where vq is the Fourier
transform of vij. In nonequilibrium, all quantities depend
on two time arguments, or equivalently on time and
frequency, and the � product denotes a convolution in
time [27].
To solve the extended Hubbard model in Eq. (1), we

resort to theGW þ EDMFT approximation [17], which can
be derived using the Almbladh functional [34]. Nonlocal
self-energy contributions for electrons and bosonic charge
fluctuations are treated within the lowest-order expansion
of the functional (the GW formalism), while the local
contributions are included to all orders, by solving an
auxiliary Anderson-Holstein impurity model with a self-
consistently determined bosonic and fermionic bath. As a
Green’s-function-based formalism, GW þ EDMFT is not
restricted to equilibrium or quasistatic problems but can
handle highly excited states. The derivation of the non-
equilibrium formalism within the Keldysh framework is
analogous to the equilibrium version [22,35] and is
presented in the Supplemental Material [28].
While powerful and numerically exact methods [36]

exist for the solution of the GW þ EDMFT equations in
equilibrium, the application to nonequilibrium problems
requires additional approximations at the level of the
impurity solver. Since our goal is to study photodoped
Mott insulators, we use a perturbative solver that combines
a self-consistent hybridization expansion [at first (second)
order known as the noncrossing (one-crossing) approxi-
mation NCA (OCA) [37–39]] with a weak-coupling
expansion in the retarded density-density interactions.
For technical aspects of the implementation, see
Ref. [40]. As a benchmark, we show in Fig. 1(a) a
comparison of the Matsubara component of the Green’s
functions GMatðτÞ for U ¼ 10.5, V ¼ 1.5, and inverse
temperature β ¼ 20. [In the following, local (nonlocal)
correlators are distinguished by the absence (presence) of a
subscript momentum label.] The NCA is found to

overestimate the insulating nature of the solution
[41,42], as seen from GMatðβ=2Þ, which can be taken as
a measure for the spectral weight at the Fermi level. While
this is a known artifact of the NCA [41,42], the OCA
substantially improves the accuracy of the solution com-
pared to numerically exact Monte Carlo results [36].
Furthermore, the finite-temperature metal-insulator transi-
tion is a crossover in the NCA description and becomes first
order in the OCA solution; see Fig. 1(d). In the Mott phase,
which we study here, the NCA and OCA, however, yield
qualitatively similar results, and we will resort to the
numerically more tractable NCA in the following.
In the spectral function, shown in Fig. 1(b), the addi-

tional nonlocal GW self-energy contributions in GW þ
EDMFT strongly enhance the plasmonic sideband at ω ≈
3
2
U and result in a slight reduction of the gap size compared

to the EDMFT. The inclusion of the nonlocalGW diagrams
in the GW þ EDMFT approximation leads to a more
metallic solution, since nonlocal correlations (in particular,
the nonlocal Fock term [24]) enhance the effective band-
width. Also, the local (momentum-averaged) screened
interaction W is modified by the inclusion of the nonlocal
polarization [Fig. 1(c)]. A noticeable feature is the strong
enhancement of the plasmonic peak at ω ≈ 12 in compari-
son to the EDMFT. A drawback of our approximate solver
is evident at energies above the plasmon peak, where Im½W�
exhibits positive spectral weight, which is unphysical in
thermal equilibrium. This problem arises because the NCA
and OCA self-energies and polarizations are approximate
strong-coupling solutions, which miss some of the local
GW diagrams. Numerically, we found that these artifacts
are most pronounced deep in the Mott phase, while close to
the MIT transition and in the correlated metal Im½WðωÞ�

(a) (b)

(c) (d)

FIG. 1. Equilibrium results for U ¼ 10.5, V ¼ 1.5, and β ¼ 20.
(a) Comparison of the Matsubara time component of the Green’s
function GMatðτÞ obtained from NCA, OCA, and numerically
exact Monte Carlo simulations for U ¼ 10.5. (b) Spectral func-
tions obtained from different approximations. Solid (dashed)
lines correspond to the NCA (OCA) solution. (c) Imaginary part
of the screened interaction WðωÞ obtained from different ap-
proximations. (d) Double occupation nd near the metal-insulator
transition or crossover. A coexistence region exists in the OCA.
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exhibits the expected analytical properties. Since the
unphysical spectral weight appears only at very high
energies, we believe that it is not crucial for the following
discussion, which focuses on the low-energy screening
properties of photodoped systems.
We now turn to the effect of nonlocal fluctuations on the

relaxation dynamics after an electric field excitation. By
applying a short pulse EðtÞ ¼ E0e−4.6ðt−t0Þ

2=t2
0 sin½ωðt − t0Þ�

with frequency ω ¼ U and appropriately tuned amplitude
E0, a certain density of holon-doublon pairs is created. The
width of the pulse t0 ¼ 2πn=ω is chosen such that the
envelope accommodates n ¼ 2 electric field cycles. Deep in
the Mott phase, the recombination of the holons and
doublons after photoexcitation is strongly suppressed
[37,43,44]. The photoexcited doublons can, however, relax
within the upper Hubbard band, whichmanifests itself in the
evolution of the kinetic energy. If the gap is small compared
to the width of the Hubbard bands, the thermalization
process, which involves impact ionization [45], leads to
an increase in the number of doublons nd; see the EDMFT
results (dashed lines) in Fig. 2(a). As already discussed in
Ref. [40], the inclusion of the nonlocal interactions on the
EDMFT level decreases the relaxation times, due to the
coupling to bosonic excitations (collective charge fluctua-
tions). This picture remains valid if we include nonlocal self-
energy and polarization effects inGW þ EDMFTbut only if
the nearest-neighbor interaction V is small (V ≲ 0.5). For
larger values of V (but still smaller than the critical value for
the charge order transition), the double occupancy starts to
decrease, which indicates that doublon-holon recombina-
tion occurs in the system; see the solid lines in Fig. 2(a).
Furthermore, the kinetic energy increases during the relax-
ation process, illustrated in Fig. 2(b), which is also
intriguingly different from the behavior reported in previous
photodoping studies [12,40,45].
In order to gain further insight into this intermediate V

regime, we calculate the time and frequency-resolved
spectral function of the system. After the pulse excitation
of the system, the spectral function Aðt;ωÞ ¼
−ð1=πÞIm½GRðt;ωÞ� remains almost unchanged, while
the occupied density of states Nðt;ωÞ ¼ Im½G<ðt;ωÞ�=
2πi shows an increase of roughly 1% in the occupancy

of the upper Hubbard band [46]; see Fig. 3(a). In agreement
with the evolution of the kinetic energy, we observe a shift
of the excited doublons toward higher energies, in contrast
to previous DMFT and EDMFT studies [12,40,45] that
consistently showed a relaxation of doublons to the lower
edge of the upper Hubbard band. This GW þ EDMFT
evolution eventually results in a population inversion,
as illustrated by the distribution function fðt;ωÞ ¼
−2Im½G<ðt;ωÞ�=Im½GRðt;ωÞ� shown in Fig. 3(b). We note
again that this behavior is observed only for a sufficiently
large nonlocal interaction V.
The efficient recombination of doublon-hole pairs and the

population inversion within GW þ EDMFT can be under-
stood by considering the two-particle properties, namely, the
screened interactionW and the charge susceptibility χq. The
time evolution of the local component of the screened
interaction WR;<ðt;ωÞ for U ¼ 10.5, V ¼ 1.5 is shown in
Fig. 3(d). In agreement with the previous EDMFT results,
low-energy screening channels appear as a consequence of
photodoping [40]. The main difference inGW þ EDMFT is
that the imaginary part of WRðt;ωÞ changes sign as the
system evolves into the population-inverted state. Since
EDMFT and GW þ EDMFT differ in the inclusion of
nonlocal fluctuations, we can qualitatively understand these
results by evaluating the nonlocal charge susceptibility
through the particle-hole bubble contribution to the polari-
zation. In the stationary case, the latter can be written as
χRq ¼ ΠR

q ½1 − vqΠR
q �−1, where the polarizationΠR

q is givenby

(a) (b)

FIG. 2. Time evolution of the double occupancy nd (a) and
kinetic energy (b) after the photoexcitation in EDMFT (dashed
lines) and GW þ EDMFT (solid lines) for different nonlocal
interactions V at fixed density Δnd ¼ 0.01 of photoexcited
carriers after the pulse. The local interaction is U ¼ 10.5.

(a)

(b)

(c)

(d)

(e)

FIG. 3. (a) Time evolution of the spectral function (solid lines)
and occupation (dashed lines) after the electric field excitation.
(b) The distribution function illustrates the evolution into the self-
sustained inverted population state. (c) Distribution functions for
tmax ¼ 24 and different excitation strengths. (d) Time evolution of
the screened interaction WRðt;ωÞ (solid lines) and its lesser
component (boson occupancy, dashed lines) W<ðt;ωÞ in the
inverted population regime. (e) Imaginary part of the impurity
effective interaction Im½DRðtmax;ωÞ� in EDMFT (dashed lines)
and GW þ EDMFT (solid lines) for different excitations
strengths. The pulse frequency is ω ¼ U ¼ 10.5, the pulse
amplitude is E0 ¼ 2 [except in (c)], and V ¼ 1.5.
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ΠR
q ðωÞ ¼

X

k;ω1;ω2

Akðω1ÞAk−qðω2Þ
fðω1Þ − fðω2Þ
ω − ðω1 − ω2Þ

; ð2Þ

which, in the case of well-defined quasiparticles and thermal
distributions f, reduces to the Lindhard formula. By exciting
doublon-hole pairs in aMott insulator, we temporarily create
an inverted population in some energy range. By changing
the Fermi-Dirac distribution function fðωÞ in Eq. (2) to a
partially inverted distribution function ~fðωÞ, we can change
the sign of the numerator in χRq within a certain energy range.
To illustrate this idea, we evaluate χRq ðωÞ using the Hubbard
I approximation, where the lattice self-energy is approxi-
mated by the atomic limit self-energy. The resulting inverse
dielectric function is shown in Fig. 4(a), where
Im½ε−1q ðt;ωÞ� ¼ vqIm½χRq ðt;ωÞ�. This leads to maximum
spectral weight at the Γ point andω ≈ U, which corresponds
to charge excitations across the Mott gap. The lowest
(highest) energies U �W for which the imaginary part of
the susceptibility Im½χRq ðωÞ� has nonzero weight are at the X
point [q ¼ ðπ; πÞ] [47]. In the case of the inverted population
[see Fig. 4(c)], the numerator in Eq. (2) becomes negative
at frequencies corresponding to the energy width of the
inverted regions, which leads to a negative spectral weight
−vqIm½χRq ðωÞ� < 0. These considerations show that the
inclusion of nonlocal dynamical screening via the polariza-
tion bubble inGW þ EDMFT is crucial for the appearance of
the antiscreening phenomenon.
In contrast to the fermionic case, negative spectral

weight in a steady state bosonic spectral function is not
unphysical. The simplest example is a free oscillator, whose
frequency suddenly turns unstable (ω0 < 0). Although
there is no stable thermal equilibrium for ω0 < 0, the
transient state remains well defined, and its negative
spectral weight reflects the possibility to increase fluctua-
tions by emitting energy to the environment. The change of
the sign of Im½χqðωÞ� in the photodoped Mott insulator thus
indicates a negative attenuation of charge fluctuations,
which enable the system to emit low-energy bosons to
gain energy in the single-particle sector. This also explains
the unusual increase of the kinetic energy of the photo-
doped carriers and the population inversion. A similar

change in the sign of the susceptibilities was previously
observed in models which are driven by (time-periodic)
external fields [48,49]. The intriguing observation in the
present case is that the inverted population of the electronic
states and the negative charge susceptibility mutually
support each other (because the softening of charge
fluctuations is caused by the change of the fermionic
distribution), so that the peculiar state is self-sustained
and stable as long as doublon-hole recombination processes
inject energy into the bosonic subsystem.
A related population inversion was recently discussed in

a study of Hirsch’s dynamic Hubbard model [50,51],
although at unusually strong electron-phonon couplings.
In the present case, the relevant strength λ of the electron-
boson coupling can be estimated from the density of states
Dðt;ωÞ of the bosonic modes in the auxiliary Anderson-
Holstein impurity model (i.e., the boson-mediated density-
density interaction) as λ ¼ R

dω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijImDðωÞjωp

[22,40]. As
shown in Fig. 3(e), in GW þ EDMFT, ImjDðt;ωÞj features
a pronounced peak at the energy of the gap size ω ≈ 6,
which corresponds to a very strong electron-boson cou-
pling (λ ≈ 1.9 for the largest value of E plotted in the figure,
if the integration range is chosen as 0 ≤ ω ≤ 8).
Experimental probes which could be used to detect the

peculiar charge fluctuation region are electron-energy-loss
spectroscopy (EELS) [52,53] and optical conductivity
measurements [1]. The optical conductivity measures the
frequency-dependent optical constant near the Γ point
[29,54], while the EELS signal −Im½vqε−1q ðt;ωÞ� ¼
−v2qIm½χRq ðt;ωÞ� measures the difference between the
dielectric loss and gain (in equilibrium and at low temper-
atures, there is only loss). The generalization of EELS to
the nonequilibrium situation, along the lines of the
derivation of the time-dependent photoemission formula
[29–31], is presented in the Supplemental Material [28].
The closely related inverse dielectric constant ε−1q ðt;ωÞ
shows a similar structure in GW þ EDMFT as in the
Hubbard I approximation; see Figs. 4(a) and 4(d). In
particular, there is a pronounced maximum at the Γ point
at ω ≈U and dispersive bands with a minimal energy
around the X point. Immediately after the excitation, the
weight in the subgap region is increased in agreement with

(a) (b) (c)

(d) (e) (f) (h)

FIG. 4. Top panels: Imaginary part of
the inverse dielectric function
−Im½ε−1q ðωÞ� obtained in the Hubbard I
approximation for the thermal (a) and
nonthermal (c) distribution functions
shown in (b). Bottom panels: GW þ
EDMFT results for −Im½ε−1q ðt;ωÞ� in
equilibrium (d) and in the photoexcited
system at indicated time delays (e)–(h).
The pulse frequency is ω ¼ U ¼ 10.5,
the pulse amplitude is E0 ¼ 2,
and V ¼ 1.5.
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previous EDMFT results [40]; see Fig. 4(e). The initial
increase in the screening in the subgap region, however,
gives way to a negative spectrum as the inverted doublon
population is formed [Figs. 4(f)–4(h)] and the bosonic
degrees of freedom also evolve into an inverted state. In this
situation, the energy gain for the probe electron at a certain
energy in the EELS experiment is larger than the loss.
In conclusion, the nonequilibrium GW þ EDMFT sim-

ulation revealed a self-sustained and long-lived transient
population inversion as a result of the nontrivial energy
exchange between doublons, holons, and charge fluctua-
tions. The existence of such a state provides an intriguing
path to stabilize different types of light-induced order,
which will be the subject of future investigations. Apart
from these insights into the nonequilibrium properties of
systems with nonlocal Coulomb interactions, our work
represents an important step in the development of ab initio
simulation approaches for correlated systems in nonequili-
brium states. The GW þ EDMFT method implemented
here features a fully consistent treatment of correlation and
screening effects and can, in principle, be combined with
material-specific input from ab initio GW calculations
within a multitier approach analogous to the scheme
recently demonstrated for equilibrium systems in Ref. [25].
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