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Thermal x-ray diffraction and near-field phase contrast imaging
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Abstract — Using higher-order coherence of thermal light sources, the resolution power of standard
x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement
to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve
superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of
implementing such schemes is minimal compared to the methods that achieve similar effects by

Introduction. — The Hanbury-Brown and Twiss
(HBT) effect [1] was at the heart of the development of
quantum optics, which fundamentally reveals the higher-
=order coherence of a multimode thermal source. Thermal
©light ghost imaging based on the HBT effect could be in-
@terpreted as a quantum mechanical two-photon interfer-
—ence effect [2-9]. After two decades of intense debate,
“the disagreement on the quantumness and classicality of
.—thermal light ghost imaging still persists [10,11]. How-
ever, recent rigorous investigations revealed evidence that
in the low illumination (i.e. photon counting) regime, it
must require a quantum model to describe the ghost im-
age formation [12-14]. It was demonstrated that even the
so-called “classical” thermal light must contain nonzero
genuine quantum correlations as measured by quantum
discord [15,16]. In the large photon number regime, the
ghost imaging system could transition into the classical
regime, nevertheless the quantum mechanical description

517v4 [physics.optics|

(8)E-mail: zheng.li@desy.de
(P)E-mail: shih@umbc.edu

evidently remains valid and is quantitatively identical to
the classical one, since it is the classical limit of quan-
tum states of thermal light. Leaving aside the quantum
versus classical debate, the ghost imaging actually offers
enormous possibilities for x-ray imaging hitherto not fully
exploited [9,17,18]. Here we show that using HBT type
measurements, we can enhance the resolution power of
conventional x-ray imaging techniques, namely x-ray far-
field diffraction imaging and x-ray phase contrast imaging
(PCI) in the near field. This paper is organized as follows:
in the Methods section, we demonstrate how the two-
photon interference effect can be utilized to x-ray diffrac-
tion imaging to double the resolution, we then investi-
gate two-photon interference with respect to the near-field
phase contrast imaging and demonstrate an enhanced im-
age contrast in PCI. We then discuss the experimental fea-
sibility of implementing the proposed schemes in the x-ray
regime, and the methods to realize the far- and near-field
imaging setups without beam splitter, which would pose
technical difficulties in the x-ray regime.
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Fig. 1:  Schematic description of the proposed setup for x-

ray diffraction using two-photon interference. Photons from
a thermal light source reflect from a crystal. The reflected
light is divided by a beam splitter (BS) and detected jointly
by two pixel detectors D4 and Dpg. z, is the distance between
the source and lattice plane, 0 is the reflection angle. L4 and
Lp are distances from the lattice plane to the planes of pixel
detectors D4 and Dp. ps is a vector on the source plane, g
is a vector on the lattice plane, pa and pp are vectors on the
detector planes.

Methods. —

Enhanced x-ray diffraction.  According to the quan-
tum theory of photo-detection [4, 5], an idealized pixel
photo-detector measures the probability of observing a
photo-detection event at spacetime point (7, )

GO@F ) = PEOFENED DY, ()

where p is the density operator of the quantized photon
field, E(_)(F, t) and E(+)(F,t) are the negative and pos-
itive frequency parts of the electric field operators. A
joint-detection of two independent pixel photo-detectors
D 4 and Dp measures the probability of a coincident event
of two photons at spacetime points (¥4,t4) and (¥5,tp)

GO (7, tas T, tp) = tr { ECO)(7a, ) EC) (g, )

X B, t5) B (7, ta) | 2)
Let us now consider a thermal light source from which
we detect the light fields at (74,t4) and (7p,tp). This
can be either a thermal light source subject to a certain
propagation distance or a coherent synchrotron source.
In the low photon number regime, the light field can be
modeled by an effectlve multimode photon wavefunction
W) ~ [0) + >z f(E k)a ~|O>, where f(k) is the probability
amplitude for the radlatlon field to be in the single-photon
mode of wave vector k [2]. We assume that the light fields

possess a certain coherence time 7. over which second-
order coherence is present and a time window for coinci-
dence detection 7 =ty — t; < 7. Following this assump-
tion we can omit the time dependency from the correlation
function. Note that second-order correlation function of a
thermal light field measured at the same position is then
given by temporal coherence of G?) (7 ~ 0) ~ 2, a fact
well-known as photon bunching [2]. We use the notation
7 = (7;,%), (j = A,B) and k = (7, Vk% — x2) and the
thermal light can be modeled as a mixed state with density
operator [2]

0\+Z|f
+> IR |f(’_5/)| 11z )(1zle ],

r

p>10 )I?[1%) (1]

3)

A

where [1z) = al L10). The transverse part of the photon
field on the two detectors D4 and Dp can be written as

S (57) =Y 965, 23 F)a, (4)

where g;(p}, z;; k) is the Green’s function for a single-mode
photon. Then, the spatial part of the second-order coher-
ence function, which is proportional to the joint photon
counting rate, reads

G(Q) (pAv ZA; va ZB)
= Y (1z1z|ET) (Ga, 24)E) (55, 2)

=

K,K

< EM) (pp, 24) B (5a, 2)|171%)

e

2|7 l9B(PB, 283 R)ga(Pa, 2a; K')

KyK

+95(Fp, 253 R)ga(a, 2a; R)))
GV (pa,24)GV (7B, 28) + GV
xG W (a, 245 0B, 2B)

“(Pa,24;PB,2%B)

()

where we define
G (pa, 24508, 28) = »_ ga(fa, 24i R) g5 (Ps, 283 F) -

R

In Eq. 5, the term GO (Pa,24)GM (p,25) =~
(I(74)) (I(¥B)) gives a background in the joint signal in-
tensity (I(74)I(7g)). As shown in Fig. 2(a), the interfer-
ence of a pair of independent thermal photons through
two alternative yet indistinguishable paths (|1z) —
Da;|\1z) — Dp) and (|1z) — Dp;|1lz) — Dy) is man-
ifested as joint photon number fluctuation through the
term in Eq. 5 [2,6]

GO (7a;7)G W (Fa; Fp) = (AL(Fa)AI(5R)) . (6)

To calculate the measurement signal quantified by Eq. 6,
we propagte the thermal light field from the source to the
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Fig. 2: (a) The two alternative yet indistinguishable paths
of two single-mode photons from a thermal source, (|1z) —
Da;|1z) — Dp) and (|1z) — DBp;|1lz/) — Da), the ampli-
tudes of the two paths are added to determined the joint detec-
tion probability. (b) A phase perturbation €'®% is introduced,
which models the turbulence in the experiment.

detector plane. The required Green’s function reads
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where j = A, B, and t,(p,) = ¥§(p, — 7;) is the Thom-
son scattering amplitude of a photon with the ith atom at
position 7;. Suppose the two-photon interference, which
is imprinted in the photon number fluctuation, is from
scattering from atoms in two adjacent lattice plane with a
distance of d and reflection angle . Then the interference
of the two indistinguishable two-photon quantum paths
acquires a doubled optical path difference compared to
conventional Laue diffraction, which translates to a maxi-
mally achievable resolution of % (according to Abbe’s cri-
teria for resolution and under the assumption that the
measurement is taken over the full solid angle). From the
Green’s function g; (7, pj, zj; k) for a single-mode photon
that propagates to detector D; and scatters from the atom
at 7;, we have

GW*(Ga, 245 P, 28) GV (Fa, 245 P, 2B)
atoms
=33 gu(F, Pa, 243 R)gB (7, i, 28; )
7
atoms
XZ > 9a(Fispas2ai K5 (Firs Py 25 /) - (8)

@4’

Taken the summation over transverse momentum as inte-
gral, and denote § = dsin 6, we find the following term in
Eq. 8 that gives the doubled optical path difference from

the two-photon interference depicted in Fig. 2(a) [19]

ZQZ(F%ﬁA,ZA;5)93(7717/73,23;13)

7
X gy, fa, 2a: 7)) g (7o, P, 283 F) + c.c.
R’
3217t
~=75 75 COS
AL L%

= (4kd) . (9)
Conventional coherent diffraction in contrast merely yields
cos(2k¢). For x-ray diffraction, the doubled optical path
difference translates to enhanced resolution, since we ob-
tain a modified Bragg condition for the thermal light two-
photon diffraction

4dsinf = n\, (10)
for an integer n. It implies that structures with periods of
% <d< % are able to form Bragg peaks in the two-photon
signal and can thus be resolved by inverse Fourier trans-
formation and phase retrieval techniques. Compared to
the two-photon diffraction using entangled photon pairs
from x-ray parametric down conversion (XPDC), which
has rather low photon flux, the present scheme using a
thermal source can be experimentally favorable. In the
case of powder diffraction or femtosecond serial nanocrys-
tallography that effectively produces powder diffraction
patterns, we can replace D 4 and Dp by two pixel detectors
and a sufficient large beam splitter covering the angular
spread of the reflected photons, provided each pixel of the
detectors are pairwise connected by a coincidence circuit.
Or we can record the photon count map and correlate the
image in post processing.

The thermal instability of the source, changes in refrac-
tive index in the optical paths, and shot-to-shot variation
of wavefront of the x-ray beams from x-ray free electron
lasers can introduce turbulence into the diffraction and
imaging system. However, the two-photon interference
can be free of these types of turbulence [12], hence the
x-ray ghost diffraction system could be robust and does
not require wavefront correction. As depicted in Fig. 2(b),
the turbulence can be treated as an arbitrary phase per-
turbation to the Green’s function in Eq. 5, and we show
in the Supplementary Information, that the final diffrac-
tion pattern determined by G(?) (74, ¥p) is invariant under
phase perturbations. It can be similarly shown that the
two-photon interference could be free of amplitude per-
turbation (see Appendix). This is a strong evidence of
quantum correlation in ghost image formation, since the
classical speckle-to-speckle correlation is sensitive to such
turbulence [12].

Enhanced phase contrast imaging.  As a complemen-
tary technique to the far-field x-ray diffraction, x-ray
phase contrast imaging (PCI) is a widely applied near-
field imaging technique which provides a direct image of
the sample [20-22]. PCI is suitable for samples that only
weakly absorb photons or only induce phase shift of the
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Fig. 3: The schematic configuration of phase contrast imaging
using two-photon interference of thermal source. The joint co-
incidence measurements are performed for each pair of pixels
of the two detectors D4 and Dp. An artificial exit plane is as-
sumed to be behind the sample, between which and the sample
no further inhomogeneous phase shift ¢ that has VZp # 0 will
be introduced. z; are the distances between the exit plane and
pixel detectors.

photon, the image of the sample is formed on a pixel de-
tector with point-to-point projection. For the assumption
that the scatterers in the sample introduce a small phase
shift of ¢ < 7 to the photon, the image is formed with
irradiance that is proportional to V2 [22].

PCI is in principle based on the near-field interference
effect of an incident photon with itself that either prop-
agates and scatters in the sample or propagates through
the sample without scattering. We show here that two-
photon interference in the joint detection of thermal light
can be applied to PCI and enhance the intensity contrast.
For the setup shown in Fig. 3, the joint intensity can be
written as

(Ia(Pa)I(PB)) = G (5B, fa)

1 1 2
= GW(jp,25)GY(Fa, 24) +

G(l) (ﬁBa ZB; ﬁA; ZA)

Assume the refractive index of the sample at a point &

is ny, (%) = 1 — 6, () with 6,,(Z) < 1. The electric field
on the detector plane at spacetime (7;,t) can be written
under first Born approximation as

BE(ri,w) = En(7i,w)
k? Bt
S om |75 —

ik|7;—Z'|
_»,| 5w (f/)Ein(f/a W) ’

(11)

where ¢ = A, B. Defining the coordinates on the pixel
detectors as 7; = (i, 2;), the coherence function can be

expressed as

G( pBaZvaAazA)

= —//dede
3_,,€zk‘TA | i
,7//dede /d |TA_x/|6WA($)

x <Ei*n(ﬁBa WB)Ein(f/, WA)> e~ wp—wa)t

- d d b d3 —'/elk:lrB v |5 -/
wpB wA |TB_—»| wB(x)

x <E;;(f, wp)Bun(Fa, wA)> eilop

iAwapt

(vawB)Ein(ﬁAva)> e

(12)

where Awap = wa — wp. Under the condition z4 = zp
and py = pp = p, we obtain the multipath coherence
function as [19]

N N z
G(l)(pB7ZBapAazA) = I(t - E)

k 22
- (1 T i / 2 2e™ 0120 (5 - ﬁ>> '

The point-to-point formed image on detector plane at g
is a convolution of the phase contrast VZp centered at
g with radius |p— §’| and a Gaussian weight. Thus the

k212
resolution of PCI is determined by requiring e~ a:* P <1
given |p’| = p as the desired resolution, i.e. the size of

a single pixel. The resolution requirement leads to the
condition for the coherence length
zZA

— <L,
mp

(13)

as well as the near-field condition ;—é < 1. Provided these
conditions are satisfied, we finally obtain

G( )(pBaZBapAyzA)_I(t_i) (1_7v2 (ﬁ)) 3 (14)
which has the same form as G)(, z), and does not smear
out the image contrast in the baseline signal. In the con-
ventional PCI, the image intensity is determined by [22]

1(7.2) = GV (5.2) = 1 (1= 2V2(7) ) -

Given a coherence length [, and incident photon wave-
length, the propagation length z behind the exit plane
cannot be arbitrarily extended, thus in the conventional
PCI, the intensity contrast %VZQO cannot be simply en-
hanced. However, as we show in Eq. 14, the photon num-
ber fluctuation (AT4(p)AIg(p)) should not smear out the
signal. Instead it has the same intensity contrast as the
baseline signal (I4(p)) (Ip(p)), and thus we have the im-
age intensity of joint photodetection as

(a (D)) = I” (1 - Q;V%(p")) ,

which gives a doubled intensity contrast. It can be ex-
pected that higher order coherence measurement of ther-
mal light [23] can further enhance the intensity contrast.

(15)

(16)
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Fig. 4: The single detection configuration of (a) two-photon
diffraction and (b) two-photon phase contrast imaging. In (a),
the detector D4 is pixellated photon counting detector, and
the single pixel photon counting event of photon number n > 2
within the given time window is defined as coincidence detec-
tion. In (b), the detection of D4y and its adjacent pixel de-
tector D a2 are taken in coincidence detection as an effectively
integrated single pixel D 4.

Discussion. — As shown in above derivations, the
measurement of intensity-fluctuation correlations holds
potential to substanially increase the performance of x-ray
diffraction imaging and near-field PCI. For the practical
implementation of the proposed x-ray imaging techniques
based on two-photon interference, we have to consider that
the use of any optical element poses a challenge toward
the experimental realization. As such we discuss detec-
tion schemes here that do not require the beam splitter
of Figs.1 and 3. The beam splitter usually enables the
use of a pair of single-photon counting detectors, such as
avalanche photo diodes, for intensity correlation measure-
ments. The advantages are that one can measure in CW
mode, avoid dead time effects and have a high temporal
resolution. However the average count rate on a single
detector should be much less than unity and only a single
position p4 = pp or pa # pp can be measured at once.
Hence the detector pair needs to be raster scanned across
the detection plane.

If a pulsed scheme is considered the natural time-gating
capability of ultra-short pulses removes the need for high
temporal resolution in the detectors, such that a large pix-
elated detector can be utilized, which additionally covers
the entire detection plane at once. Conducting a measure-
ment with two different pixels g4 # pp the second-order
correlation function is simply given by G®) (g4, g5) ~
(ahaLapaa) = (alasdhap) = (Aanp). Here a and &
denote the creation and annihilation operator of a photon
in the (spatial) mode ps or g, respectively, and 7 is the

corresponding number operator. Since the two pixels are
independent, one can simply multiply the photon counts
of different pixels and average over a series of pulses to
obtain the second-order correlation function.

However, we are mostly interested in the case of py =
pB. In case of the PCI scheme with a continuous pat-
tern, it is possible to correlate adjacent pixels that sample
nearly the same mode created by the sample at the posi-
tion of the detector (see Fig.4b). Then the previous cal-
culation method applies. In case of crystallography with
sharp Bragg beaks (see Fig. 4a) that are much smaller than
the pixel size adjacent pixel will not sample the same mode
such that one would be required to use the same pixel with
photon-number-resolving capability. Then G®) (54, fa) ~
(alalaaa) = (@l (aaal, —1)aa) = (A% —na), which can
equally be evaluated.

Conclusion. — In the present work, we have demon-
strated that using the higher-order coherence properties of
thermal light, we can achieve an enhanced resolution for
conventional x-ray diffraction imaging techniques in the
far field and enhanced intensity contrast in the near-field
regime.
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PACS 61.05.cc — Theories of x-ray diffraction and scattering
PACS 42.50.Ct — Quantum description of interaction of light and matter

Abstract — The supplementary information contains detailed derivation of main equations for
thermal x-ray diffraction and near-field phase contrast imaging, more precisely, Eqs. 9 and 14 in
the main text. The invariance of second order coherence function G(Q)(FA, 7B) subject to phase
perturbation is also elaborated here.

Multipath interference in diffractive imaging. — functions can be calculated as
Here we elaborate the calculation to obtain Eq. 9. We can

rewrite Eq. 9 as
T27 PA ZA; Tla va ZB

2= [ 2= 2 LR
/ i [ @5, [ pam LB&(pawpa d

| 2

*12LA|PA Pa iz“ |R|? —iRfa —7k(z()+LA)

> 94 (o, fas 245 R) g (71, p, 283 ) e

i welTls |ﬁB—Pa|2e—iz2‘l—k|r€\2€i/¥»ﬁ;eik(zgl)+LB)
E 2,2 -
X ga ’rlvavaa )gB(r27pBaZBa ) - A w —ik(25+ALAB)e—iﬁ|ﬁA—d|2
R )\BLALB
= GW* (7%, fa.z2a; 71, P, 2B) w75 1781 i |d (S.2)
1) /> =
XG( )<’I" pAaZA7r2apB,ZB) (Sl)

Similarly we can find

2,12
Assume the photon scatters from atoms in two adjacent GUV(F, fa.za; 72, PBy 2B) = z%
lattice planes of coordinates 0 and d and optical path ) A 32 -
lengths 2\ and z$? from the source plane, the coherence we—ik(26=ALap) izt |Pa—d® —iztp|Pal® —id|d?
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And then we arrive at Eq. 9 since

GW*(Fy, fa.za; 71, OB, 2B)
xGW(F1, Fa, 24572, PBy 2B)
_ 169474

== 267%(46).
NSL2 12

(S.3)

As illustrated in Fig. 2(b) of the main text, a phase
perturbation has null effect to the second order coherence
function that defines the joint photodetection intensity,
because

G(Q) (ﬁAa ZA; ﬁBa ZB) ASD)

=Y

ﬁﬂ,

(98B, 2B; )22 ga(pa, 24 )

R)ga(pa, za; )|

(PA7 RZA; PB7 ZB) 5

+98(PB, 2B; R
=G (S.4)
and G (pa, za; fB, zB) is thus invariant under phase per-
turbation [1]. It can be similarly shown that the two-
photon interference could be free of amplitude perturba-
tion. A real amplitude-wavefront distortion could be intro-
duced into the model of ghost imaging system by replacing
the phase perturbation ¢**¢ in Eq. S.4 with an amplitude
perturbation AFE. In this case, the resulting second order
coherence function G® (4, za; P, 25) acquires merely a
prefactor and has no effect on the visibility and spatial
frequencies of the image.

The turbulence-free property of the ghost imaging sys-
tem can be considered as an evidence for quantum corre-
lation of two-photon interference. In the classical simu-
lation of ghost imaging, the speckle-to-speckle correlation
was used, and the speckles of the thermal source is im-
aged onto the object plane and the image plane [2-4]. The
two sets of identical intensity speckles (I4) (Ip) are mea-
sured and correlated to generate image of the object in
the classical simulation. A genuine quantum ghost image
is determined from the intensity fluctuation correlation
(AI4AIp) by photon counting, which has a relation with
the classical simulation as

(La) (IB) +

and reflects the two-photon interference effect, i.e. a
pair of photons interfering with the pair itself. It was
demonstrated experimentally that the ghost image ob-
served from (AI4AIg) is turbulence-free. However, the
image from classical simulation of (I4) (Ig) is turbulence-
sensitive [1], because the corresponding light intensity
| 3= 9(7, 2 R)e*2%|? is not invariant under perturbation.

(Ialp) = (AI4AIB) , (S.5)

Multipath interference in phase contrast imag-
ing. — The major task of this section is to elaborate the
calculation to obtain Eq. 14 of the main text. In Eq. S.7,
the coherence function describes self-interference of the
incident photon that either scatters from the sample or

directly transverses through the sample. The electric field
of the photon satisfies the Helmholtz equation [5]

(V2 + k) BE(7,w) = k* (1 — nd (7)) E(Ti,w)  (S.6)
From Eq. S.6, the electric field on the detector plane at
spacetime (7;,t) can be written under first Born approxi-

mation as

E(anw) = Eln ’ru
5 levk\n—r | . i
d°z —7 ——— 0, (Z) Ein (¥, w)
where ¢ = A, B. Defining the coordinates on the pixel

detectors 7; = (i, 2;), the coherence function can be ex-
pressed as Eq. 12 in the main text

G( vaZBapAazA)

= —//dede
3_’/ezk\r,¢; | ~
,7//dw3dw14—/d a = 7| 5w,4(x)

X <Ein(pBawB)Ein(f ,QJA)> eil(wB*wA)t

—— [ [ dwpdw di”*/elklm iy (@)
B A |’I"B _ _;,| wpB

X <Em(:C wB)Ein(FA, wA)> eil(wBiwA)t

iAwapt

(vawB)Ein(ﬁAva)> e

= Loo — Loy — a0 (S.7)
where Awap = wa — wp. Defining the cross spectral
density [6]

W (s, Py wr,wo) = (B (7,00) Ein(Fw0)) , (88)
we can rewrite the I(g 1) term in Eq. S.7 as
5 1kA|rA |
Lo,y (7B, Ta) = 2 //WBWA/d kG ———r T
X0, (T YW (PR, T ,wp,wa)e —iwp—wa)t (S.9)

Denote w = “AF¥E 5 = wy — wp, using the Huygens
principle and the Rayleigh-Sommerfeld diffraction integral
of the first kind for propagating the cross spectral density
from the exit plane to the detector plane [5], we have

a e*ik}glfg 7f|
Wl —V——=— | >
% (e )
where & = (Z1,z, = 0) defines the coordinate on the
exit plane. The sample is assumed to be in front of the
exit plane with x, < 0, such that after passing the exit
plane, no inhomogeneous phase shift will be introduced.
Introducing the coherence length [, of the incident pho-
ton beam, the cross spectral density W (&, &', w, ) has the

form [6, 7]

W(FB7 fl? W, w)

1 i
=—— d2aW (7,7, w
27 x,=0

W(Z, 7, w,w) = 2ny(Z, ) I0([@)d(w — win),  (S.10)
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where ~(Z,#) = e 1 =F1I’/IZ describes the transverse
coherence between two points on the exit plane, a large
coherence length [, is crucial to the resolution of PCI. For
thermal sources, we have [, = T’ where A is the pho-
ton wavelength, D is the distance between the source and
sample, and a is the source radius, it is always possible to
obtain sufficient coherence length by taking a large prop-
agation distance D. With Egs. S.10 and S.10, we can
further obtain

Ty = i 3//dwdw/d3_'/ 2w +w/2)?
ia(w+w/2)|Fa—2'|
(&
X Ot d*z
|74 — 2| +/2(F )/xz—o
——— NG e—vﬁa(w—w/2)\FB—f\ S 11
(@, 7, w w)az< 7y — 7] >, (5.11)

where @ = 1/c is the fine structure constant. Denote
the coordinate between the exit plane and the detector as

—ik|F—& —ik(z+|p—7 | |2/22
= (p, z), we use the relation ¢ I;lfl | et sz L)
and obtain
Ty = o 3//donoJ/ci3_" 2w +w/2)?

eta(w+w/2)(za+]pa— &\ |?/2z4)

X Orrmyo (T d*z
- ol [

Vo (w — win)d(@) [—ia(w — @/2)]
o—ia(w—/2)(zp+|7s—7, |*/228)

% el
2B

k2

i [ 1Pa=2 12
X {k/dx'zéw(f’)] e ( A

where we denote w = wj,. The accumulated phase shift
for a photon that travels through the sample and arrives
at the exit plane is defined as

fk/dxlzéw(f'),

with which we write I(g 1) as

k2
. 2 =/ 2 - - -~ —
_zIm d°Z | &2 (@, T )e(@))
w2z
ik (1Paz?y P -z ?
2 zZA B ik(za—2B)
xe e )

similarly we found the form of I(; ¢y in Eq. S.7. As shown
in Fig. 3 of the main text, the pixels of the two detectors
are pairwise connected through coincidence circuit, we can
thus assume pa = pg = p. We denote

27TI’7(£J_7 f/J_

_1ip—%) 1%
2zB

(S.12)

Ty =

(S.13)

ZB — %A _ 7
ZAZB o 7
zp+z2a  2C
ZAZB n z

ZAB = ZA — 2B, (8.14)

>eik(zA—zB) 7

where for the case z4 = zp = z, we have n = 0,{ =
1,zap = 0. The interference kernel of the coherence func-
tion is thus

T,y + 100

B 7722/ /d2 [ " gz>b21

S LU LN [e S(@=p)b—ikzan

el%(a_p‘)ﬂeiszB} 7 (S5.15)

where @ = 1(#, + &) and b = &, — &, . Further taken

transformation @ = @ — b/2, we have

To,1) + 1(1,0)

7iiz"—5b2 .
a 71',z2/d2/d2 g 8)90(0)

x{e 142[(a+b/2+p 7p]e %( b—p-b)—ikzap i St b

e 2z

o AE(@=5/24p)* —p?] i< (@b )+z‘kZAB€—i%b2}_

Taken the simplest case z4 = zg, we have

Tio,1) + 1(1,0)

k> - — ey
35,2 /dgb/dzc_ie 2 p(a)e =00
2z

I
~

2
~
!

(S.16)
Defining transformation b= %g,

To,1) + I(1,0)

i5b

L2 5
1= [ d®be” P2 [FV2y](b)e™

2rk
z -
=1 W%{]—' 1(e K )@]—' [fv%p}}(ﬁ)

k212

_ /dw PP 205 §). (S.17)
We define 3’ 7 and obtain
I,y + 11,0

— I—/d2 eV V2 (p—Z—ly) (S.18)

For sufficiently large [., which guarantees rag)ld decaying
of the convolution factor that satisfies e™¥ <« 1 with
given pixel size (resolution) |7’| = p, Eq. S.18 reduces to
z
IEVQSD(p_) ’

I(071) “1‘.[(170) == (819)

And Eq. 14 of the main text follows as a result.
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