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The lack of reliable methods for identifying descriptors—the sets of parameters capturing the underlying
mechanisms of a material’s property—is one of the key factors hindering efficient materials development. Here,
we propose a systematic approach for discovering descriptors for materials’ properties, within the framework of
compressed-sensing-based dimensionality reduction. The sure independence screening and sparsifying operator
(SISSO) tackles immense and correlated features spaces, and converges to the optimal solution from a combination
of features relevant to the materials’ property of interest. In addition, SISSO gives stable results also with small
training sets. The methodology is benchmarked with the quantitative prediction of the ground-state enthalpies of
octet binary materials (using ab initio data) and applied to the showcase example of predicting the metal/insulator
classification of binaries (with experimental data). Accurate, predictive models are found in both cases. For the
metal-insulator classification model, the predictive capability is tested beyond the training data: It rediscovers the
available pressure-induced insulator-to-metal transitions and it allows for the prediction of yet unknown transition
candidates, ripe for experimental validation. As a step forward with respect to previous model-identification

methods, SISSO can become an effective tool for automatic materials development.
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I. INTRODUCTION

The materials-genome initiative [1] has fostered high-
throughput calculations and experiments. Correspondingly,
computational initiatives (e.g., Refs. [2-5]), have already
tackled many thousands of different systems (see Refs. [6—16]).
Much of the data of this field is available in the FAIR Reposi-
tory and Archive of the NOMAD Centre of Excellence [17,18].
On close inspection, one realizes that such data collections are
so far inefficiently exploited, and only a tiny amount of the
contained information is actually used. Despite the number
of possible materials being infinite, the request for specific
properties, e.g., a material that is stable, nontoxic, with an
optical band gap between 0.8 and 3.2 eV, drastically reduces
the set of candidates. This implies that, in terms of functional
materials, the structural and chemical space of compounds is
sparsely populated. Identifying these few materials—known
materials as well as materials that have not been created to
date—requires an accurate, predictive approach.

Several methods, falling under the umbrella names of
artificial intelligence or (big-)data analytics (including data
mining, machine/statistical learning, compressed sensing, etc.)
have being developed and applied to the wealth of materials-
science data [19-28], but so far, no general and systematic
approach has been established and demonstrated. The chal-
lenge here is that many different processes and phenomena
exist, controlled by atomic structure, electron charge, spin,
phonons, polarons and other quasiparticles, and tiny changes
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in structure or composition can cause a qualitative change of
the materials property (phase transitions). For example, less
than 0.001% impurities can turn an insulator into a conductor.
This type of complexity is a significant element of the fourth
paradigm in materials science [18,29,30], which recognizes
that it may not be possible to describe many properties of
functional materials by a single, physically founded model,
i.e., via a closed, analytical expression. The reason is that
such properties are determined by several multilevel, intricate
theoretical concepts. Thus, insight is obtained by searching for
structure and patterns in the data, which arise from functional
relationships (including but not limited to linear correlations)
with different processes and functions. Finding a descriptor,
the set of parameters capturing the underlying mechanism
of a given materials property or function, that reveals these
relationships is the key, intelligent step. Once the descriptor
has been identified, essentially every learning approach (e.g.,
regressions, including kernel-based ones, artificial neural net-
works, etc.) can be applied straightforwardly. These issues and
in particular the central role of the descriptor were implicitly
assumed in many seminal machine-learning works applied to
materials science, but it was only later explicitly identified in
the works of Ghiringhelli et al. [7,31]. These authors recast the
descriptor-search challenge into a compressed-sensing (CS)
formulation. The CS approach has been shown to be effective
for reproducing a high-quality reconstructed signal starting
from a very small set of observations [32,33]. Mathematically,
given a set of samples measured incoherently, P, CS finds
the sparse solution ¢ of an underdetermined system of linear
equations D¢ = P (D is called the sensing matrix with
columns > rows). If the number of nonzero entries in ¢
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is smaller than the size of P, then CS effectively reduces
the dimensionality of the problem [32,34,35]. In the specific
case treated in Refs. [7,31], given a set of materials m; with
observable properties listed in vector P; and a huge list of
possible test features d; (forming the features space), the linear
projection of each i material into the j feature forms the i, j
components of the sensing matrix D. The sparse solution of
argmin, (| P — Dcl|3 + A|lcllo), where ||¢||o is the number of
nonzero components of ¢, gives the optimum n-dimensional
descriptor, i.e., the set of features selected by the n nonzero
components of the solution vector c.

In Refs. [7,31], a modification of the least absolute shrink-
age and selection operator (LASSO) [36] was introduced for
finding the optimal solution. However, moving beyond the
showcase application demonstrated in those papers (predicting
the ground-state crystal structure of octet binaries semiconduc-
tors), it turns out that the method is unable to deal with large
feature spaces, i.e., with situations where knowledge about
the underlying processes is not well developed and when in
addition to the atomic properties, also collective properties,
e.g., the electronic band structure, play a role. When the space
of candidate features (the feature space) gets large (larger than
few thousand elements) and/or when features are correlated,
the approach breaks down.

In the present paper, we provide a strong and efficient
solution of these problems, i.e., we present a new method,
called sure independent screening and sparsifying operator
(SISSO), which can deal with an immensity of candidate
features (billions or more) and does not suffer when features are
correlated. The outcome of SISSO is a mathematical model, in
the form of explicit, analytic functions of basic, input physical
quantities. This aspect gives the opportunity to inspect the
equations and suggest means to test the generalization ability
of the model.

II. RESULTS AND DISCUSSION

Features space construction. All quantities that are hypoth-
esized to be relevant for describing the target property (the
so-called primary features [7,31]) are used as a starting point
for the construction of the space [37,38]. Features are of atomic
(species per se) and collective origin (atoms embedded in
the environment). Then, a combination of algebraic/functional
operations is recursively performed for extending the space.
For instance, the starting point ®, may comprise readily avail-
able and relevant properties, such as atomic radii, ionization
energies, valences, bond distances, and so on. The operators
set is defined as
H™ = {1+~ x. /.exp.log, | — |, /.72 2 o1, 62l
where ¢ and ¢, are objects in ® (for unary operators only ¢, is
considered) and the superscript ™ indicates that dimensional
analysis is performed to retain only meaningful combinations
(e.g., no unphysical items such as size + energy or size +
size?). The intrinsically linear relationship observables <>
descriptor in the CS formalism is made nonlinear by equipping

the features space with nonlinear operators in H ™At each
iteration, H (m) operates on all available combinations, and the

features space grows recursively as:
e (m)
q)n EUHm[¢l5 ¢2]5 V¢],¢2 e q>i—1' (1)
i=1

The number of elements in ®, grows very rapidly with z. It is
roughly of the order of ~ (#®()>" x (#H,)*' ! where #® and
#H , are the numbers of elements and binary operators in @
and H, respectively. For example, #®; ~ 10'! with #H, = 5
and #®, = 10. To avoid a priori bias and contrary to previous
works [37], no features were disregarded despite the size of
the resulting features space. Instead, we extend the sparse-
solution algorithm (using sparsifying operators (SO) [39]) and
tackle huge sensing matrices representative of features spaces
containing coherent elements overcoming the limitations of
LASSO-based methods [7,31].

Solution algorithm. The £p-norm regularized minimization
[42] is the obvious path for finding the best sparse solution
of linear equations. It is performed through combinatorial
optimization by penalizing the number of nonzero coefficients.
The algorithm is NP hard and thus infeasible when the features
space becomes very large. Efficient methods can be employed
to approximate the correct £, solution [43] with ideal features
space (e.g., having uncorrelated basis sets). Among them
are the convex optimization by £;-norm [44] regularization
LASSO [36]) and the various greedy algorithms such as the
matching pursuit (MP) [45] and orthogonal matching pursuit
(OMP) [46,47]. Unfortunately, with correlated features spaces,
approximated results can largely deviate from the ideal £
solutions [43,48]. Corrections have been proposed, for exam-
ple the LASSO+-¢( scheme comprising LASSO prescreening
and subsequent ¢, optimization [7,31], and the the ¢, analysis
and ¢, synthesis [49]. However, when the features space size
becomes of the order of 10°-10°, ¢;-based methods also
become computationally infeasible. As previously mentioned,
here we overcome the huge size of the problem by combining
SO with sure independence screening (SIS) [50,51], which
has been shown to be effective for dimensionality reduction of
ultra-high-dimensional features spaces [50]. SIS scores each
feature (standardized) with a metric (correlation magnitude,
i.e., the absolute of inner product between the target property
and a feature) and keeps only the top ranked [50]. After the
reduction, SO is used to pinpoint the optimal n-dimensional
descriptor. The smaller the dimensionality, the better the
outcome: progressively larger n are tested until the leftover
residual error is within quality expectation. The combination
of SIS and SO is called SISSO. Figure 1 illustrates the idea.

SISSO. Out of the huge features space (~ 10'° elements or
more), SIS selects the subspace S;p containing the features
having the largest correlation with the response P (target
material property). Generally, the larger the subspace USip,
the higher the probability it contains the optimal descriptor.
However, the chosen size of USip, depends on (i) which type of
SOis later used, (ii) the dimensionality n requested, and (iii) the
available computational resources. With SO (LASSO), USip
can contain as much as 10° ~ 10° elements, depending on #P.
With SO(¢y), the largest obtainable size is typically 10° for
n=2,10 forn = 3, 10? for n = 4, etc. (because the number
of needed evaluation grows combinatorially with n). If n is
large, e.g., > 10, then the maximum possible #Sip converge
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FIG. 1. The method SISSO combines unified subspaces having the largest correlation with residual errors A (or P) generated by sure
independence screening (SIS) with sparsifying operator (SO) to further extract the best descriptor.

to 1: SISSO becomes OMP. From inside Sp, SO(£) finds the
best 1D descriptor, which is trivially the first ranked feature. In
other words, the SIS solution in one dimension is already the
SISSO solution. The residual error for an n-dimensional model
isdefined as A,p = P — d,pc,p, where d,p is the matrix with
columns being the selected features from the whole features
space, and the ¢,p = (anTan)’lanTP is the least-square
solution of fitting d,,p to P. If the error, the root-mean-square
of the residual prms(Anp), is below a certain threshold then
descriptor is considered fit. Otherwise the method recursively
considers a higher-dimensional solution. In general, for a
n-dimensional descriptor, SIS selects the subspace S,p with
response A—1)p. Then SO extracts the best nD descriptor,
with response P, from the union of all the previously selected
subspaces Syp U Sn—np U - -+ U Sip. Candes and Romberg
[52] have shown that to identify the best n-dimensional descrip-
tor with overwhelming probability the size of the response—in
our case the number of materials observations P—needs to
satisfy the relationship #P > k - n - log(#®), where k is a
constant (around 1 ~ 10 [31]) and #® is the size of the features
space [32]. Differently from the typical CS scenario, here # P is
fixed [31]; then, when #® increases, the maximum n decreases
in order to satisfy the relationship [52]. In practice, features
spaces of growing sizes (®g, P;, .. .) and different n are tested
until a model with required accuracy [ prms (Anp) < threshold]
is obtained.

SISSO has advantages over MP [45] and OMP [46]. MP
searches a linear model reproducing P by adding dimension-
ality to a descriptor while preserving selected features and cor-
responding coefficients. OMP improves MP by reoptimizing
the coefficients every time a new component is introduced,
n — n + 1, but still preserving previously selected features.
SISSO both reselects features and reoptimizes coefficients at
each dimensional increment. SISSO reduces to OMP when
each subspace in the union has unit size (#Sip = 1, Vi). Still,
it differs from iterative SIS [50], which reduces to simple MP
when all #S;p = 1.

Benchmark: Quantitative prediction. SISSO is bench-
marked by comparing the relative stability of octet binary
materials between rock-salt (RS) and zinc-blende (ZB) config-
urations. The reference data is taken from Ref. [7], including
the target calculated ab initio enthalpy difference, RS and ZB

for 82 materials and the 23 primary features related to material
compositions forming @ (see Supplemental Material [40] for
a list of the primary features considered in this study). All
quantities are calculated with density-functional theory in the
local-density approximation. Details are given in Refs. [7,31].
Then, with a combination of the previously defined operator

set, H(m), and Eq. (1), the features spaces ®; (small, #®; =
556), ®, (large, #®,~10%), and ®3 (huge, #®3~ 10'!) are
constructed.

Figure 2(a) shows the training errors (prms) of different
SO: LASSO, LASSO+-¢y, OMP, and ¢, are compared while
operating on the small features space ®;. LASSO suffers
because of the correlations existing inside ®; (see Fig. S1
in the Supplemental Material [40] for a figure showing the
correlation between features); LASSO+£, and OMP both
surpass LASSO; £ is the reference: it gives the exact global
minimum solution for descriptors of any dimension. However,
even with £, the error is still too large for many thermodynam-
ical predictions, prms(Anp) = 40 meV/atom, and this is due
to the too-small size of ®;.

Figure 2(b) shows, for the larger ®,, SIS combined with
LASSO+¢£y as SO [SISSO (LASSO+¢y)], SISSO(¢y), and
OMP are compared for generating a 3D descriptor: SISSO(¢y)
is the only approach improving consistently with subspace size
#US;p and it always surpasses OMP when each #Sip> 1;
SISSO (LASSO+-¢y) does not improve over OMP because
of the failure of LASSO in dealing with correlated features
[43]. Obviously, the larger the features space, the better the
obtainable model (at least equal). When exhaustive searches
become computationally impossible, SISSO can still find the
optimal solution if the subspace produced by SIS is big enough.

Figure 2(c) shows the errors for one- to five-dimensional
descriptors calculated by SISSO(¢() while operating in the
large @, and huge @3 spaces. For n = 1, SIS reduces to
the best 1D descriptor, so no £ is needed. For n = 2,3,4,5
the size of the SIS subspace is chosen to follow the pre-
viously mentioned relationship [52] applied to the subspace
#S ~ exp(#P/kn). With #P = 82 and k = 3.125, the total
size of all the selected subspaces is # U Sip =5 x 10°, 6 x
103,7 x 102,2 x 10? for n = 2,3, 4, 5, respectively. For all
these sizes, the application of £ regularization as SO involves
10'°—10'"" independent least-square-regression evaluations.
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FIG. 2. Benchmark of algorithms. (a) Training error: RMSE versus descriptor dimension for different SOs operating on the smallest ®.
(b) Training error: RMSE versus subspace size in the SIS step to find a three-dimensional (3D) descriptor by OMP or SISSO with the same
large features space ®, (see Supplemental Material [40] for a similar picture for a 2D descriptor). (c) Training error: RMSE by SISSO(¢;) with
®, and ®; compared with previous work [7] (features space size ~ 4500) and with the EUREQA software [41] (evaluated functions 10'2, larger

than #®3).

This is computationally feasible due to our (trivially) parallel
implementation of SISSO (for instance, for this application,
the production calculations were run on 64 cores). The training
errors for the descriptors identified from ®; are systematically
better than those coming from @®,, thanks to the higher
complexity (see Supplemental Material [40] for the functional
forms of the descriptors). SISSO(€y) with ®, is systematically
better than the previous work by Ghiringhelli et al. [7,31],
due to the allowed larger features spaces. Note that when
SISSO(¢y) is applied to the same features space as in Ref. [7],
it also finds the same descriptor: SISSO combined with the
features space of Ref. [7] has the same results of the yellow
line of Fig. 2(c). Performance is also compared with the
commercial software EUREQA [41] by using the same operator
set and primary features (®,), and 10'? evaluated functions, a
number comparable to #®3. SISSO(¢y) in @3 withn > 2 and
SISSO(¢y) in ®, with n > 3 have both lower training error
than EUREQA.

In order to directly compare, over the same dataset, the
ability of different approaches to find optimal or close-to-
optimal solutions of the CS problem, in Figs. 2(a)-2(c) we
illustrated training errors. With practical applications in mind,
it is imperative to determine the performance of the obtained
model on data that are not used for the training. In statistical
learning [53,54], this is performed via cross validation (CV), a
class of techniques that, by splitting the data set into a training
and a test set in various ways, aims at detecting underfitting
and overfitting, i.e., when the complexity of the fitted model
is too small or too large, respectively. In CS, dedicated CV
techniques have been proposed [55,56]. Specifically, in a
CS-based iterative technique such as SISSO, the only source
of overfitting can come from a too large dimensionality of the
descriptor [note that there is only one fitting coefficient per
dimension, i.e., features recursively built via Eq. (1) do not
contain fitting parameters]. For this benchmark application,
we applied the CS-CV scheme proposed in Ref. [55] with
leave-10%-out (LTO) CV (the data set is split 40 times in
a training set containing 90% randomly selected data points
and a test set with the remaining 10%) and leave-one-out
(LOO) CV (one data point constitutes the test set, and the

procedure is iterated # P times). The model is trained on the
training set (the whole SISSO procedure, i.e., including the
selection of the descriptor) and the error is measured on
the test set. In such framework, the CV error decreases with
the descriptor dimension, until the approximate descriptor will
try to fit the data (containing possible errors) starting from
primary features having intrinsic limitations, thus causing a
subsequent increase in the CV error. The descriptor dimension
at which the CV error starts increasing identifies the maximum
dimensionality of that particular model. This is determined
by the features space, in turn determined by set of primary
features, operators set, and number of iterations of the features
space construction, and the training set. CS-CV is performed
for ®; with the subspace sizes reported in the description of
Fig. 2(c), and for subspace of unit size (for which SISSO
becomes OMP). It is found that the dimensionality minimizing
the error is two for both the CV schemes of SISSO(¢;). In order
to achieve a smaller prediction error, one would then need to
add new primary features, possibly substituting features that
are never selected in a descriptor, or increase the complexity
of the features space, or both. OMP finds the same dimen-
sionality of the problem (2 ~ 3), has a lower computational
cost but a cost of worse performance in terms of prediction
erTor.

Figure 3(b) depicts the box plots for the distribution of
errors as function of the dimensionality for SISSO(£¢()-LTOCV
results with features space ®3 [RMSE shown in Fig. 3(a)]. The
1st and 99th percentiles (extrema of the error bar), the 25th and
75th percentiles (lower and upper limits of the rectangle), and
the median (50th percentile, intermediate horizontal line) are
marked. The maximum absolute errors are also indicated by
crosses. The worsening of the RMSE beyond two dimensions
is mainly determined by an increase in the largest errors (the
99th percentile), while most of the errors remain small (median
and lower percentiles ~ constant).

LOOCV is also used to inspect how often the same de-
scriptor is selected. The test operates in #®3 with SISSO(¢y).
The LOOCYV descriptor agrees with the one found over all
data 79, 73, 58 times out of 82 iterations. It is remarkable,
as the size of ®; is of the order 10! features and there
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FIG. 3. Benchmark of algorithms. (a) Cross validation: LTOCV and LOOCYV results for the features space @3 with OMP and SISSO (¢y).
(b) Cross validation: Box plots of the absolute errors for the SISSO(£y)-LTOCYV results with features space ®;. The upper and lower limits of
the rectangles mark the 75th and 25th percentiles of the distribution, the internal horizontal line indicates the median (50th percentile), and the
upper and lower limits of the error bars depict the 99th and 1st percentiles. The crosses represent the maximum absolute errors.

are only 82 data points. This means that the 1D, 2D, 3D
descriptor is selected from 10'', 10?2, 10°? combinations,
respectively. We note that descriptors that are selected using
the reduced training data set need be correlated with the
full data-set descriptors, implying the existence of a hidden
correlation between the functional forms. Hence, selecting
different descriptors does not imply overfitting (this is inde-
pendently determined via CS-CV), but choosing different ex-
isting approximate functional relationship among the primary
features.

Application: Classification models. The SISSO framework
can be readily adapted to predict categorical properties (as
opposed to continuous properties such as an energy differ-
ence), i.e., it can be applied for classification. In the space
of descriptors, each category’s domain is approximated as
the region of space (area, in two dimensions) within the
convex hull of the corresponding training data. SISSO finds
the low-dimensional descriptor yielding the minimum overlap
(or maximum separation) between convex regions. Formally,
given a property with M categories, the norm for classification
is defined as:

M—1

M
¢ = argmin Z Z Oij + Mlello | 2
c

i=1 j=i+l

where O;; is the number of data in the overlap region between
the i and j domain, c is a sparse vector (0/1 elements) so that
a feature k is selected (deselected) when ¢, = 1(0), and A is a
parameter controlling the number of nonzero elements in ¢. Of
all the possible solutions of Eq. (2) having the same dimension
and overlap, we chose the one with minimum n-dimensional
overlap volume [57]:

M—1

M
C=ar—n M(M—l) 2 mm(sz,,sz)

i=1 j=i+l

3

where €;, Q;, and €;; are the n-dimensional volumes
of the i, j, and overlap ij domains. Finally, the correla-

tion between property and feature for SIS is defined as

(o 3ran Z, —it1 Oij + 1) : high correlation <> low overlap.

SISSO for classification is tested on a simple
metal/nonmetal classification of binary systems. The
training systems are far from creating an exhaustive list
and, as such, the test is strictly meant for benchmarking the
validity and implementation of Egs. (2)—(3). All essential
atomic and structural parameters are included as primary
features in ®(. They originate from the WebElements [58]
(atomic) and SpringerMaterials [59] (structural) databases
(see Supplemental Material [40] for a list of the features
considered in this study). Among them are the Pauling
electronegativity x, ionization energy /E, covalent radius 7oy,
electron affinity, valence [number of valence electrons for A
and (eight-valence) for B], coordination number, interatomic
distance between A and B in crystal, atomic composition x4,
and a packing fraction, here the normalized ratio between the
volume of spherical atoms and the unit cell > Vatom/ Veenl
with Vaom = 4JTVCOV /3. The operator set H and Eq. (1) are
then used to generate ®; (~108 elements). Note that SISSO
finds its optimal descriptor based on combinations of the input
physical quantities (features): nonoptimal outcomes indicate
that the target property depends on features not yet considered
in ®,. As such, to avoid garbage in, garbage out, SISSO
requires physical intuition in the choice of features to add:
conveniently, important and nonimportant features will be
automatically promoted or neglected. Here, since metallicity
also depends on interstitial charge, the inclusion of a packing
fraction related to superpositions of orbitals is advantageous.
Given a set of features, SISSO finds their best combination
leading to the optimum descriptor. If the packing fraction were
removed from the primary list, SISSO would autonomously
select the combination of features trying to replicate as much as
possible the lost descriptive power, in this case the A B atomic
distances (see Table I in the Appendix). The experimental
binary data set, extracted from the SpringerMaterials database
[59] and used for training the SISSO model, contains A, B,
materials having: (i) every possible A species; (ii) B as
p-block element (plus H and with the condition A # B, i.e.,

083802-5



RUNHAI OUYANG et al. PHYSICAL REVIEW MATERIALS 2, 083802 (2018)
(a) (b)
— 2 CuF _ nonmetals 2 | metals nonmetals
X " AgF i
o | /AgBr
N;fc 1.5 . 1.5 N
- " ) L i T Agl
= .- R =
) HgH B ™ — aAs
; Tun r o am HE " o Gmdlmulll |||||n§?’s1;,e 4GPa  KF
N P e ¥ LI I oo o, 38Pa_KCI
I 05 m . 05} g caTe WK'
= " . s A 30/cpPa 3203
N L] = MnF,
=~ 0 " E Mg, 0
1 " 1 " 1 1 " 1 " 1 N 1 : | " 1 " |

Z Vatom /Vcell Xa

0 5 10 15 20 25 30
x IE
s BT,
Z Vatom /Vcell Xa

FIG. 4. SISSO for classification. (a) An almost perfect classification (99%) of metal/nonmetal for 299 materials. Symbols: x, Pauling
electronegativity; /E, ionization energy; x, atomic composition; Y Viom/ Veen» packing fraction. Red circles, blue squares, and open blue
squares represent metals, nonmetals, and the three erroneously characterized nonmetals, respectively. (c) Reproduction of pressure-induced
insulatormetals transitions (red arrows), of materials that remain insulators upon compression (blue arrows), and computational predictions at

step of 1 GPa (green bars).

elemental solids, such as carbon diamond, are not tackled);
(iii) nonlayered structure and without AA and BB dimers
(the coordination polyhedron of A comprises only B atoms,
and vice versa); (iv) good experimental characterization and
without large distortions (we do not have any distortion
feature). A total of 299 binaries in 15 prototypes (NaCl,
CsCl, ZnS, CaF,, Cr3Si, SiC, TiO,, ZnO, FeAs, NiAs, Al,03,
La,03, Th3P4, ReOs, ThH,) are then used (see Supplemental
Material [40] for a list of the training materials). Details
on the feature-space construction and model identification
are given in the Appendix. Out of @3, SISSO(¥,) identifies
a two-dimensional descriptor with a training accuracy of
~ 99.0%. The convex domains, indicating metallic and
nonmetallic materials, are shown in Fig. 4. The figure also
includes a line calculated with a support-vector machine [60],
to help visualizing the separation between convex domains.
These plots are called material-properties maps (or charts
[7,61-64]) and SISSO has been specifically designed to
identify low-dimensional regions, possibly nonoverlapping.
Figure 4(a) shows the three incorrectly classified systems
(blue empty squares). YP (NaCl prototype) might have a
slightly erroneous position in the figure: the covalent radius
reov(Y) (controlling the packing fraction) suffers from large
intrinsic errors (see Fig. 2 of Ref. [65]) and therefore the
compound position might be misrepresented. Las;Tes and
Th3Asy (ThsP4 prototype) are different. In this case, SISSO
indicates that the primary features are not enough or that
the compounds have been experimentally misclassified (due
to defects or impurities [66—68]). Inspection of the found
descriptor suggests a justification of the involved primary
features. The x projection [x axis in Fig. 4(a)] indicates that
the higher the packing fraction Y Vyom/ Veen, i.€., the higher
the interstitial charge, the higher the propensity of a material
to be a metal. This is not surprising. The merit of the descriptor
found by SISSO is to (i) provide a quantitative account of the
dependence of metallicity on the packing fraction, allowing
for predictions (see below) and (ii) reveal the functional form
packing fraction metallicity: It is not trivial that the descriptor

is linear with the inverse packing fraction. Metallicity also
correlates with the electronegativity of the A species, often
the main electron donor, by competing against the B species,
a p element trying to complete its covalent/ionic bonds by
filling the unoccupied orbitals and thus removing interstitial
charge. Thus it is not surprising that the material with largest x
projection is LiF, a purely ionic compound with closed electron
shells: the ratio among the two extreme electronegativities, (Li
has the lowest, F the highest), pushes the compound toward
the rightmost corner of the nonmetals domain. On the other
side, Auln, is the compound farthest from the nonmetals
region: Au has the highest x among transition-metals and
In has one of the smallest x of the considered p elements.
Available experimental band gaps were also extracted (see
Supplemental Material [40] for a figure showing distribution of
band gaps). The robustness of the descriptor is corroborated by
leave-one-out cross validation. In 97.6% of the times, LOOCV
reproduces the same functional solution obtained from the
whole data. In the few cases where the descriptor differs from
the all-data one, the packing fraction always remains; even
more: the packing fraction is present in all features selected by
SIS at the first iteration.

Beyond the training: Prediction of metallization by com-
pression. Although pressure is neither included in the features
space nor in the training data, its effect can be tested by
reducing V.. Among the training data, we have three systems
experiencing pressure-induced insulator-to-metal transition:
HgTe, GaAs, and CdTe. HgTe, CdTe, and GaAs go from
insulating zinc blende to metallic rock salt (or an orthorhombic
ol4 phase for GaAs) at ~ 9, 4, and 28 GPa, respectively (see red
arrows). Geometrical parameters (cell volumes) at normal and
high pressure are taken from the experimental databases and
used to modify the x coordinate of the descriptor. Concurrently,
we have also looked for materials that do not become metallic
with high-pressure structural transitions (indicated by the
blue arrows). In this case our model again makes a correct
prediction. Figure 4(b) shows that the descriptor is perfectly
capable of reproducing the correct metallic state. The idea can
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FIG. 5. SISSO for classification. Correlation between the band
gap of the nonmetals and the scaled coordinate from the dividing
line.

be extended to systems that have not yet been fully charac-
terized to predict potential insulator-to-metal transitions. The
subset of prototypes which are reasonably close to the domain
convex hull and have a fully characterized ab initio elastic
tensors [69] are computationally compressed by having their
Veenl reduced following the first-order linearized bulk modulus
relation: (Veen(p) — Veen(0))/ Veenn(0) ~ —p/ By, where p is
the pressure and By is the isothermal bulk modulus extracted
from the entries in the AFLOW.org repository [69] (see SI
for the entries data). The panel shows a set of compounds
for which the descriptor predicts the transition to metallic.
The green marks are positioned at 1 GPa steps to allow an
informed guess of the pressure. Within this approximation,
some compounds are predicted to become metallic at pressure
between 5 and 15 GPa: AgBr, Agl, GaSb, AlSb, EuSe, and
CaTe. Pressure-induced structural phase transitions are also
not considered in such analysis and thus, the insulator-to-
metal transition pressure might be overestimated facilitating
experimental validations.

Beyond the training: Significance of the distance from the
dividing line. Figure 5 depicts the experimental band gap of the
insulators vs. the scaled distance from the dividing line, i.e., the
dimensionless ratio between the x projection of its descriptor
versus the x projection of the dividing line corresponding to
the y projection of its descriptor value. With this rescaling, the
dividing line corresponds to the vertical line x = 1. The trend
of the data points reveals that the descriptor found by SISSO,
trained only on a categorical property, includes a quantitative,
albeit approximate, account of how strongly an insulator is far
from being a metal, by locating materials with large band gaps
further from the line than small-gap materials.

General remarks on the descriptor-property relationship
identified by SISSO. As clear from the two application cases
presented here, the equations found by SISSO are not necessar-
ily unique and all components of the descriptors may change at
each added dimension. This reflects the approximate nature of
the equations and the unavoidable relationships among features
(one or more primary features may be accurately described by
nonlinear functions of a subset of the remaining features). We

also note that the mathematical constraints imposed in order to
obtain solutions efficiently (linear combination of nonlinear
functions for the continuous-property case and minimally
overlapping convex hulls in the classification case), are very
flexible but not complete. That s, the found descriptor-property
relationship is intrinsically approximate.

III. CONCLUSIONS

We have presented an efficient approach for extracting ef-
fective materials descriptors out of huge and possibly strongly
correlated features spaces. This algorithm, called SISSO (sure
independence screening and sparsifying operators) tackles
huge spaces while retaining the effectiveness of compressed
sensing. Specifically, SISSO is built to work also (but not
limited to) when only relatively small training sets are avail-
able. SISSO autonomously finds the best descriptor from a
combination of features (physical properties), and it is capable
of determining the ones not relevant to the problem, so that
the features space can be further optimized. SISSO identifies
the descriptor-property relationship in terms of an analytical
equation. It does not need to be exact—a simple, analytical
descriptor-property function may not even exist—but it is the
most accurate expression given the available features space.
If an exact, analytic expression does indeed exist, SISSO is
expected to find it if included in the features space.

SISSO shows superior advantages with respect to other
established methods, e.g., OMP and LASSO as well as the
software EUREQA, especially when dealing with a correlated
features spaces. SISSO does not have the limitation of LASSO,
which suffers with large and highly correlated features spaces.
Currently, the only issue of SISSO is the required computer
memory needed to handle the features space, and efforts are
underway for more efficient implementations. Our approach
is benchmarked on the quantitative modeling of enthalpy
differences for a set of zinc-blende and rock-salt prototypes
and applied to the metal/insulator classification of binaries.
The robustness of the classification is corroborated by the
proper reproduced insulator-metal transitions, which allows us
to predict a set of systems for further experimental analyses.
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APPENDIX

In this Appendix, we present details on the metal/insulator-
classification application.
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TABLE I. Dependence of the metal-insulator classification descriptors on the prototypes of training binary materials.

classification
prototypes #materials primary features descriptor accuracy
NaCl 132 IE4, IEg, Xas X: Feovas TeovB: dy 1= EATE L) 100%
EA4, EAp, vy, Vg, dap
. IEgd? 1E? roov 10g (TE p)|reovA —Fcov
NaCl, CsCl, ZnS, CaF,, Cr;Si 217 IEA,ZEB,)?,XBérCOVA, dy = e dy = B"g(CN; reova TeoBl 1)
TeovB»> dap, CN4, CNp
. o dap/reova—xa/ i TowpdaBIEp 2
NaCSI.,CC;C.(l), Z;S’OC fi&crﬁ; 260 IE4, IfB ’ E\/ XBC"I:;"VA’ d = e 2= e tiav—an 99:0%"
10, 110, Zn0), FEeAS, IN1IAS TcovBs AAB> As B
NaCl, CsCl, ZnS, CaF,, Cr3Si, 260 [E4, IEg, Xa. X, dy = T gy = 99.6%"
SiC, TiO,, ZnO, FeAs, NiAs Xa> X5, Veen/ D Vatom
NaCl, CsCl, ZnS, CaF,, Cr;Si, 299  IEa, IEp, X, X5 dy = g 2eSHE 99.0%"

SiC, TiO,, ZnO, FeAs, NiAs, Al,O3,
La203, Th3P4, R€O3, Tth

XA> XB> Vce]]/ Z Vatom

. 2 2
dy == x3II1 = 2x,] — 23 22|

2One entry misclassified: YP compound in NaCl prototype.

>Three entry misclassified: YP compound in NaCl prototype; Th;As, and La;Te, compounds in ThsP, prototype.

Primary features. Descriptors are to be identified by SISSO
from a systematically constructed large/huge features space in
which components are generated by recursively transforming
a set of input primary features, ®, via algebraic operations,
H={I+,—, %,/ exp,log, | —|, J‘,’l ,2,3}. Primary fea-
tures usually comprise properties of isolated atoms (atomic
features) and properties of the materials (composition and ge-
ometry). For the test on binaries’ metal/nonmetal classification,
the following is the full list of considered primary features:. (i)
first ionization energy, /E 4 (A species) and [Eg (B species);
(ii) electron affinity, EA 4 and EA p; (iii) atom covalent radius,
Feova and reoyp; (iv) Pauling electronegativity, x4 and xpg; (v)
valence, vs (number of valence electrons) and vg (8 number
of valence electrons); (vi) coordination number, CN 4 (number
nearest-neighbor B of A) and CNg; (vii) interatomic distance
between A and B in crystal, d 4 p; (Vviii) atomic composition x 4
(or xp = 1 — x,); and (ix) the ratio of the cell volume to the
total atom volume in the unit cell of the crystal, Veer/ Y Vatom
(Vatom = 47T7'30V/3).

It is critical to limit the redundant and unnecessary primary
features in ®( to enhance computational performance (the size
of features space @, increases very fast with #®;) and to
increase SIS success rate: the higher #subspace/#®, the higher
the probability that SIS subspaces contain the best models.
Starting from an empty @, few primary features are added.
SISSO is then applied to identify the best model, with H
as operators space. If an appropriate quality of the model is
not achieved (e.g., the number of correctly classified materials
is lower than a desired threshold), other primary features are
added in @ to check for improvements. Primary features pre-
served in ®; may become redundant or unnecessary on a later
stage, e.g., when new ones are added. To retain computationally
manageable sizes of the features space, tests are performed to
remove those primary features that either are never appearing in
the identified descriptor or that do not improve the performance
of the model (in this specific case, when the number of correctly
classified materials does not increase). Eventually, ®, will
converge to the best possible small set of primary features,
along with the best models that can be generated from it.

Datavariety. The influence of data variety on the descriptors
is investigated and Table I shows how the metal-insulator
classification descriptors depend on the prototypes of training
materials.

The first calculation starts with a data set of all the available
materials (132) in NaCl prototype. The initial features space,
®, contains the primary features of all the 10 atomic param-
eters (Table I), and one structural parameter of interatomic
distance d4p to capture the geometrical differences between
the training rock-salt materials. SISSO is then applied: (i) ®3
is constructed; (ii) the best descriptor is identified from &5
for classifying the metals and insulators with 100% accuracy.
The simple descriptor is shown in Table 1. It indicates that
a rock-salt compound tends to become nonmetal when the
large interatomic distance is decreased with the radius of
species A.

Next, the number of prototypes is increased to five, for
a total of 217 materials. However, with the previous @,
and calculation settings, SISSO fails to identify a descriptor
having perfect classification (there are seven points in the
overlap region between the metal and nonmetal domains). The
nonoptimal outcome indicates that the classification depends
on primary features not yet considered. First, ® is slimmed by
reducing its size to 7—FEA 4, EAp, v, and vp are removed—
without affecting the quality of the predictions (eight points in
the overlap region). Second, two new features CN4 and CNp
are added (#dy — 9) to describe the different coordination
environments of the prototypes. SISSO finds a 2D descriptor
from the constructed ®; with 100% classification, shown
in Table I. From the descriptor, the geometrical differences
between training materials are captured by the two features of
dap and CNp: systems belonging to such five prototypes with
large d 45 and small CNp tend to be nonmetals.

The number of prototypes is increased to 10, for a total
of 260 materials. As shown in Table I, with the previous
#dy =9, the identified best descriptors are 2D and have
99.6% classification (only one point, YP compound in NaCl
prototype, is misclassified). Although the classification is
excellent, the descriptor is complicated. Searching for a
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simplification, new primary features of atomic composition
Xa, Xg, and Veen/ Y Vaom are introduced to replace reova,
reovBs dap, CN4, and CNp, leading to #®y — 7. With the
same training materials, SISSO finds a much simpler descriptor
having the same accuracy of 99.6% (YP compound remains
misclassified). This result shows that the choice of proper
primary features leads to descriptors’ simplification.

Finally, all the available 15 prototypes of binary materials
(299) are considered and used with the seven primary features
in ®,. With a constructed ®; of size 10%, SISSO identi-
fies the best 2D descriptor with a classification accuracy of
99.0% (three misclassified compounds: YP compound in NaCl
prototype, Th3Asy and LasTes in Th3P4 prototype). When
new information (compounds and/or prototypes) is added,
the functional form of the descriptors adapts. For predictive
models, the data set requires all necessary information, e.g., by

uniform sampling of the whole chemical and configurational
space of the property of interest. The above 15 prototypes are
not all the available prototypes for binary materials, and the
layered materials (e.g., MoS,, and those materials having A-A
or B-B dimers, e.g., FeS,, are not included) as the presented
model is strictly illustrative of the method.

Reproducibility. To enable reproducibility, online tutori-
als where results can be interactively reproduced (and ex-
tended) are presented within the framework of the NO-
MAD Analytics-Toolkit (analytics-toolkit.nomad-coe.eu). For
the RS/ZB benchmark application: analytics-toolkit.nomad-
coe.eu/tutorial-SIS. For the metal-nonmetal classification:
analytics-toolkit.nomad-coe.eu/tutorial-metal-nonmetal. The
SISSO code, as used for the work presented here, but ready
for broader applications is open source and can be found at
github.com/rouyang2017/SISSO.
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