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Time-dependent Landauer-Büttiker approach to charge pumping in ac-driven
graphene nanoribbons
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We apply the recently developed partition-free time-dependent Landauer-Büttiker (TD-LB) formalism to the
study of periodically driven transport in graphene nanoribbons (GNRs). When an ac driving is applied, this
formalism can be used to prove generic conditions for the existence of a nonzero dc component of the net current
(pump current) through the molecular device. Time-reversal symmetry breaking in the driving field is investigated
and found to be insufficient for a nonzero pump current. We then derive explicit formulas for the current response
to a particular biharmonic bias. We calculate the pump current through different GNR configurations and find that
the sign and existence of a nonzero pump current can be tuned by simple alterations to the static parameters of
the TD bias. Furthermore, we investigate transient currents in different GNR configurations. We find a selection
rule of even and odd harmonic response signals depending on a broken dynamical inversion symmetry in the
bias.
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I. INTRODUCTION

Active electronic circuit components can now be fabricated
on the nanoscale. These components typically consist of a
molecular structure coupled to two or more conducting leads
with an applied field that creates a net drift of electrons
across the structure. The motivation for ever smaller transistors
and wires lies in the available speedup arising from both
nanometer-size and terahertz (THz) intramolecular transport
processes [1]. Subsequent to the initial proposal of molecular
rectification [2], chemical fabrication techniques have led to
the realization of many interesting devices, including single-
electron transistors [3,4], molecular wires [5,6], frequency
doublers and detectors [7,8], and switches for fast memory
storage [9,10].

The fabrication of molecular devices has caused recent
experimental work to increasingly focus on dynamical prop-
erties of nanojunctions. The basic question of this field
is to determine the ac current response to an external
periodic electromagnetic field causing electronic excitations
in the gigahertz- (GHz-) THz frequency range [11–15]. A
phenomenon known as photon-assisted tunneling in which
irradiated tunnel junctions acquire additional peaks in their
conductance spectra has been experimentally demonstrated
as an additional transport channel in a variety of structures,
beginning with tunneling between oxide films in supercon-
ductors in 1962 [16]. These systems may find applications in
frequency-sensitive detectors [17,18]. In Ohmic conductors, a
bias that averages to zero over the driving signal time period
will always produce a zero average current. However, when
the current response to the applied bias is nonlinear, it is
possible for an external periodic field to have a vanishing
integral over its time period and still induce a directed current.
The mechanism behind this phenomenon is similar to one
known in the engineering literature as ac-dc conversion or
rectification. In the quantum transport literature, nanoscale
structures are known as quantum pumps if they possess
periodically varying parameters that result in a net directed
current, and the phenomenon of ac-dc conversion itself is

known as charge pumping [19–21]. Quantum pumps can
be created by the breaking of dynamical symmetries in the
driving bias [22–24] in addition to adiabatically varying the
physical parameters of the nanojunction [21,25]. Experimental
demonstrations of two-parameter charge pumping have been
carried out [26–28]. Recent theoretical work has demonstrated
the possibility of single-parameter charge pumping in which a
single periodic source may be used to generate a pump current
[29–33]. These predictions were confirmed experimentally
for the low-GHz frequency range in nanowires etched into
semiconductor heterostructures [34–37].

When modeling electron transport through molecular de-
vices in response to an external time-dependent field, a trade-
off is always made between accuracy and computational time
involved [38]. This trade-off becomes increasingly important
as one moves from quantum dots to molecules with more
complex electronic structures.

In principle, calculations of time-dependent electron trans-
port should take into account the many-body nature of electron-
electron and electron-phonon interactions [39]. However, in
many systems of technological interest, it is possible to neglect
explicit Coulombic interactions and work within an effectively
ballistic transport regime. The most popular framework for the
study of ballistic transport has been the Landauer-Büttiker for-
malism, which constructs transport quantities from scattering
state solutions of electron wave packets propagating through
the molecular device [40,41]. This was initially a steady-state
theory, but it has been generalized in recent years to describe
systems driven by periodically varying fields [42] and voltage
pulses [43].

The present authors have contributed to a partition-free
time-dependent Landauer-Büttiker (TD-LB) approach based
on the nonequilibrium Green’s function (NEGF) formalism
[44–47]. In a partition-free transport setup the subsystems are
prepared in equilibrium with each other before a bias is added
to the electronic energies in the leads [48]. This is in contrast
to the so-called partitioned switch-on approach [49–51] where
the subsystems are suddenly brought into contact. For ballistic
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transport the two approaches always give the same values of
the current in the limit of long times after the switch on [48].

The TD-LB method neglects the electronic structure of
the leads in the so-called wide-band limit approximation
(WBLA) thus enabling an exact solution of the Kadanoff-
Baym equations for all Green’s functions of the molecular
region. Initially, the partition-free approach was developed
for constant bias switch-on processes [44,45] before it was
generalized to the case of an arbitrarily time-dependent driving
bias [46,47]. In the latter work, solutions were given for all
Green’s functions of the molecular region on the two-time
plane. We note that, in the transient regime following the
voltage quench, the partitioned and partition-free approaches
yield a different current. However, recent work [52] indicates
that, within the WBLA, it is always possible to simulate the
results of a partition-free switch on within the partitioned
approach of Jauho et al. [51].

A popular method for treating periodically driven quantum
systems is the Floquet scattering matrix approach [22,30]. An
explicit relation between the NEGF and Floquet formalisms
excluding many-body interactions has been found in Ref. [53].
This relation has been used to formulate and efficiently solve
the equations of motion for the Green’s function for both
charge and energy transport in ac-driven quantum systems
[31,54–56] and was applied very recently to a similar graphene
setup as in the present paper [57]. We emphasize that, in the
formalism of the present paper, no assumptions need to be
made about the periodicity of the bias voltage. The Floquet
formalism focuses on long-time dynamics, but increasingly
studies have focused on the short-time transient current
response to a sudden quench described by a change in the
Hamiltonian of the system at some special switch-on time
t0. This change could involve a partitioned or a partition-free
switch-on process discussed above.

Within noninteracting models, several numerical time-
propagation schemes have been developed that go beyond
the WBLA. However, these methods scale with the number
of time steps Nt (to different powers) [58] and therefore can
become very expensive for large molecular structures. By
contrast, the TD-LB formalism used in this paper scales with
the system size as N2

s but does not scale at all with Nt since
all transport quantities are expressed as exact “single-shot”
functions of the time. This enables a trivial parallelization of
the calculation of the time-dependent current as the different
single-shot calculations can be distributed over the machine
cores with no need to share information between them [59].
So far, this formalism has been successfully applied to
calculations of currents and populations in superconducting
junctions [60], molecular wires [61,62], graphene nanoribbons
(GNRs) [45,63], and double quantum dot [64] systems for
a variety of different time-dependent biases. Recently, this
formalism was extended to calculations of the transient current
noise in extended molecular structures for which the two-time
Green’s functions are essential [47].

Even though stationary charge pumping in graphene-based
systems has been studied both experimentally [65,66] and the-
oretically [67–71], the transient regime [72,73] has remained
fairly unexplored. In the present paper, we will therefore apply
the TD-LB formalism to the study of charge pumping in GNRs
driven by periodic fields in both the transient and the long-time

regimes. In Sec. II A, the TD-LB theory we will use is outlined,
and then in Sec. II B it is applied to the problem of charge
pumping in a generic molecular junction. We then outline
the conditions needed to generate a finite net current across
the system purely by tuning parameters of the driving bias.
This set of conditions is referred to as the quantum pump
symmetry theorem. Moving on to the actual implementation
of the theory in Sec. III, we choose an appropriate bias to
investigate the dependence of the long-time pumped current
on dynamical symmetry breaking in both zigzag (zGNR) and
armchair (aGNR) configurations. Following this, we present
for these configurations fully time-dependent calculations of
the current in response to a simple sinusoidal driving field.

II. THEORETICAL BACKGROUND

A. The Hamiltonian and the NEGF

The theory of the NEGF is concerned with the calculation
of ensemble averages in response to a bias switch-on event
at time t0. These ensemble averages are propagated along the
so-called Konstantinov-Perel’ (KP) contour γ , which contains
two horizontal branches C−,C+ running from t0 to t and t to
t0, respectively. It also includes a vertical branch CM running
in the imaginary time direction from t0 to t0 − iβ, where β is
the inverse temperature of the system. The latter propagation
in imaginary time is mathematically isomorphic to a thermal
averaging. In what follows, the variable z is used to refer to
generic contour times, and it is therefore necessary to specify
a generic Hamiltonian for all values that z takes along the KP
contour:

Ĥ (z) =
∑
kασ

εkα(z)d̂†
kασ d̂kασ +

∑
mnσ

hmn(z)d̂†
mσ d̂nσ

+
∑

m,kασ

[Tmkα(z)d̂†
mσ d̂kασ + Tkαm(z)d̂†

kασ d̂mσ ]. (1)

The first term in this expression corresponds to the Hamiltoni-
ans describing the individual reservoirs/leads where the index
α is used to label leads and k labels the kth lead eigenstate. The
second term corresponds to the Hamiltonian of the molecular
structure with indices n and m labeling molecular eigenstates.
The final term describes the coupling of the leads and the
central system with the corresponding matrix elements Tm,kα ,
and σ denotes the spin degree of freedom of the electrons. The
objects d̂kασ ,d̂mσ and d̂

†
kασ ,d̂

†
mσ are annihilation and creation

operators of the leads and the central system.
The i,j th component of the one-particle Green’s function

on the KP contour is defined on the molecular basis as follows:

Gij (z1,z2) = −i
Tr

[
e−βĤ M

T̂γ [d̂i,H(z1)d̂†
j,H(z2)]

]

Tr
[
e−βĤ M

] . (2)

In this expression, the contour arguments z1 and z2 can be
chosen to lie anywhere on γ , corresponding to a thermal
average of pairs of creation/annihilation processes occurring
both in and out of equilibrium. T̂γ orders operators (Heisenberg
picture) later on the KP contour to the left, and Ĥ M = Ĥ − μN̂

is the Matsubara Hamiltonian describing the equilibrium
system. Various components of the Green’s function with
useful physical meanings are defined by specifying the contour

195429-2



TIME-DEPENDENT LANDAUER-BÜTTIKER APPROACH TO . . . PHYSICAL REVIEW B 96, 195429 (2017)

times, for example, the lesser Green’s function G<(t1,t2) may
be obtained by choosing z1 ∈ C− and z2 ∈ C+.

To describe the switch on of a bias within a partition-free
approach, we assume that the lead-molecule coupling terms
Tm,kα are present for the system both in and out of equilibrium,
i.e., they are present for all values of z on the KP contour. In
the time-dependent Hamiltonian previously studied within the
TD-LB formalism, we assumed that the lead energies εkα(z)
are contained in the following “block” of the Hamiltonian
energy matrix:

[hαα(z)]kk′ =
{

[εkα + Vα(t)]δkk′, z ≡ t ∈ C− ⊕ C+,

(εkα − μ)δkk′, z ∈ CM.
(3)

Here, Vα(t) is an external bias applied to the leads of the
nanojunction. Finally, the energies of the molecular struc-
ture Hamiltonian are allowed to be shifted by a spatially
homogeneous time-dependent field VC and a spatially local
time-independent term umn,

[hCC(z)]mn =
{
hmn + umn + VC(t)δmn, z ∈ C− ⊕ C+,

hmn − μδmn, z ∈ CM.

(4)
In what follows, we will set umn = 0 and VC(t) = 0 as the

effects of the latter kind of time dependence can be equivalently
studied with a lead-independent term in the bias Vα(t) [62].
In this case, one can reexpress the Kadanoff-Baym equations
for the different Green’s-function components in terms of an
effective non-Hermitian Hamiltonian [39],

heff
CC ≡ hCC − i

2

∑
α

Γ α, (5)

whose eigenvalues correspond to unstable eigenmodes of the
molecular structure. These eigenmodes have a finite lifetime
due to the presence of the level width matrix, which is defined
in terms of the lead-molecule coupling,

[Γ α]mn(ω) = 2π
∑

k

Tm,kαδ(ω − εkα)Tkα,n, (6)

and assumed to be energy independent in accordance with the
WBLA, i.e., it is evaluated at the Fermi energy of lead α.
In terms of this effective Hamiltonian, we then may derive
the following exact expression for the greater/lesser Green’s
functions [61]:

G≷
CC(t1,t2) = ∓i

∫
dω

2π
f [∓(ω − μ)]

×
∑

α

Sα(t1,t0; ω)Γ α S†
α(t2,t0; ω), (7)

where we have defined the matrices Sα as follows:

Sα(t,t0; ω) ≡ e−iheff
CC (t−t0)

[
Gr

CC(ω) − i Kα(t,t0; ω)
]
. (8)

In this expression, we have defined the frequency-dependent
retarded Green’s function,

Gr
CC(ω) = (

ω1CC − heff
CC

)−1
, (9)

whose Hermitian conjugate is the advanced component
Ga

CC(ω) [39,74,75]. In addition, we introduce the matrix

object,

Kα(t,t0; ω) =
∫ t

t0

dt̄ e−i(ω1CC−heff
CC )(t̄−t0)e−iψα (t̄ ,t0). (10)

Here, the time-dependent bias Vα(t) of lead α enters into
Eq. (8) only via the phase factors,

ψα(t1,t2) ≡
∫ t1

t2

dτ Vα(τ ), (11)

in the integrand of the Kα matrix. The time integrals in Eq. (8)
can therefore often be removed analytically. The current in
lead α is defined in terms of a particle number derivative,

Iα(t) ≡ q

〈
dN̂α(t)

dt

〉
, (12)

where q is the electron charge and a factor of 2 is included
in the particle number to account for spin degeneracy. From
this definition, one can derive the following rather compact
expression for the current (with the convention q = −1)
[46,61]:

Iα(t) = 1

π

∫
dω f (ω − μ)TrC

×
[

2 Re[ieiω(t−t0)eiψα (t,t0) Sα(t,t0; ω)Γ α]

−Γ α

∑
β

Sβ(t,t0; ω)Γ β S†
β(t,t0; ω)

]
. (13)

We note in passing that, whereas both time arguments in
Eq. (8) are needed to calculate current correlations [47], for
the first moment of the current only the single-time lesser
Green’s function is needed, corresponding to the second term
in Eq. (13).

B. Symmetry conditions on a pump current

It is sometimes possible to induce a nonequilibrium process
that breaks the spatial symmetry of current flow by introducing
a term in the Hamiltonian that breaks time-reversal (TR)
symmetry. Choosing �α = �D = �β to be the fundamental
driving frequency of the periodic signal in the leads, we now
define the pump current (also referred to as the dc component
of the current in the literature [22,31]) at time τ after the
switch-on time,

I
(pump)
αβ (τ ) ≡ �D

2π

∫ τ+(2π/�D )

τ

dt[Iα(t) − Iβ(t)]. (14)

There may be conditions under which a finite pumping current
exists in the transient regime following the switch on but not in
the steady-state limit when transient modes in the current have
decayed to zero. We would like to define general conditions
under which this is not true, i.e., we wish to investigate
stable quantum pumps generated by dynamical driving fields
satisfying the following condition:

lim
t0→−∞I

(pump)
αβ (τ ) 	= 0. (15)

We work in the long-time limit because in this limit the charge
pumped per cycle should have settled into a steady-state value.
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In this limit, it was shown in Ref. [46] that the long-time current can be expressed as

lim
t0→−∞Iα(t) = lim

t0→−∞
1

π

∫
dω f (ω − μ)TrC

{
2 Re Γ αei(ω1CC−heff

CC )(t−t0)eiψα(t,t0) Kα(t,t0; ω)

− e−iheff
CC (t−t0)Γ α

∑
γ

K γ (t,t0; ω)Γ γ K †
γ (t,t0; ω)ei(heff

CC )†(t−t0)

}
. (16)

We now impose that the bias driving the system is periodic
with a basic driving frequency of �D ,

Vα(t) = Vα

(
t + 2π

�D

)
. (17)

We then can show that the phase factor of the bias is periodic
and can therefore be represented as a Fourier series with
undetermined coefficients,

e−iψα (t,−∞) = exp

(
−i

∫ t−(2π/�D )

−∞
dτ Vα(τ )

)

=
∑

n

cα
ne−in�Dt . (18)

Here, we introduce the Fourier coefficient,

cα
n = �D

2π

∫ 2π/�D

0
dt e−iψα (t,−∞)ein�Dt . (19)

If, in addition, the bias is TR symmetric Vα(t) = Vα(−t), then
the phase factor satisfies another useful property in the long-
time regime,

e−iψα (t,−∞) = exp

(
i

∫ −t

−∞
dτ Vα(τ )

)
exp

(
i

∫ −∞

∞
dτ Vα(τ )

)

= [e−iψα (−t,−∞)]∗. (20)

Thus, from the identity (18) we conclude that the Fourier
coefficients must satisfy the property,

cα
n = cα∗

n ∈ R. (21)

Thus, any bias which breaks TR symmetry leads to a phase
with complex Fourier coefficients cα

n = |cα
n |eiφ(n)

α .
In Appendix A, we use this property along with Eq. (18) to

prove a general result, which we refer to as the quantum pump
symmetry theorem:

If (i) Vα(t) and/or Vβ(t) is given by a sum of more than
one harmonic with frequencies that are all integer multiples
of �D , (ii) in at least one of the leads, TR symmetry is
broken in at least one of the harmonics, and (iii) the voltages
satisfy Vα(t) 	= Vβ(t), then there is a nonzero net pump current
running between the α and the β leads.

Out of conditions (i)–(iii), condition (iii) of this theorem
is the only necessary condition for a pump current to exist as
there can be no pump current if the bias in each lead is identical.
The additional satisfaction of conditions (i) and (ii) together
with (iii) constitutes a sufficient but unnecessary condition
for the existence of a nonzero pump current, i.e., the stronger
statement that the existence of a nonzero pump current requires
(i) and (ii) to hold in addition to (iii) is not true. A pump current
could exist, for instance, if TR symmetry was broken in one
of the leads without the additional assumption that the relation
(A11) holds, which would be true if, e.g., the amplitude of the
driving signal was different in each lead. This quantum pump

symmetry theorem however gives experimentalists a means of
generating a net current per driving cycle with zero net bias
per cycle and with no difference in the amplitude of driving
signals across the terminals of a nanodevice. It should also
be noted that, in the so-called quantum ratchet effect, spatial
asymmetry of the junction in addition to a periodic driving
is used to generate a pumped current [23], but according to
the quantum pump symmetry theorem proven here, the system
may be completely spatially symmetric so that Γ α = Γ β and
still there will be a reliable rectified current if the purely
dynamical conditions (i)–(iii) of this theorem are satisfied.
Calculations of the pump current through such a spatially
symmetric system will be presented in Sec. III.

III. RESULTS

A. Transport setup

We investigate ac transport in two representative graphene
structures, see Fig. 1. In the transport setup the central devices
(C) are GNRs, and they are similar in length (∼4 nm), width
(∼1 nm), and in the number of carbon atoms (∼200). The
difference is in the orientation of the GNR, one having arm-
chair edges in the transport direction, while the other possesses
zigzag edges. The leftmost atoms are connected to the left
lead (L), whereas the rightmost atoms are connected to the
right lead (R). The structures are modeled in the tight-binding
framework with a nearest-neighbor hopping tC = 2.7 eV.
From now on, we express all the energies in units of tC . We
wish to keep the tight-binding energy spectrum electron-hole
symmetric, and we only include the first nearest-neighbours;
however, the second- and third-nearest- neighbours could be
included with the same computational cost [76]. As stressed
in the previous section, we work in the partition-free setup

FIG. 1. Graphene nanoribbons studied in the ac transport sim-
ulations. Top: armchair edges longitudinally (transport direction);
bottom: zigzag edges longitudinally.
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FIG. 2. Pump current versus the phase difference in (a) armchair
and (b) zigzag graphene nanoribbons with varying bias strengths.

where the central region is being initially coupled to the
lead environment. The global equilibrium temperature is set
with (kBT )−1 = 100/tC , and, with the symmetric energy
spectrum, we also set the chemical potential at μ = 0. The
coupling strength between the central region and the leads is
included in the resonance width � = �L + �R = tC/40 which

corresponds to a weak-coupling regime where the WBLA is a
good approximation [77].

B. Nonzero pump current with zero net driving

We now wish to simulate the general result shown in Sec. II.
We take the periodic bias profile for lead α to be of the form

Vα(t) = Vα + A(1)
α cos(p1�Dt + φα) + A(2)

α cos(p2�Dt),

(22)

where Vα is a constant shift of the energy levels, A(1),(2)
α are

the amplitudes of the first- and second-harmonic driving, �D

is the frequency of the driving, and φα is the phase shift of the
first harmonic. This profile is periodic in T ≡ �D/(2π ) as in
Vα(t + T ) = Vα(t). Formulas for the time-dependent current
and pump current corresponding to this choice of bias are
presented in Appendix C.

In Fig. 2 we plot the left-right pump current ILR versus the
phase difference φ ≡ |φL − φR| with varying bias strengths.
To emphasize the dependence on φ alone, we choose the
frequencies of the two harmonics in Eq. (22) to be equal
p1 = 1 = p2. We take the oscillation amplitude to be half of
the constant bias shift A(1)

α = A(2)
α = Vα/2 and the oscillation

frequency to be �D = tC . We clearly observe the condition for
zero pump current when φ = 0,±2nπ for integer n, and the
maximal values are obtained when φ = ±nπ . In addition, the
curves are symmetric around φ = 0. This can be understood
by choosing all parameters in Eq. (C11) to be lead independent
with the exception of the phase in which case one obtains the
following pump current for the two-lead system:

I
(pump)
LR = 1

π

∑
j,k

∑
r,r ′,s,s ′

δrr ′
ss (pi)Jr

(
A(1)

p1�D

)
Jr ′

(
A(1)

p1�D

)
Js

(
A(2)

p2�D

)
Js ′

(
A(2)

p2�D

)

×
〈
ϕR

k

∣∣Γ L

∣∣ϕR
j

〉〈
ϕL

j

∣∣Γ R

∣∣ϕL
k

〉 + 〈
ϕR

k

∣∣Γ R

∣∣ϕR
j

〉〈
ϕL

j

∣∣Γ L

∣∣ϕL
k

〉
〈
ϕL

j

∣∣ϕR
j

〉〈
ϕR

k

∣∣ϕL
k

〉
(ε̄j − ε̄∗

k )
[e−i(r−r ′)φL − e−i(r−r ′)φR ]

×
[
�

(
1

2
− β

2πi
[ε̄j − μ − V − �D(p1r + p2s)]

)
− �

(
1

2
+ β

2πi
[ε̄∗

k − μ − V − �D(p1r
′ + p2s

′)]
)]

. (23)

Note the similarity of this formula to the generic case in
Eq. (A10), and in particular note how the phase differ-
ence [e−i(r−r ′)φL − e−i(r−r ′)φR ] has an identical structure to
Eq. (A13). The presence of the function δrr ′

ss ′ (pi) guarantees
that there is no pump current without a second harmonic in
any lead (i.e., when A(2)

γ = 0 for all γ ) as in this case the
summations over s,s ′ vanish and r = r ′. Also, we note that
from the relation,

e−i(r−r ′)φL − e−i(r−r ′)φR ∝ −2i sin

(
(r − r ′)

φ

2

)
, (24)

it is evident that the pump current in this system must be
zero when φ = 0, ± 2nπ for integer n and that it possesses
maximal values when φLR = ±nπ . This behavior differs
qualitatively from the dependence on a phase difference
δ between oscillating parameters in standard treatments of
double parametric quantum pumping [31]. In these approaches

the pumped current is usually proportional to sin(δ) and is
therefore asymmetric about its zero points, which occur at
multiples of ±π . As the formula for I

(pump)
LR must be unchanged

under the exchange of indices r ↔ r ′, the expression (24)
also implies that the pump current is unchanged upon reversal
of sign φ ↔ −φ. Both these facts are reflected in the pump
current characteristics of Fig. 2.

Interestingly, we also find that the pump current changes
sign as the applied bias crosses the value Vα = tC . For single-
level transport, i.e., when the molecular Hamiltonian is equal
to the level energy heff

CC ≡ ε0 − i
2�, this sign reversal can be

explained with a simple particle-hole symmetry argument [78],
illustrated schematically in Fig. 3 with ε0 = 1. Due to the
periodic driving in the leads, transport channels are opened up
between the dot energy and various photon-assisted sidebands,
which occur with a weighting given by some product of Bessel
functions appearing in the summation of Eq. (A10). When V >
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FIG. 3. Single-level schematic: electron transfer processes in
the (a) V > ε0 case are replaced by hole transfer processes in the
(b) V < ε0 case following inversion of the bias about the dot energy.

ε0, shown in Fig. 3(a), electrons tunnel from the sidebands
onto the level, crossing an energy gap of |μ + V + n�D − ε0|.
When V < ε0, shown in Fig. 3(b), electron tunneling processes
are replaced by corresponding oppositely charged hole transfer
processes with an energy gap of −|ε0 + μ − V − n�D|. These
processes occur with the same weighting in the transmission
as correspondent electron transfer processes in the V > ε0

case as can be seen by evaluating the particle/hole populations
for each ordering of V and ε0 [78]. This argument may be
extended to the graphene structures studied in the present paper
if we note that the density of states for each structure has a
pronounced peak (a van Hove singularity) at tC . The situation
is almost as if we had only one dominant energy level at
E = tC , and when the bias strength is close in energy with
the resonant level the pump current changes sign. We note
that analogous bias-dependent current sign switching about a
point of symmetry in the GNR energy spectrum was observed
experimentally in Ref. [65].

In Fig. 4 we display plots of the φ-dependent pump current
in the different GNRs where the frequency ratio p2/p1 is
allowed to vary. We choose the fixed bias shift Vα = 3tC/2
with all the other parameters as in Fig. 2. The current is plotted
on a logarithmic scale as the presence of higher-frequency
modes causes suppression of high-order Bessel functions in
the summation of Eq. (23). In all cases displayed, the second
harmonic in Eq. (22) drives the system with a frequency that
is a multiple of the frequency of the first harmonic. This
causes additional nodes to form at ±n2π/p2 in the phase-
dependent pump current, corresponding to “off” states of the
electric signal. Formally, this is because the phase dependence
is coupled to p2 through the presence of the generalized
Kronecker δrr ′

ss (pi) in Eq. (23). The definition of this object

FIG. 4. Pump current versus the phase difference in (a) armchair
and (b) zigzag graphene nanoribbons with different values of the
frequency ratio p2/p1, where p1 = 1.

Eq. (C12) implies that we can make the replacement r − r ′ →
−p2(s − s ′) everywhere in Eq. (23) and therefore in the phase-
dependent factor (24) so that the nodes of the pump current
appear when p2(s ′ − s)φ/2 = ±nπ . This complex switching
behavior provides experimentalists with a larger parameter
space for the generation of off states in a GNR-based switch.

In Fig. 5 we also show how the pump current through the
GNRs at a certain phase difference and bias strength depends
on the driving frequency for �D/tC � 0.1. Verifying the
observation in Fig. 2 also here we see how the curves with Vα =
tC and Vα = 3tC/2 are of opposite signs. Interestingly, we also
observe the pump current changing its sign as a function of

FIG. 5. Pump current versus the driving frequency in (a) armchair
and (b) zigzag graphene nanoribbons with different bias and phase
values.
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FIG. 6. Time-dependent response of the graphene nanoribbons to
an odd-inversion-symmetric drive. (a) Time-dependent bias voltage
profile, (b) transient current, and (c) Fourier transform of the transient
current (arbitrary units).

the driving frequency. For instance, the pump current with
Vα = tC and φ = π/2,π becomes positive (for both armchair
and zigzag geometries) with higher driving frequencies. The
�D → 0 limit of the pump current is discussed in Appendix B
where it is shown to converge to zero at zero driving frequency.
For different values of φ, the regime for driving frequencies
that are small but still finite (�D/tC < 0.1) may be explored by
increasing the number of Bessel functions in the summations
over r,r ′,s,s ′ until convergence is achieved.

C. High-harmonic response

Now we investigate the full time-dependent response of
the GNRs to two different ac bias voltages. In contrast to
the previous pump current calculations, now the bias profiles
consist of a monoharmonic drive: VL(t) = V0 + A cos(�Dt)
and VR(t) = −VL(t). In the following we consider the effects
of odd-inversion symmetry of the bias profile with respect to
half the period:

Vα(t + T/2) = −Vα(t). (25)

By considering the Fourier series representation of this kind
of bias, it is straightforward to show from the property (25)
that all the even harmonics in the series vanish. In Fig. 6(a), we
consider the current response to out-of-phase biases applied to
each lead with constant term V0 = 0. This bias profile satisfies
the odd-inversion symmetry condition (25). The amplitude and
the frequency of the oscillation are set, respectively, to A = tC,
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FIG. 7. Time-dependent response of the graphene nanoribbons to
a broken-inversion-symmetric drive. (a) Time-dependent bias voltage
profile, (b) transient current, and (c) Fourier transform of the transient
current (arbitrary units).

�D = tC/10 = 2π/T with period T ≈ 15 fs. In Fig. 6(b) we
show the transient current I (t) ≡ [IL(t) + IR(t)]/2 through
the different GNR structures with the bias voltage profile of
Fig. 6(a). Since our unit of energy is ε = 1 eV, we have the
conversions for the units of time and current by t = h̄/ε ≈
6.58 × 10−16 s and I = eε/h̄ ≈ 2.43 × 10−4 A, respectively.
To study the response in more detail we take the absolute value
of the Fourier transform (FT) of the time-dependent current
signal, see Fig. 6(c). The FT is computed from an extended
signal of the one shown in panel (b), and Blackman window
filtering is used. The FT displays peaks at the odd harmonics
of the basic driving frequency ω = (2n + 1)�D up to very
high-harmonic order. The appearance of odd harmonics only
is due to the spectrum of the unbiased Hamiltonian being
electron-hole symmetric and the odd-inversion symmetry of
the applied ac bias profile. Physically, one may consider the
picture in Fig. 3(a) with photon-assisted tunneling of electrons
only permitted to occur from sidebands lying at odd multiples
of �D so that these are the resonant frequencies of the current.
We note that the presence of these effects is indicative of a
system operating far beyond the linear-response regime.

In the second case, we break the odd-inversion symmetry
of the applied bias with a constant shift term, see Fig. 7(a).
In this case we set V0 = tC/2 and A = tC/2, and the driving
frequency is chosen to be the same as in the first case. In
Fig. 7(b) we show the transient behavior of the current with the
on-off bias voltage profile in Fig. 7(a). Now, high harmonics

195429-7



MICHAEL RIDLEY AND RIKU TUOVINEN PHYSICAL REVIEW B 96, 195429 (2017)

of even order will develop since we broke the odd-inversion
symmetry of the applied bias voltage [79] and there is a
nontrivial contribution to the current from photon-assisted
sidebands occurring at even multiples of the fundamental
driving frequency. Therefore, in addition to the odd harmonics
in the previous case, we observe peaks [see Fig. 7(c)] at ω =
2n�D also up to very high harmonics. The appearance of the
odd-even harmonics could also be controlled, e.g., by breaking
the particle-hole symmetry of the unbiased Hamiltonian via
second- and third-nearest-neighbor hoppings [80].

In this bias voltage range, no qualitative differences are
found between the transient currents in the armchair and zigzag
geometries, albeit certain peaks in the Fourier spectrum might
be a little more pronounced, which is due to structure-specific
lead-ribbon and intraribbon transitions: For instance, around
ω = 10�D = tC the overall intensity of the harmonics is
enhanced due to mixing with the intraribbon highest occupied
molecular orbital–lowest unoccupied molecular orbital-like
transitions. In both cases the time-dependent current [Figs. 6(b)
and 7(b)] shows a rapid transient oscillation relaxing to a
periodic steady-state-like solution on a time scale of about 10
fs. After this, a time-varying persistent oscillation is observed
with a superimposed “ringing” feature due to the internal
structure of the GNRs [46,51].

IV. CONCLUSIONS

The time-dependent Landauer-Büttiker formalism was used
to study charge pumping in a generic molecular junction,
enabling fast simulation of the transient, nonadiabatic, and
steady-state electron transport regimes for the same compu-
tational cost. It was shown via the quantum pump symmetry
theorem that a nonzero net current across a nanojunction can

be generated purely by tuning the parameters of the driving
bias.

As an application of this theory we studied graphene
nanoribbons driven by periodic fields in both the transient
and the long-time regimes. We illustrated the consequences
of the quantum pump symmetry theorem by choosing an
appropriate bias to investigate the dependence of the long-time
pumped current on dynamical symmetry breaking in different
GNR configurations. The results of these calculations show
that discrete on-off states of the current can be generated
from analog waves, which has implications for the design
of graphene-based GHz-THz frequency modulators [81],
switches [82], and frequency detectors [83].

We also presented for these GNR configurations fully
time-dependent calculations of the current in response to
a simple sinusoidal driving field. By varying the inversion
symmetry of the applied ac bias profiles, the current response
selectively generates very high-order odd or even harmonics
of the basic driving frequency. This will prove useful in the
design of graphene-based switches or frequency detectors.
Future work will involve an extension of the method presented
here to calculations of the time-dependent current noise of
GNRs and other two-dimensional materials [47].
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APPENDIX A: DETAILS OF THE QUANTUM PUMP SYMMETRY THEOREM

The bias in Eq. (17) can always be represented as a sum of N periodic terms with frequencies that are integer multiples
of �D ,

Vα(t) =
N∑

n=1

V (n)
α (t) =

N∑
n=1

V (n)
α

(
t + 2π

pn�D

)
, (A1)

where pn is an integer depending on the position n in the series. For example, the Fourier series of Vα(t) has the form of Eq. (A1)
with N → ∞ and with pn ranging from minus to plus infinity. The trivial case of N = 1 and p1 = 1 returns us to the basic
periodic form (17), but it should be noted that, whereas the full signal Vα(t) has a time period of 2π

�D
, it does not have the periodicity

2π
pn�D

of its constituent terms. This allows us to study not only just the periodicity of the driving field, but also the decomposition
of the driving field into harmonics of the fundamental driving frequency and the effect of the interplay of these harmonics on the
pump current. With the representation of Eq. (A1), the exponential phase factor is a product of periodic functions,

e−iψα (t,−∞) = exp

(
−i

∫ t

−∞
dτ Vα(τ )

)
=

N∏
n=1

exp

(
−i

∫ t

−∞
dτ V (n)

α (τ )

)
=

N∏
n=1

exp

(
−i

∫ t−(2π/pn�D)

−∞
dτ V (n)

α (τ )

)
. (A2)

Each term in this product can therefore be expressed as a Fourier series as in Eq. (17),

e−iψα (t,−∞) =
∑

m1···mN

cα
m1

· · · cα
mN

e−i�D (p1m1+p2m2+···+pN mN )t , (A3)
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where cα
mi

are undetermined lead-dependent Fourier coefficients whose value depends upon the particular form of V (i)
α (t). When

we substitute Eq. (A3) into Eq. (16) and evaluate the time integrals, one obtains

lim
t0→−∞[Iα(t) − Iβ(t)] = 1

π

∫
dω f (ω − μ)

∑
m1, . . . ,mN

l1, . . . ,lN

TrC
(
2 Re

{
i
(
Γ αcα

m1
cα∗
l1

· · · cα
mN

cα∗
lN

− Γ βcβ
m1

c
β∗
l1

· · · cβ
mN

c
β∗
lN

)

×e−i�D [p1(m1−l1)+···+pN (mN−lN )]t Gr[ω + �D(p1m1 + · · · + pNmN )]
}

−(Γ α − Γ β)cγ
m1

c
γ ∗
l1

· · · cγ
mN

c
γ ∗
lN

e−i�D [p1(m1−l1)+···+pN (mN −lN )]t Gr[ω + �D(p1m1 + · · · + pNmN )]

×Γ γ Ga[ω + �D(p1l1 + · · · + pNlN )]
)
. (A4)

Note that the expression (A4) is periodic with time period 2π/�D and therefore the long-time pump current can be evaluated
over the integration range of [0,2π/�D],

I
(pump)
αβ ≡ lim

t0→−∞I
(pump)
αβ (τ ) = �D

2π

∫ 2π/�D

0
dt lim

t0→−∞[Iα(t) − Iβ(t)]

= 1

π

∫
dω f (ω − μ)

∑
m1, . . . ,mN

l1, . . . ,lN

δmi li (N )TrC
(
2 Re

{
i
(
Γ αcα

m1
cα∗
l1

· · · cα
mN

cα∗
lN

− Γ βcβ
m1

c
β∗
l1

· · · cβ
mN

c
β∗
lN

)

×Gr[ω + �D(p1m1 + · · · + pNmN )]
} − (Γ α − Γ β)

∑
γ

cγ
m1

c
γ ∗
l1

· · · cγ
mN

c
γ ∗
lN

×Gr[ω + �D(p1m1 + · · · + pNmN )]Γ γ Ga[ω + �D(p1l1 + · · · + pNlN )]
)
. (A5)

Here we make the definition,

δmi li (N ) ≡
{

1, p1(m1 − l1) + · · · + pN (mN − lN ) = 0,

0, else.
(A6)

For instance, when N = 2, this can be written

δmi li (N ) = δp1m1,p1l1δp2m2,p2l2 + δp1m1,p2l2δp2m2,p1l1 + δp1m1,−p2m2δp1l1,−p2l2 . (A7)

To simplify Eq. (A5), we use the identity,

Gr(ω + A) − Ga(ω + B) = Gr(ω + A)(B − A − iΓ )Ga(ω + B), (A8)

thereby obtaining

I
(pump)
αβ = 1

π

∫
dω f (ω − μ)

∑
m1, . . . ,mN

l1, . . . ,lN

δmi li (N )TrC
[(

Γ αcα
m1

cα∗
l1

· · · cα
mN

cα∗
lN

− Γ βcβ
m1

c
β∗
l1

· · · cβ
mN

c
β∗
lN

)

× (Gr[ω + �D(p1m1 + · · · + pNmN )]{Γ − i[p1(m1 − l1) + · · · + pN (mN − lN )]}Ga[ω + �D(p1l1 + · · · + pNlN )])

−(Γ α − Γ β)
∑

γ

cγ
m1

c
γ ∗
l1

· · · cγ
mN

c
γ ∗
lN

Gr[ω + �D(p1m1 + · · · + pNmN )]Γ γ Ga[ω + �D(p1l1 + · · · + pNlN )]
]
. (A9)

Due to the presence of the generalized Kronecker function δmi li (N ), the second term on the second line of Eq. (A9) vanishes, and
after some cancellations we arrive at the following:

I
(pump)
αβ = 1

π

∫
dω f (ω − μ)

∑
m1, . . . ,mN

l1, . . . ,lN

δmi li (N )TrC
((

cα
m1

cα∗
l1

· · · cα
mN

cα∗
lN

− cβ
m1

c
β∗
l1

· · · cβ
mN

c
β∗
lN

)

×{
Γ α Gr[ω + �D(p1m1 + · · · + pNmN )]Γ β Ga[ω + �D(p1l1 + · · · + pNlN )]

+Γ β Gr[ω + �D(p1m1 + · · · + pNmN )]Γ α Ga[ω + �D(p1l1 + · · · + pNlN )]
)}

−(Γ α − Γ β)
∑

γ 	=α,β

cγ
m1

c
γ ∗
l1

· · · cγ
mN

c
γ ∗
lN

Gr[ω + �D(p1m1 + · · · + pNmN )]Γ γ Ga[ω + �D(p1l1 + · · · + pNlN )]
)
.

(A10)

We can immediately derive from Eq. (A10) some general rules for different numbers of harmonics. To focus on the effect
of TR symmetry breaking, we assume that, for all terms except the j th, the coefficients in each lead are TR symmetric. The
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j th harmonic in lead β is assumed TR symmetric and therefore real [by relation (21)], whereas the j th harmonic in lead α is
assumed to break the TR symmetry, so it must be complex. We also assume that the coefficients of the j th harmonic have the
same magnitude in each lead (i.e., that the only difference between harmonics in leads α and β is the broken TR symmetry of
the latter) so that they are related by a multiplicative phase factor only

cα
mj

= cβ
mj

e
iφα

mj . (A11)

Finally we are in a position to prove some general results for different choices of N .
Let us first consider the case N = 1. In the single-harmonic case, coefficients of the different leads are related by a multiplicative

phase factor, and so we obtain ∑
m1,l1

(
cα
m1

cα∗
l1

− cβ
m1

c
β∗
l1

)
δmi li (1) =

∑
m1

(|cα
m1

|2 − |cβ
m1

|2) = 0. (A12)

A pump current between leads α and β cannot be guaranteed in this case unless there are more than two electrodes [if there are
just two, then the final term in Eq. (A10) is zero], and Γ α 	= Γ β . For almost all systems of interest, therefore, N = 1 implies
I

(pump)
αβ = 0.

Then, we have a look at the case of N 	= 1. If for all ni’s, cα
ni

= c
β
ni

then there would trivially be a zero pump current. However,
the assumption (A11) means that one can write(

cα
m1

cα∗
l1

· · · cα
mN

cα∗
lN

− cβ
m1

c
β∗
l1

· · · cβ
mN

c
β∗
lN

) = (
cα
m1

cα∗
l1

· · · cα
mj−1

cα∗
lj−1

cα
mj+1

cα∗
lj+1

· · · cα
mN

cα∗
lN

)
cα
mj

cα∗
lj

(
e
i(φα

mj
−φα

lj
) − 1

)
. (A13)

The generalized Kronecker δmi li (N ) does retain a term in which mj = lj in which case the pump current vanishes, but it also
returns a term which equals 1 when, for example, pjmj = pNlN and pj lj = pNmN as illustrated in the expansion (A7) for
N = 2. This term will be finite, giving a nonzero pump current in general, and the proof of the quantum pump symmetry theorem
is complete.

APPENDIX B: THE ADIABATIC LIMIT

As mentioned above, we can always choose the V (n)
α (t) in Eq. (A1) to be sinusoidal (the N → ∞ case) in which case the cα

mi
’s

always can be replaced with a summation over Bessel functions of the first kind via the identity,

eix sin(z) =
∞∑

r=−∞
Jr (x)eirz. (B1)

In the sinusoidal series arising from the integral in Eq. (A2), the parameter x always has the dimension of an amplitude over a
driving frequency A(n)

α /�D . Therefore to investigate the adiabatic limit �D → 0 we can use the asymptotic expression for large
x (see, e.g., Ref. [84]) Jr (x) ∼

√
2

πx
cos (x − 1

2 rπ − 1
4π ) to conclude that the limiting value of the cα

mi
for low frequencies is

vanishing, i.e.,

lim
�D→0

cα
mi

= 0. (B2)

This means that the adiabatic limit of the pump current is also vanishing,

lim
�D→0

I
(pump)
αβ = 0. (B3)

This result is consistent with the prediction of Yuge et al. [25] for noninteracting systems that there is zero pump current when
only the chemical potentials of the leads are adiabatically modulated in time.

APPENDIX C: DETAILS OF THE TD AND TIME-AVERAGED CALCULATIONS

We can remove all frequency integrals in Eq. (13) after expanding the Fermi function into a series expansion whose terms
possess a simple pole structure [85],

f (x) = 1

eβx + 1
= 1

2
− lim

Np→∞

Np∑
l=1

ηl

(
1

βx + iζl

+ 1

βx − iζl

)
. (C1)

When the parameter values are ηl = 1 and ζl = π (2l − 1), this is referred to as the Matsubara expansion, but one can also improve
the convergence of this series for finite Np by expressing the poles of the Fermi function as the solutions to an eigenproblem for
a tridiagonal matrix [86–88] in the so-called Padé expansion.

To deal numerically with formulas containing the effective Hamiltonian heff
CC , we introduce the left and right eigenvectors,

heff
CC

∣∣ϕR
j

〉 = ε̄j

∣∣ϕR
j

〉
and

〈
ϕL

j

∣∣heff
CC = ε̄j

〈
ϕL

j

∣∣. (C2)
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All expressions containing the effective Hamiltonian can be recast into summations over left/right eigenvectors using the following
idempotency relation:

∑
j

∣∣ϕR
j

〉〈
ϕL

j

∣∣〈
ϕL

j

∣∣ϕR
j

〉 = 1 =
∑

j

∣∣ϕL
j

〉〈
ϕR

j

∣∣〈
ϕR

j

∣∣ϕL
j

〉 . (C3)

By inserting the expansion for the Fermi function in Eq. (13) and removing all frequency integrals, it is possible to evaluate
exactly the time-dependent current in terms of a set of special functions. The first is the so-called Hurwitz-Lerch transcendent �

[89],

�(z,s,a) ≡
∞∑

n=0

zn

(n + a)s
. (C4)

We will also use the digamma function, defined as the logarithmic derivative of the gamma function �(z) = d�(z)/dz. The
functions � and � appear after we use the Matsubara parameters in Eq. (C1) and identify these special functions with the
resulting infinite summations. They can be evaluated to arbitrary accuracy either by using an equivalent Padé expansion or by
using known numerical routines [60,90,91]. We also define the following object as a series expansion:

cosech

(
π

β
(t1 − t2)

)∣∣∣∣
t1 	=t2

� 2
Np∑
l=1

ηl[θ (t1 − t2)e−(ζl/β)(t1−t2) − θ (t2 − t1)e−(ζl/β)(t2−t1)], (C5)

where this is set to zero when t1 = t2. For an arbitrary time-dependent bias, the function cosech(π
β

(t1 − t2))|
t1 	=t2

may be

implemented using either the Matsubara parameters or the Padé parameters as in Refs. [47,61]. We also note that the step
function θ is defined by the midpoint convention. With these definitions, it is possible to expand the time-dependent current for
an arbitrary time-dependent bias thus,

Iα(t) = 1

π

∑
j

{
Re

[
2

〈
ϕL

j

∣∣Γ α

∣∣ϕR
j

〉
〈
ϕL

j

∣∣ϕR
j

〉 (
− ieiψα (t,t0)e−i(ε̄j −μ)(t−t0)�̄[t − t0,β, − (ε̄j − μ)]

− iπ

β

∫ t

t0

dτ e−i(ε̄j −μ)(t−τ )eiψα (t,τ )cosech

[
π

β
(t − τ )

]∣∣∣∣
t 	=τ

)]

−
∑
γ,k

〈
ϕR

k

∣∣Γ α

∣∣ϕR
j

〉〈
ϕL

j

∣∣Γ γ

∣∣ϕL
k

〉
〈
ϕL

j

∣∣ϕR
j

〉〈
ϕR

k

∣∣ϕL
k

〉 e−i(ε̄j −ε̄∗
k )(t−t0)

[
�

(
1
2 + β

2πi
(ε̄∗

k − μ)
) − �

(
1
2 − β

2πi
(ε̄j − μ)

)
ε̄∗
k − ε̄j

+
∫ t

t0

dt̄{−ie−i(ε̄∗
k −μ)(t̄−t0)eiψβ (t̄ ,t0)�̄[t̄ − t0,β, − (ε̄j − μ)] + c.c.j↔k} + 2πi

β
Iγ (t,β,μ,ε̄j ,ε̄

∗
k )

]}
. (C6)

Here, we have defined the function,

Iγ (t,β,μ,ε̄j ,ε̄
∗
k ) = 1

2

∫ t

t0

dτ

∫ t

t0

dτ̄ ei(ε̄j −μ)(τ−t0)e−i(ε̄∗
k −μ)(τ̄−t0)e−iψγ (τ,τ̄ )cosech

(
π

β
(τ − τ̄ )

)∣∣∣∣
τ 	=τ̄

. (C7)

We also have introduced the following compact notation for terms involving the Hurwitz-Lerch transcendent:

�̄(β,τ,z) ≡ exp

(
−π

β
τ

)
�

(
e−(2πτ/β),1,

1

2
+ βz

2πi

)
. (C8)

This general result Eq. (C6) is valid for all time-dependent biases. However, for the purposes of this paper we may substitute
the biharmonic bias Eq. (22) into Eq. (C6) by expanding the exponential phase factor in terms of Bessel functions of the first
kind via Eq. (B1),

eiψα (t1,t2) = eiVα (t1−t2)
∑

r,r ′,s,s ′
Jr

(
A(1)

α

p1�α

)
Jr ′

(
A(1)

α

p1�α

)
Js

(
A(2)

α

p2�α

)
Js ′

(
A(2)

α

p2�α

)
. (C9)
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We note in passing that the same procedure has already been carried out for the current fluctuations in Ref. [47] and using the
same logic we can remove all time integrals appearing in Eq. (C6),

Iα(t) = 1

π

∑
j

{
2Re

[〈
ϕL

j

∣∣Γ α

∣∣ϕR
j

〉
〈
ϕL

j

∣∣ϕR
j

〉
[
ie

i
A

(1)
α

p1�α
(sin (p1�α (t−t0)+φα )−sin φα)

e
i

A
(2)
α

p2�α
sin (p2�α (t−t0))

∑
r,s

Jr

(
A(1)

α

p1�α

)
Js

(
A(2)

α

p2�α

)
e−irφα

×
[
e−i(ε̄j −μ−Vα)(t−t0)[�̄(

t − t0,β, − (
ε̄j − μ − Vα − �α(p1r + p2s)

)) − �̄
(
t − t0,β, − (

ε̄j − μ
))]

+ e−i�α (p1r+p2s)(t−t0)�

(
1

2
− β

2πi

(
ε̄j − μ − Vα − �α(p1r + p2s)

))]]]

−
∑
γ,k

〈
ϕR

k

∣∣Γ α

∣∣ϕR
j

〉〈
ϕL

j

∣∣Γ γ

∣∣ϕL
k

〉
〈
ϕL

j

∣∣ϕR
j

〉〈
ϕR

k

∣∣ϕL
k

〉
[

e−i(ε̄j −ε̄∗
k )(t−t0)

ε̄∗
k − ε̄j

[
�

(
1

2
+ β

2πi

(
ε̄∗
k − μ

)) − �

(
1

2
− β

2πi

(
ε̄j − μ

))]

+
∑
r,s

Jr

(
A(1)

γ

p1�γ

)
Js

(
A(2)

γ

p2�γ

)⎡
⎢⎣ e−irφγ e

i
A

(1)
γ

p1�γ
sin φγ

ε̄j − ε̄∗
k − Vγ − �γ (p1r + p2s)

×
[
e−i(ε̄j −ε̄∗

k )(t−t0)

[
�

(
1

2
+ β

2πi

(
ε̄∗
k − μ

)) − �

(
1

2
+ β

2πi

(
ε̄j − μ − Vγ − �γ (p1r + p2s)

))]

+ ei(ε̄∗
k −μ−Vγ −�γ (p1r+p2s))(t−t0)[�̄(

t − t0,β,ε̄∗
k − μ

) − �̄
(
t − t0,β,ε̄j − μ − Vγ − �γ (p1r + p2s)

)]]

+ eirφγ e
−i

A
(1)
γ

p1�γ
sin φγ

ε̄∗
k − ε̄j − Vγ − �γ (p1r + p2s)

×
[
e−i(ε̄j −ε̄∗

k )(t−t0)

[
�

(
1

2
− β

2πi

(
ε̄j − μ

)) − �

(
1

2
− β

2πi

(
ε̄∗
k − μ − Vγ − �γ (p1r + p2s)

))]

+e−i(ε̄j −μ−Vγ −�γ (p1r+p2s))(t−t0)[�̄(
t − t0,β, − (

ε̄j − μ
)) − �̄

(
t − t0,β, − (

ε̄∗
k − μ − Vγ − �γ (p1r + p2s)

))]]]

+
∑

r,r ′,s,s ′
Jr

(
A(1)

γ

p1�γ

)
Jr ′

(
A(1)

γ

p1�γ

)
Js

(
A(2)

γ

p2�γ

)
Js ′

(
A(2)

γ

p2�γ

)
e−i(r−r ′)φγ

ε̄j −ε̄∗
k −�γ (p1(r − r ′) + p2(s − s ′))

×
[
e−i�γ (p1(r−r ′)+p2(s−s ′))(t−t0)

×
[
�

(
1

2
− β

2πi

(
ε̄j − μ − Vγ − �γ (p1r + p2s)

)) − �

(
1

2
+ β

2πi

(
ε̄∗
k − μ − Vγ − �γ

(
p1r

′ + p2s
′)))]

+ e−i(ε̄j −ε̄∗
k )(t−t0)

[
�

(
1

2
+ β

2πi

(
ε̄j −μ−Vγ −�γ (p1r + p2s)

)) − �

(
1

2
− β

2πi

(
ε̄∗
k − μ − Vγ − �γ

(
p1r

′ + p2s
′)))]

+ei(ε̄∗
k−μ−Vγ −�γ (p1r+p2s))(t−t0)

× [
�̄

(
t − t0,β,ε̄j − μ − Vγ − �γ (p1r + p2s)

) − �̄
(
t − t0,β,ε̄∗

k − μ − Vγ − �γ

(
p1r

′ + p2s
′))]

+ e−i(ε̄j −μ−Vγ −�γ (p1r
′+p2s

′))(t−t0)

×[
�̄

(
t − t0,β, − (

ε̄j − μ − Vγ − �γ (p1r + p2s)
)) − �̄

(
t − t0,β, − (

ε̄∗
k − μ − Vγ − �γ

(
p1r

′ + p2s
′)))]]]}. (C10)

We note that the above formula is obtained by using the Matsubara parameters in Eq. (C5) and identifying all resulting infinite
expansions with either the �̄ or the � functions defined above. It is therefore an exact expression and is the expression used to
obtain our numerical results for the time-dependent current in the different GNR configurations.
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We now assume that the fundamental driving frequency is lead independent, �γ = �D for all γ . This allows us to derive a
formula for the time-independent steady-state pump current using the definitions in Eqs. (14) and (15),

I
(pump)
αβ = 1

π

∑
γ

∑
j,k

∑
r,r ′,s,s ′

δrr ′
ss (pi)

( 〈
ϕR

k

∣∣Γ α

∣∣ϕR
j

〉〈
ϕL

j

∣∣Γ γ

∣∣ϕL
k

〉
〈
ϕL

j

∣∣ϕR
j

〉〈
ϕR

k

∣∣ϕL
k

〉
(ε̄j − ε̄∗

k )

×
{
e−i(r−r ′)φαJr

(
A(1)

α

p1�D

)
Jr ′

(
A(1)

α

p1�D

)
Js

(
A(2)

α

p2�D

)
Js ′

(
A(2)

α

p2�D

)

×
[
�

(
1

2
− β

2πi
[ε̄j − μ − Vα − �D(p1r + p2s)]

)
− �

(
1

2
+ β

2πi
[ε̄∗

k − μ − Vα − �D(p1r
′ + p2s

′)]
)]

− e−i(r−r ′)φγ Jr

(
A(1)

γ

p1�D

)
Jr ′

(
A(1)

γ

p1�D

)
Js

(
A(2)

γ

p2�D

)
Js ′

(
A(2)

γ

p2�D

)

×
[
�

(
1

2
− β

2πi
[ε̄j − μ − Vγ − �D(p1r + p2s)]

)
− �

(
1

2
+ β

2πi
[ε̄∗

k − μ − Vγ − �D(p1r
′ + p2s

′)]
)]}

−
〈
ϕR

k

∣∣Γ β

∣∣ϕR
j

〉〈
ϕL

j

∣∣Γ γ

∣∣ϕL
k

〉
〈
ϕL

j

∣∣ϕR
j

〉〈
ϕR

k

∣∣ϕL
k

〉
(ε̄j − ε̄∗

k )

{
e−i(r−r ′)φβ Jr

(
A

(1)
β

p1�D

)
Jr ′

(
A

(1)
β

p1�D

)
Js

(
A

(2)
β

p2�D

)
Js ′

(
A

(2)
β

p2�D

)

×
[
�

(
1

2
− β

2πi
[ε̄j − μ − Vβ − �D(p1r + p2s)]

)
− �

(
1

2
+ β

2πi
[ε̄∗

k − μ − Vβ − �D(p1r
′ + p2s

′)]
)]

− e−i(r−r ′)φγ Jr

(
A(1)

γ

p1�D

)
Jr ′

(
A(1)

γ

p1�D

)
Js

(
A(2)

γ

p2�D

)
Js ′

(
A(2)

γ

p2�D

)

×
[
�

(
1

2
− β

2πi
[ε̄j − μ − Vγ − �D(p1r + p2s)]

)
− �

(
1

2
+ β

2πi
[ε̄∗

k − μ − Vγ − �D(p1r
′ + p2s

′)]
)]})

.

(C11)

In this expression, we have used the modified Kronecker function,

δrr ′
ss ′ (pi) ≡

{
1, p1(r − r ′) + p2(s − s ′) = 0,

0, else,
(C12)

to make the replacement ε̄j − ε̄∗
k − �D[p1(r − r ′) + p2(s − s ′)] ↔ ε̄j − ε̄∗

k . Equation (C11) forms the basis for the static quantum
pump calculations carried out in Sec. III.
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