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A semirelativistic density-functional theory that includes spin-orbit couplings and Zeeman fields on equal
footing with the electromagnetic potentials, is an appealing framework to develop a unified first-principles
computational approach for noncollinear magnetism, spintronics, orbitronics, and topological states. The basic
variables of this theory include the paramagnetic current and the spin-current density, besides the particle
and the spin density, and the corresponding exchange-correlation (xc) energy functional is invariant under
local U(1) × SU(2) gauge transformations. The xc-energy functional must be approximated to enable practical
applications, but, contrary to the case of the standard density functional theory, finding simple approximations
suited to deal with realistic atomistic inhomogeneities has been a long-standing challenge. Here we propose a way
out of this impasse by showing that approximate gauge-invariant functionals can be easily generated from existing
approximate functionals of ordinary density-functional theory by applying a simple minimal substitution on the
kinetic energy density, which controls the short-range behavior of the exchange hole. Our proposal opens the
way to the construction of approximate, yet nonempirical functionals, which do not assume weak inhomogeneity
and therefore may have a wide range of applicability in atomic, molecular, and condensed matter physics.
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I. INTRODUCTION

Density-functional methods are the most widely used ap-
proach to efficiently compute the electronic structure of atoms,
molecules, and solids. Based on the Hohenberg-Kohn theorem
[1], the electronic ground-state energy of interacting electrons
is computed via the solution of the Schrödinger equation
for fictitious noninteracting electrons—the so-called Kohn-
Sham (KS) electrons [2]. At the heart of density-functional
theory (DFT) lies the idea that the exchange-correlation (xc)
energy, i.e., the energy due to the electron-electron interactions
beyond the classical Hartree energy, can be approximated by
a universal functional of appropriate local densities. In its
original incarnation, DFT considered only an external scalar
potential coupled to the charge density, which characterizes the
interacting system. This means that the universal functional for
the xc energy could be written as a functional of the charge
density alone. However, as soon as additional couplings, e.g.,
the Zeeman term or the coupling to an external vector potential,
are present, the universality of the xc-energy functional is
lost, unless additional densities are included as fundamental
variables. This observation led over the years to the creation
of multivariate DFTs, such as spin-DFT (SDFT) [3] for
including the Zeeman coupling and current-DFT (CDFT) [4]
for orbital magnetism. In these theories, the spin density
and the paramagnetic current density are included as basic
variables, respectively. For the description of two-dimensional
heterostructures [5–7] or topological insulators [8–10], spin-
orbit coupling (SOC) plays a crucial role [11]. Since SOC is
naturally described in terms of spin-dependent vector poten-
tials, its density-functional treatment requires the additional
inclusion of spin current densities as basic variables for a
universal xc-energy functional. The corresponding extension
of DFT has been dubbed spin-current-DFT (SCDFT) [12,13].

*stefano.pittalis@nano.cnr.it

Upgrading DFT to include additional variables not only
leads to universal functionals for systems with SOCs and
in strong magnetic fields, but also brings forth an important
physical concept, namely, gauge symmetry [14], which places
strong constraints on the admissible dependence of the xc-
energy functional on the basic variables and offers guidance
in the construction of approximate functionals. In CDFT, for
example, the xc-energy functional is invariant under local
U(1) gauge transformations. Similarly, for spin-orbit coupled
systems, the xc-energy functional is also invariant under local
SU(2) gauge transformations (we will come back to this point
in the next section extensively). In order to guarantee the
U(1) invariance of the theory, Vignale and Rasolt argued
that the xc energy should not be expressed in terms of the
paramagnetic current, which is gauge dependent, but in terms
of the gauge invariant vorticity [4]: thus, they arrived at the
first universal local density approximation for electrons in
a magnetic field. Subsequent experimentation showed that
the U(1)-invariant vorticity is not well suited to deal with
strongly inhomogeneous systems, such as atoms [15]. Later,
Abedinpour, Vignale, and Tokatly proposed the generalized
U(1) × SU(2) covariant vorticity as the fundamental variable
for constructing gauge-invariant approximations to the xc-
energy functional in SCDFT [16]. Its definition depends on
an arbitrary choice of a “linking path” in physical space
(cf. Ref. [16] for details)—an arbitrariness that, however,
disappears in the limit of slowly varying densities. To the best
of our knowledge, no experience has yet been gained on the
practical use of the SU(2)-covariant vorticity. In any case, this
quantity only emerges naturally when analyzing systems with
minor inhomogeneities, such as an almost-uniform electron
gas, and it may therefore suffer from the same shortcomings
as its U(1) counterpart, when applied to atomistic systems.

One lesson we learn from these examples is that the choice
of the gauge-invariant “building blocks” of the DFT is a
nontrivial and important task, which requires much ingenuity
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as well as extensive experimentation on realistic systems. For
example, the development of CDFT and, to a lesser extent,
of SDFT, has been hampered for many years by the lack
of functionals suitable to work with strong inhomogeneities.
In the case of CDFT, the difficulty arose from the vorticity
being too closely tied to the uniform free electron gas model.
In the case of SDFT, as applied to magnetic systems with
noncollinear spins, it is well known that a straightforward
generalization of functionals derived in the collinear SDFT
framework [17] only accounts for longitudinal fluctuations
of the spin magnetization. Various attempts have been made
recently [18–20] to include a dependence on transverse
fluctuation of the spin magnetization within SDFT, but none of
them, for different reasons, has been proven fully satisfactory.

In this paper we propose a way out of the impasse, following
a suggestion by Tao and Perdew [21] who noticed that
functionals of the meta-generalized-gradient-approximation
(MGGA) family, such as the TPSS and similar [22], which
use the kinetic energy density τ (r) as a basic variable, could
be made current dependent by enforcing U(1) gauge invariance
through the minimal substitution

τ → τ̃ = τ − j · j
2n

, (1)

where j is the paramagnetic current density. Earlier evidence
of the relevance of their suggestion can be found in ideas
by Dobson [23] and, particularly, Becke [24], whose current-
dependent functional, based on a careful study of the short-
range behavior of the exchange hole (x hole), greatly improved
the description of degenerate ground states in open shell atoms
[25]. Follow-up works extended these ideas and demonstrated
their usefulness in applications [26–28].

Along similar lines, we show that DFT-MGGA forms
can be readily upgraded to SCDFT-MGGA forms (i.e., they
can be made spin dependent and spin-current dependent)
by enforcing the U(1) × SU(2) gauge invariance through
minimal substitutions to be performed on the curvature of the
exchange hole. These substitutions implicate new quantities
such as the “spin-kinetic energy” (defined below), the spin
currents, and the spin density combined with its gradients.
Additionally, a trivial modification has to account for an extra
dependence of the extended on-top exchange hole on the
squared modulus of the magnetization (and no other extra
combinations). In this manner, successful approximations of
ordinary DFT can be readily turned into approximations for
SCDFT and noncollinear SDFT. Our proposal opens the
way to the construction of approximate, yet nonempirical
functionals, which do not assume weak inhomogeneity and
should therefore have a wide range of applicability in atomic,
molecular, and condensed matter physics.

This paper is organized as follows. In Sec. II we review the
theoretical background of U(1) × SU(2) gauge invariance in
SCDFT and take the opportunity to remark that the xc fields—
generated, as usual, through functional derivatives of the
xc-energy functional with respect to the basic densities—can
exert nontrivial torques on the spin density and paramagnetic
spin currents. In Sec III we derive the generalized short-range
behavior of exchange-only quantities, which allows us to
extract very useful U(1) × SU(2) gauge-invariant quantities
for the construction of functional approximations in SCDFT

and, therefore, we point out the aforementioned minimal
substitutions. In Sec. IV we give examples of new approximate
functionals of the MGGA form. Technical details concerning
the gauge transformations of the various fundamental quanti-
ties are reported in the Appendix.

II. THEORETICAL BACKGROUND: GAUGE INVARIANCE
AND XC TORQUES

We start by introducing our notational conventions: In
the following we will encounter “spatial” vectors, such as
the position r and the usual (Abelian) vector potential A,
which will be set in boldface. Components of spatial vectors
are denoted by Greek subscripts, e.g., Aμ are the spatial
components of the vector potential. Furthermore, we denote
vectors in “spin space”, such as the spin magnetization −→

s ,
by using an arrow. The components in spin space are denoted
by Latin superscripts, e.g., sa . We will also encounter “mixed
tensors”, such as the (paramagnetic) spin currents and the
non-Abelian vector potentials. These are quantities that can
be regarded as vectors with an additional index, i.e., “spatial
vectors” carrying a spin index (e.g., Aa) or vectors in spin space
carrying a spatial index (e.g.,

−→
A μ). Formally, non-Abelian

vector potentials are useful to represent spin-orbit couplings
[14,29] and, in the DFT parlance, spin currents are their
conjugate densities [12,13].

SCDFT is concerned with the calculation of the ground-
state energy and densities of the semirelativistic many-electron
Pauli Hamiltonian [30]. In comparison to the SDFT Hamilto-
nian, which contains only a scalar potential v(r) and a Zeeman
magnetic field Ba(r), the SCDFT also includes an Abelian
vector potential A(r) and a non-Abelian vector potential
Aa(r) [31]:

Ĥ = 1

2

∫
d3r�̂†(r)

[
−i∇ + 1

c
A(r) + μB

2c
σ aAa(r)

]2

�̂(r)

+Ŵ +
∫

d3rn̂(r)v(r) + μB

∫
d3rŝa(r)Ba(r). (2)

In Eq. (2) μB = 1/2c is the Bohr magneton, we employ
Einstein’s convention to sum over repeated indices (a =
x,y,z), and a multiplication by a 2 × 2 identity matrix is
implied for the terms which are diagonal in spin space, i.e.,
−i∇ + 1

c
A(r) and v(r). The electron-electron interaction is

given by

Ŵ = 1

2

∫∫
d3r1d

3r2
: �̂†(r1)�̂(r1)�̂†(r2)�̂(r2) :

|r1 − r2| , (3)

where : · · · : denotes the normal ordering of the two-
component Pauli field operators �̂† = (ψ̂†

↑ ψ̂
†
↓); finally,

n̂(r) = �̂†(r)�̂(r) (4a)

is the particle-density operator and

ŝa(r) = �̂†(r)σa�̂(r) (4b)

is the ath component of the spin-density operator. Expanding
the square and employing a partial integration [32] in Eq. (2),
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one readily obtains

Ĥ =
∫

d3rτ̂ (r) + Ŵ

+1

c

∫
d3r ĵ(r) · A(r) + μB

2c

∫
d3r Ĵa(r) · Aa(r)

+
∫

d3rn̂(r)ṽ(r) + μB

∫
d3rŝa(r)B̃a(r), (5)

where

τ̂ = 1

2
(∇�̂†) · (∇�̂) (6a)

is the kinetic-energy-density operator,

ĵ = 1

2i
[�̂†∇�̂ − (∇�̂†)�̂] (6b)

is the paramagnetic-current operator, and

Ĵa = 1

2i
[�̂†σa∇�̂ − (∇�̂†)σa�̂] (6c)

is the paramagnetic-spin-current operator. We have also
defined

ṽ = v + 1

2c2

[
A · A + μ2

B

4
Aa · Aa

]
, (7)

B̃a = Ba + 1

2c2
A · Aa. (8)

Given the external fields A, Aa , v, and Ba , the ground-state
energy is the expectation value of Ĥ in the corresponding
ground state |�〉. The ground-state energy can be determined
by means of a constrained-search minimization [33,34]:

E = min
(n,sa,j,Ja )

{
F [n,sa,j,Ja]

+ 1

c

∫
d3rj(r) · A(r) + μB

2c

∫
d3rJa(r) · Aa(r)

+
∫

d3rn(r)ṽ(r) + μB

∫
d3rsa(r)B̃a(r)

}
, (9)

with

F [n,sa,j,Ja] = min
|� ′〉→(n,sa,j,Ja )

〈�|T̂ + Ŵ |�〉, (10)

where the inner minimization is carried out over all the
many-body wave functions yielding the prescribed set of
densities and the outer minimization is carried out with respect
to all N -representable densities [35]. Equation (10) defines a
universal density functionals, which is the direct generalization
of the universal functional in standard DFT. Assuming that the
same set of densities is both interacting and noninteracting v

representable, one can further decompose F ,

F [n,sa,j,Ja] = TKS[n,sa,j,Ja] + EH [n] + Exc[n,sa,j,Ja]
(11)

in terms of the Kohn-Sham (KS) kinetic energy TKS[n,sa,j,Ja],
the Hartree energy EH[n] = 1

2

∫
d3r

∫
d3r ′ n(r)n(r′)

|r−r′| , and a re-
mainder Exc[n,sa,j,Ja], which is the xc-energy functional. In
this way, the problem of determining the ground-state energies
is reformulated into devising practical and sufficiently accurate

approximations for Exc. In order to simplify the notation, in
the following we redefine the external potentials μBBa → Ba

and μB

2 Aa → Aa .
The KS equations in SCDT have the form of single-particle

Pauli equations[
1

2

(
−i∇ + 1

c
AKS

)2

+ VKS

]
�μ = εk�k, (12)

where

AKS = (A + Axc) + σa
(
Aa + Aa

xc

)
, (13)

VKS = (v + vH + vxc) + σa
(
Ba + Ba

xc

)
+ 1

2c2

[
(A + σaAa)2 − A2

KS

]
, (14)

in which 1
c
Axc = δExc

δj(r) is the Abelian xc-vector potential,
1
c
Aa

xc = δExc
δJa (r) is the ath component of the non-Abelian xc-

vector potential, Ba
xc = δExc

δsa (r) is the ath component of the xc-

magnetic potential (Zeeman field), vxc = δExc
δn(r) is the xc-scalar

potential, and vH (r) = ∫
dr n(r′)

|r−r′| is the usual Hartree potential.
A fundamental property of Exc is its invariance under

general U(1) × SU(2) gauge transformations. We recall that
a local U(1) transformation U (r) is defined by

�̂(r) → �̂ ′(r) = exp

[
i

c
χ (r)

]
�̂(r), (15)

where χ (r) is a scalar function of the position, and a local
SU(2) transformation is defined by

�̂(r) → �̂ ′(r) = exp

[
i

c
λa(r)σa

]
�̂(r) = US(r)�̂(r), (16)

where λa(r) are the components of a vector function of the
position. A detailed analysis of gauge transformations in
SCDFT framework is presented in Refs. [12,13]. Note that
neither F [n,sa,j,Ja] nor TKS[n,sa,j,Ja] are invariant, but they
both have the same transformation properties because the KS
system has the same densities n, sa , j, and Ja as the interacting
system. As a result

Exc[n′,s ′a,j′,j′a] = Exc[n,sa,j,Ja], (17)

where

n → n′ = n, (18a)

sa → s ′a = Rabsb, (18b)

j → j′ = j + 1

c
n∇χ − i

2
saTr(σaU

†
S∇US), (18c)

and

Ja → J′a = Rab

[
Jb + 1

c
sb∇χ − i

2
nTr(σbU

†
S∇US)

]
.

(18d)

Rab is a 3 × 3 matrix describing a rotation inR3 around λ̂—the
unit vector in the direction of λa—by an angle ϕ = −2|λ|/c
and Tr is the trace taken with respect to spin indices. The
explicit derivation of Eqs. (18) is presented in the Appendix.
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The transformation of the xc fields can be readily de-
duced by combining the invariance of Exc—as expressed in
Eq. (17)—with the transformations of the densities, as given
in Eq. (18). We have

A′
xc = Axc, (19a)

A′a
xc = RabAb

xc, (19b)

B ′a
xc = Rab

[
Bb

xc + i

2
Axc · Tr(σbU

†
S∇US) − Ab

xc · ∇χ

]
,

(19c)

v′
xc = vxc − 1

c
Axc · ∇χ + i

2
Aa

xc · Tr(σaU
†
S∇US). (19d)

Equations (19) express how the xc fields in different gauges
are related. It is apparent that while Axc,μ is invariant, Ba

xc, Aa
xc,

and vxc are not invariant, but covariant [36]. Note that even in
the case of a restricted U(1) transformation, Ba

xc, Axc,μ, and vxc

do not behave as standard Maxwellian fields and, in general,
Ba

xc 	= [∇ × Axc]a . The xc fields in SCDFT should be regarded
as some effective Yang-Mills fields.

Although the xc fields are not generated by any physi-
cal field equations, they are bound to satisfy compatibility
relations—having the form of conservation laws [13]—due to
the invariance of Exc. Local U(1) invariance requires

∂μ[nAxc,μ + 
s · 
Axc,μ] = 0 (20a)

and local SU(2) invariance implies

1

2c
∂μ · [Axc,μ
s + n 
Axc,μ] = 1

c

Axc,μ × 
jμ + 
Bxc × 
s. (20b)

In the latter expressions, we have expressed Aa
xc as 
Axc,μ

and, similarly, Ba
xc as 
Bxc. Of course, 
Axc,μ should not be

confused with Axc,μ (i.e, the μth component of Axc). These
rewritings are useful to express the torques generated by these
xc fields on their conjugate densities in terms of explicit cross
products. We recall that the KS system of SCDFT reproduces
the interacting paramagnetic currents but may not reproduce
the diamagnetic currents. Whatever the difference between the
KS and interacting diamagnetic currents is, Eqs. (20a) and
(20b) ensure that the stationarity conditions for the particle
and spin densities are not violated: 
Axc,μ and 
Bxc can balance
any nonvanishing xc-divergence-like contribution.

There is one nontrivial case in which we can see that the
solution of the KS equations in SCDFT reduces to the solution
of the analogous equations in SDFT. First, note that to have
Axc,μ = 0 and 
Axc,μ = 0 the torque of 
Bxc must vanish as well
[see Eq. (20b)]. Yet 
Bxc can be nonvanishing if it is parallel
to the spin density at every point in space. If the external
non-Abelian vector potential is also vanishing, we are then in
a situation in which SDFT applies rigorously. Thus, in this
case, we can conclude that vxc = vSDFT

xc and 
Bxc = 
BSDFT
xc .

III. SHORT-RANGE BEHAVIOR OF EXCHANGE-ONLY
PAIR-CORRELATION FUNCTIONS

Importing the standard local-spin-density approximation
(LSDA) in SCDFT does not allow us to fully exploit the power
of SCDFT, as the LSDA only depends on the magnitude of the

spin density and the particle density. Moreover, the LSDA is
insensitive to strong inhomogeneities and long-range interac-
tions. Exact exchange would be an obvious, more sophisticated
choice [37], but its combination with suitable correlation
functionals may require more involved computational ap-
proaches. Generalized-gradient approximations (GGAs) and,
more recently, meta-GGAs [38] (MGGA)—either stand alone
or combined with the Hartree-Fock method into hybrids—are
the gold standard in modern DFT calculations. Here we report
an analysis that points to the fact that MGGAs are ideal forms
to satisfy U(1) × SU(2) gauge invariance while fulfilling other
exact properties of the underlying pair-correlation functions.

We begin by reviewing known definitions about the so-
called exchange hole. Assuming, as it is commonly done, that
the KS states are in the form of single Slater determinants, the
exchange energy can be expressed as

Ex = −1

2

∫
d3r

∫
d3r ′ Tr{
(r,r′)
(r′,r)}

|r − r′| , (21)

where


(r,r′) =
N∑

k=1

�k(r)�†
k(r′) (22)

is the one-body-reduced-spin density matrix obtained from the
occupied spinors, which are solutions of Eq. (12). 
(r,r′) is
a 2 × 2 matrix in spin space. Ex is evidently invariant under
general U(1) × SU(2) gauge transformations.

Ex can be usefully expressed in terms of the x-hole function,
for which a convenient definition, applicable to noncollinear
spin states is

hx(r,r′) := −Tr{
(r,r′)
(r′,r)}
n(r)

. (23)

In practice, the spherical average

hx(r,u) := 1

4π

∫
d�uhx(r,r + u) (24)

is what really matters to the end of the calculation of the
exchange energies.

In Eq. (24), the integration is carried out with respect to the
solid angle �u formed by r and u; r is the so-called reference
position. Thus we rewrite

Ex = 2π

∫
d3rn(r)

∫
du u hx(r,u). (25)

Taylor-expanding hx(r,u) for small interparticle separa-
tions u, we find

hx(r,u) = −n(r)

2

(
1 + sa(r)sa(r)

n2(r)

)
− Cnc

x (r)u2 + · · · , (26)

where

Cnc
hx

= 1

3

{[(
τ − j · j

2n

)
−

(∇2n

4
+ ∇n · ∇n

8n

)]

+
[(

saτ a

n
− Ja · Ja

2n

)

−
(

sa · ∇2sa

4n
+ (∇sa) · (∇sa)

8n

)]}
(27)
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is the curvature of the x hole: the superscript “nc” emphasizes
that this expression differs from the analogous quantity derived
earlier for spin-unpolarized or spin-polarized but globally
collinear states. By admitting single-particle spinors, which
is the natural state of affairs in noncollinear spin systems, we
find terms that depend not only on the usual kinetic energy
density,

τ (r) = 1

2

N∑
k=1

(∂μ�
†
k(r))(∂μ�k(r)), (28)

but also on the spin-kinetic energy density defined as

τ a(r) = 1

2

N∑
k=1

(∂μ�
†
k(r))σa(∂μ�k(r)). (29)

Equations (26) and (27) provide the exact short-range behavior
of the x-hole function in presence of particle and spin currents
for noncollinear states. The gauge invariance of the expansion
coefficients in Eq. (26) is obvious: a scalar function has been
expanded with respect to a scalar variable. But one may also
verify this property by direct inspection.

The on-top x hole [i.e., the first term on the right-hand side
of Eq. (26)] provides us with an explicit indication on how the
on-top x hole of an existing DFT functional should be modified
to admit an extra nonempirical dependence on U(1) × SU(2)
gauge-invariant quantities; simply, n → n(1 + sasa

n2 ).
At the level of the curvature of the x hole [Eq. (27)],

notice that the combination [(τ − j·j
2n

) − (∇2n
4 + ∇n·∇n

8n
)] is

already known to be a U(1) gauge-invariant quantity: the
difference here is that all the quantities are evaluated on
fully noncollinear two component spinors. Thus, this ex-
pression is not SU(2) gauge invariant. The contribution
[( saτ a

n
− Ja ·Ja

2n
) − ( sa ·∇2sa

4n
+ (∇sa )·(∇sa )

8n
)] is essential to get the

full invariance. A detailed discussion of the transformation of
each term is presented in the Appendix.

Therefore, the minimal substitution

τ → τ̃ =
(

τ − j · j
2n

)
+

(
saτ a

n
− Ja · Ja

2n

)

−
(

sa · ∇2sa

4n
+ (∇sa) · (∇sa)

8n

)
(30)

can be used to transform a DFT-MGGA form into a SCDFT-
MGGA form.

In practical applications it is often desirable to eliminate
the Laplacian terms, which may be difficult to evaluate
numerically. To accomplish this, one substitutes the x hole,
expressed in terms of Cnc

hx
, into the expression for the exchange

energy density and performs an integration by parts to show
that Cnc

hx
is actually equivalent (as far as the calculation of the

exchange energy is concerned) to

C̄nc
hx

= 1

3

[(
τ − j · j

2n
+ ∇n · ∇n

8n

)

+
(

saτ a

n
− Ja · Ja

2n
+ (∇sa) · (∇sa)

8n

)]
, (31)

which no longer contains the Laplacian operator. Obviously
the form of C̄nc

hx
implies the minimal substitution

τ → τ̃ =
(

τ − j · j
2n

)
+

(
saτ a

n
− Ja · Ja

2n

)

+ (∇sa) · (∇sa)

8n
. (32)

Alternatively, functional approximations are also con-
structed working directly at the level of the one-body density
matrix

Qx(r,r′) = Tr{
(r,r′)
(r′,r)}, (33)

in terms of which the exchange energy can be expressed as

Ex = −1

2

∫
d3r

∫
d3u

Qx(r + u/2,r − u/2)

u

= −2π

∫
d3r

∫
uduQx(r,u), (34)

where the vector positions are expressed with respect to the
coordinates of the center of mass. Taylor-expanding Qnc

x (r,u)
with respect to u, we obtain

Qx(r,u) =
[
n2(r) + sa(r)sa(r)

]
2

+ Cnc
Qx

(r)u2 + · · · , (35)

where

Cnc
Qx

= 1

3

[(
nτ − j · j

2
− n∇2n

8

)

+
(

saτ a − Ja · Ja

2
− sa∇2sa

8

)]
. (36)

Cnc
Qx

generalizes the known DFT expression to SCDFT.
Therefore, in extending a DFT-MGGA form based on the

short range of Qx, we can proceed by performing two minimal
substitutions: the first one, n2 → (n2 + sasa), has to be carried
out only at the level of the on-top quantities; the second one is
performed at the level of τ ,

τ → τ̃ =
(

τ − j · j
2n

)
+

(
saτ a − Ja · Ja

2

)

− sa∇2sa

8
. (37)

Again, an intermediate integration by parts yields an
alternative form of the curvature factor:

Cnc
Qx

→ C̄nc
Qx

= nC̄nc
hx

, (38)

which, modulo an overall multiplication by the particle density,
implies the same minimal substitution as in Eq. (32).

IV. CONSTRUCTION OF FUNCTIONALS

We conclude our analysis by constructing two new
exchange-energy functionals based on existing forms and
proposing them for immediate use.

First, let us consider the construction of the BR89 [39]: this
was derived allowing only globally collinear spin polarization.
In this approach, the x hole of the hydrogen atom is turned
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into a general model by introducing two position-dependent
“parameters” p1(r) and p2(r),

hmodel
x (r,u)

= − p1(r)

16πp2(r)u

{
p1(r)[|p2(r) − u| + 1]e−p1(r)|p2(r)−u|

−p1(r)[|p2(r) + u| + 1]e−p1(r)|p2(r)+u|} (39)

to be chosen in such a way to reproduce the short-range
behavior of the x hole of an N -electron system.

Equations (26) and (27) allow us to readily generalize this
procedure to the noncollinear current-carrying states. As a
result, the p1(r) and p2(r) must be determined by solving the
equations

p3
1e

−p1p2 = 4πn

(
1 + sasa

n2

)
, (40a)

p2
1p2 − 2p1 = 12b

Cnc
hx

n
(
1 + sasa

n2

) . (40b)

As a second example, let us consider the approximations
based on a Gaussian resummation of the short-range behavior
of Qx(r,u). For closed-shell systems (i.e., vanishing spin
polarization), Lee and Parr [40] find

EG
x = −π

∫
d3rn2(r)β(r). (41)

For the sake of simplicity, here, we are not considering a
more sophisticated form which would satisfy particle-number
normalization for any system. In view of Eqs. (34) and (35), the
extension to noncollinear spin-polarized current-caring states
is readily obtained upon the substitutions

β → −1

2

n2 + sasa

Cnc
Qx

(42a)

and

n2 → (n2 + sasa). (42b)

Finally, we note that Cnc
Qx

is positive for single-particle states,
for states with vanishing spin currents, for the spin spirals of
the uniform gas, but otherwise the question remains open.

V. CONCLUSIONS

This work opens the way to the extension of time-proven
semilocal exchange-correlation energy functionals as well as
to the derivation of novel approximations designed to deal
with noncollinear spin structures which are subjects of great
and large ongoing interest. Specifically, we have introduced
nonempirical U(1) × SU(2) gauge-invariant building blocks
which are, in principle, ideally suited for dealing with (static)
spin fluctuation of strongly inhomogeneous states. Our results
show how the gradients of the spin density should be combined
with the spin-kinetic-energy density—an information which
should be relevant even in devising semilocal forms within
standard spin-DFT—and the Kohn-Sham paramagnetic (spin)
currents appear as explicit ingredients as well. Thus, we have
provided examples of extension of existing exchange-only

functional forms. On passing, we have also illustrated some
of the exact fundamental features of the exact exchange-
correlation fields.
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APPENDIX: DERIVATION OF THE
TRANSFORMATION LAWS

The expansions worked out in the main text have the
advantage to spare us from the burden to explicitly deal
with the transformations of the densities under general gauge
transformations—this is because we could consistently deal
only with scalars. Nevertheless, in this Appendix we report
the derivation of the transformation laws of the considered
densities and their salient combinations. This should offer
thorough clarifications and further insights.

We will use the same notational convention as in the
main text: Spatial indices are denoted by subscripts, spin
indices by superscripts, and repeated indices are summed.
Furthermore, the dependence on the position r is implied.
We are interested in obtaining the transformation laws for the
following densities:

n = �†�, (A1a)

sa = �†σa�, (A1b)

jμ = 1

2i
[�†(∂μ�) − (∂μ�†)�], (A1c)

J a
μ = 1

2i
[�†σa(∂μ�) − (∂μ�†)σa�], (A1d)

τ = 1

2
(∂μ�†)(∂μ�), (A1e)

τ a = 1

2
(∂μ�†)σa(∂μ�). (A1f)

The combined U(1) × SU(2) transformation is given by

U = exp

[
i

c
(χ + λaσ a)

]
= exp

[
i

c
χ

]
exp

[
i

c
λaσ a

]
, (A2)

where we use that the U(1) and SU(2) transformation com-
mute. This means that we can investigate the U(1) and SU(2)
transformation laws separately.

U(1) transformation laws: The density n and the spin
magnetization sa are trivially invariant under local U(1) trans-
formations. It is straightforward to obtain the transformation
laws for the remaining densities, i.e.,

n → n, (A3a)

sa → sa, (A3b)
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jμ → jμ + 1

c
(∂μχ )n, (A3c)

J a
μ → J a

μ + 1

c
(∂μχ )sa, (A3d)

τ → τ + 1

c
(∂μχ )jμ + 1

2c2
(∂μχ )(∂μχ )n, (A3e)

τ a → τ a + 1

c
(∂μχ )J a

μ + 1

2c2
(∂μχ )(∂μχ )sa. (A3f)

It follows directly that the combinations

nt − 1
2jμjμ, (A4a)

saτ a − 1
2J a

μJ a
μ (A4b)

are invariant under local U(1) transformations.
Infinitesimal SU(2) transformation laws: The density is

trivially invariant under local SU(2) transformations. The spin
magnetization, however, is not invariant. Using that

US = exp

[
i

c
λaσ a

]
= cos[λ/c] + i sin[λ/c]λ̂aσ a, (A5)

where λ is the magnitude and λ̂a is the unit vector in the
direction of the vector λa . We recall

U
†
Sσ

aUS = cos[2λ/c]σa − sin[2λ/c]εabcλ̂bσ c

+ (1 − cos[2λ/c])λ̂aλ̂bσ b = Rabσ b. (A6)

The matrix Rab is a 3 × 3 matrix describing a rotation in R3

around the direction λ̂ by an angle ϕ = −2λ/c. It follows that
the spin magnetization transforms as

sa → Rabsb. (A7)

Before embarking on the derivation of the transformation
laws for the other densities, we consider the case of infinitesi-
mal transformations. This means that we can approximate

US ≈ 1 + i

c
λaσ a. (A8)

Keeping terms up to the first order in λ, we arrive at

n → n, (A9a)

sa → sa − 2λ

c
εabcλ̂bsc, (A9b)

jμ → jμ + 1

c
(∂μλa)sa, (A9c)

J a
μ → J a

μ − 2λ

c
εabcλ̂bJ c

μ + 1

c
(∂μλa)n, (A9d)

τ → τ + 1

c
(∂μλa)J a

μ, (A9e)

τ a → τ a − 2λ

c
εabcλ̂bτ c + 1

c
(∂μλa)jμ

− 1

2c
εabc(∂μλb)(∂μsc). (A9f)

It is straightforward to verify that neither the quantity in
Eq. (A4a) nor the combination in Eq. (A4b) are invariant under
these transformations. Yet, the overall invariance of the x-only
curvatures given in the main text can be now explicitly verified

for arbitrary infinitesimal U(1) and SU(2) transformations
using Eqs. (A3) and (A9). This task may be further simplified
by considering the identities: ∇sa · ∇sa = ∇2

2 sasa − sa∇2sa

and ∇n · ∇n = ∇2

2 n2 − n∇2n.
Furthermore, the behavior of the basic densities under the

same transformations suffices to establish the compatibility
conditions (20a) and (20b) presented in the main text. This is
achieved by using the fact that the xc energy is invariant under
the corresponding U(1) × SU(2) transformations.

Finite SU(2) transformation laws: In principle, it is
sufficient to establish invariance under infinitesimal SU(2)
transformation, as an arbitrary finite SU(2) transformation can
be represented as a sequence of infinitesimal transformations.
However, the derivation of the transformation laws of the xc
potentials requires knowledge of the explicit transformations
of the basic densities under arbitrary finite SU(2) transfor-
mations. Moreover, we here intend to spell out the finite
transformation of the spin-kinetic-energy density as well.

The difficulty in obtaining finite transformation laws is due
to the fact that the generators of the SU(2) group, i.e., the Pauli
matrices σa , do not commute. Accordingly, we have to keep
in mind that

∂μUS 	= i

c
(∂μλa)σaUS 	= i

c
US(∂μλa)σa. (A10)

Instead, using the very definition of the directional derivative,
we have

∂μUS ≡ lim
ε→0

1

ε

(
exp

[
i

c
λa(r + εk̂)σa

]
− exp

[
i

c
λa(r)σa

])

= lim
ε→0

1

ε

(
exp

[
i

c
(λa + ε∂μλa)σa

]
− exp

[
i

c
λa(r)σa

])

= ∂ε exp

[
i

c
(λa + ε∂μλa)σa

]∣∣∣∣
ε=0

. (A11)

Now we can use the identity

∂εe
γ (Â+εB̂) = eγ (Â+εB̂)

∫ γ

0
dγ ′ e−γ ′(Â+εB̂)B̂eγ ′(Â+εB̂)

=
∫ γ

0
dγ ′ eγ ′(Â+εB̂)B̂e−γ ′(Â+εB̂)eγ (Â+εB̂), (A12)

which is readily verified by noting that both sides fulfill the
same first-order differential equation in γ and vanish for
γ = 0, and write

U
†
S(∂μUS) = i

c
(∂μλa)

∫ 1

0
dγ exp

[
− iγ

c
λbσ b

]
σa

× exp

[
iγ

c
λcσ c

]

= i

c
(∂μλa)�abσ b, (A13)

where we have introduced

�ab =
∫ 1

0
dγ Rab(γ ). (A14)

The 3 × 3 matrix �ab is the uniform average over the rotation
matrices around axis λ̂a with rotation angles ϕ ∈ [0, − 2λ/c].
Note that �ab is not a rotation matrix itself. Using the group
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properties of the rotation matrices, one can easily verify
the relation

Rac�bc = �ab, (A15)

which is an extremely useful identity as it shows how the
rotation matrix Rab acts on the matrix �ab. Straightforward
but tedious algebra allows us to write down the transformation
laws for finite local SU(2) transformations in a concise form

n → n, (A16a)

sa → s ′a = Rabsb, (A16b)

jμ → jμ + 1

c
Ãb

μsb, (A16c)

J a
μ → Rab

[
J b

μ + 1

c
Ãb

μn

]
, (A16d)

τ → τ + 1

c
J a

μÃa
μ + 1

2c2
Ãa

μÃa
μ, (A16e)

τ a → Rab

[
τ b + 1

c
Ãb

μjμ + 1

2c2
Ãb

μÃc
μsc

]

−1

8
Rab(∂μRcb)(∂μRcd )sd + 1

4
(∂μRab)(∂μsb),

(A16f)

where we introduced Ãa
μ = (∂μλb)�ba , which is the non-

Abelian gauge vector potential induced by the local SU(2)
transformation. Note that in the main text, following another
notational choice widely adopted in the literature, we wrote
Ãa

μ = − ic
2 Tr(σaU

†
S∇μUS).

Finally, combining the U(1) and SU(2) transformation laws
for the density, spin magnetization, and the paramagnetic
current and spin current—together with the invariance of
Exc—leads to the transformation properties of the xc potential
given in the main text [Eq. (19)].

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[3] U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
[4] G. Vignale and M. Rasolt, Phys. Rev. Lett. 59, 2360 (1987).
[5] R. Winkler, Spin-orbit Coupling Effects in Two-Dimensional

Electron and Hole Systems, Springer Tracts in Modern Physics
(Springer, Berlin, 2003).

[6] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[7] E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela 2, 162 (1959).
[8] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[9] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

[10] Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).
[11] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[12] G. Vignale and M. Rasolt, Phys. Rev. B 37, 10685 (1988).
[13] K. Bencheikh, J. Phys. A 36, 11929 (2003).
[14] J. Fröhlich and U. M. Studer, Rev. Mod. Phys. 65, 733 (1993).
[15] W. Zhu and S. B. Trickey, J. Chem. Phys. 125, 094317 (2006).
[16] S. H. Abedinpour, G. Vignale, and I. V. Tokatly, Phys. Rev. B

81, 125123 (2010).
[17] J. Kübler, K.-H. Hock, J. Sticht, and A. R. Williams, J. Phys. F

18, 469 (1988).
[18] G. Scalmani and M. J. Frisch, J. Chem. Theory Comput. 8, 2193

(2012).
[19] F. G. Eich and E. K. U. Gross, Phys. Rev. Lett. 111, 156401

(2013).
[20] F. G. Eich, S. Pittalis, and G. Vignale, Phys. Rev. B 88, 245102

(2013).
[21] J. Tao and J. P. Perdew, Phys. Rev. Lett. 95, 196403 (2005).
[22] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria,

Phys. Rev. Lett. 91, 146401 (2003).
[23] J. F. Dobson, J. Chem. Phys. 98, 8870 (1993).
[24] A. D. Becke, Can. J. Chem. 74, 995 (1996).
[25] A. D. Becke, J. Chem. Phys. 117, 6935 (2002).
[26] S. N. Maximoff, M. Ernzerhof, and G. E. Scuseria, J. Chem.

Phys. 120, 2105 (2004).
[27] S. Pittalis, S. Kurth, S. Sharma, and E. K. U. Gross, J. Chem.

Phys. 127, 124103 (2007).

[28] W. Zhu, L. Zhang, and S. B. Trickey, J. Chem. Phys. 145, 224106
(2016).

[29] B. Berche and E. Medina, Eur. J. Phys. 34, 161 (2013).
[30] L. Landau and E. Lifshitz, Quantum Mechanics (Pergamon, New

York, 1965), Vol. 3.
[31] Unless otherwise stated, we use units such that 4πε0 = 1 and

h̄ = e = m = 1.
[32] Whenever we use a partial integration, we assume that there

are no contributions from the boundaries. This is true for finite
systems and system with periodic boundary conditions.

[33] M. Levy, Phys. Rev. A 26, 1200 (1982).
[34] E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
[35] We note that the mathematical conditions for N representability

and V representability in SCDFT are presently unknown. Non-
trivial notable differences with the case of standard DFT have
recently been pointed out in SDFT, which make an ensemble
formulation necessary even for N representability [41]. Similar
or bigger differences are expected in SCDFT. Thus, the domain
of the F functional in Eq. (10) is not known, and we have
informally assumed that it is sufficiently dense to approximate
most density sets that may occur in physical systems. Likewise,
when introducing the Kohn-Sham system, we will informally
assume noninteracting V representability based on single Slater
determinants. It is natural to expect that the N representability
and V representability issues which are prone to arise in
SCDFT will be ameliorated (if not resolved) within an ensemble
formulation, in which the admissible noninteracting pure states
would also comprise linear combination of determinants.

[36] However, the corresponding total energies are invariant.
[37] S. Rohra and A. Görling, Phys. Rev. Lett. 97, 013005

(2006).
[38] J. Sun, R. C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H.

Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu et al., Nat. Chem.
8, 831 (2016).

[39] A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).
[40] C. Lee and R. G. Parr, Phys. Rev. A 35, 2377 (1987).
[41] D. Gontier, Phys. Rev. Lett. 111, 153001 (2013).

035141-8

https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1088/0022-3719/5/13/012
https://doi.org/10.1088/0022-3719/5/13/012
https://doi.org/10.1088/0022-3719/5/13/012
https://doi.org/10.1088/0022-3719/5/13/012
https://doi.org/10.1103/PhysRevLett.59.2360
https://doi.org/10.1103/PhysRevLett.59.2360
https://doi.org/10.1103/PhysRevLett.59.2360
https://doi.org/10.1103/PhysRevLett.59.2360
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.7566/JPSJ.82.102001
https://doi.org/10.7566/JPSJ.82.102001
https://doi.org/10.7566/JPSJ.82.102001
https://doi.org/10.7566/JPSJ.82.102001
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevB.37.10685
https://doi.org/10.1103/PhysRevB.37.10685
https://doi.org/10.1103/PhysRevB.37.10685
https://doi.org/10.1103/PhysRevB.37.10685
https://doi.org/10.1088/0305-4470/36/48/002
https://doi.org/10.1088/0305-4470/36/48/002
https://doi.org/10.1088/0305-4470/36/48/002
https://doi.org/10.1088/0305-4470/36/48/002
https://doi.org/10.1103/RevModPhys.65.733
https://doi.org/10.1103/RevModPhys.65.733
https://doi.org/10.1103/RevModPhys.65.733
https://doi.org/10.1103/RevModPhys.65.733
https://doi.org/10.1063/1.2222353
https://doi.org/10.1063/1.2222353
https://doi.org/10.1063/1.2222353
https://doi.org/10.1063/1.2222353
https://doi.org/10.1103/PhysRevB.81.125123
https://doi.org/10.1103/PhysRevB.81.125123
https://doi.org/10.1103/PhysRevB.81.125123
https://doi.org/10.1103/PhysRevB.81.125123
https://doi.org/10.1088/0305-4608/18/3/018
https://doi.org/10.1088/0305-4608/18/3/018
https://doi.org/10.1088/0305-4608/18/3/018
https://doi.org/10.1088/0305-4608/18/3/018
https://doi.org/10.1021/ct300441z
https://doi.org/10.1021/ct300441z
https://doi.org/10.1021/ct300441z
https://doi.org/10.1021/ct300441z
https://doi.org/10.1103/PhysRevLett.111.156401
https://doi.org/10.1103/PhysRevLett.111.156401
https://doi.org/10.1103/PhysRevLett.111.156401
https://doi.org/10.1103/PhysRevLett.111.156401
https://doi.org/10.1103/PhysRevB.88.245102
https://doi.org/10.1103/PhysRevB.88.245102
https://doi.org/10.1103/PhysRevB.88.245102
https://doi.org/10.1103/PhysRevB.88.245102
https://doi.org/10.1103/PhysRevLett.95.196403
https://doi.org/10.1103/PhysRevLett.95.196403
https://doi.org/10.1103/PhysRevLett.95.196403
https://doi.org/10.1103/PhysRevLett.95.196403
https://doi.org/10.1103/PhysRevLett.91.146401
https://doi.org/10.1103/PhysRevLett.91.146401
https://doi.org/10.1103/PhysRevLett.91.146401
https://doi.org/10.1103/PhysRevLett.91.146401
https://doi.org/10.1063/1.464444
https://doi.org/10.1063/1.464444
https://doi.org/10.1063/1.464444
https://doi.org/10.1063/1.464444
https://doi.org/10.1139/v96-110
https://doi.org/10.1139/v96-110
https://doi.org/10.1139/v96-110
https://doi.org/10.1139/v96-110
https://doi.org/10.1063/1.1503772
https://doi.org/10.1063/1.1503772
https://doi.org/10.1063/1.1503772
https://doi.org/10.1063/1.1503772
https://doi.org/10.1063/1.1634553
https://doi.org/10.1063/1.1634553
https://doi.org/10.1063/1.1634553
https://doi.org/10.1063/1.1634553
https://doi.org/10.1063/1.2777140
https://doi.org/10.1063/1.2777140
https://doi.org/10.1063/1.2777140
https://doi.org/10.1063/1.2777140
https://doi.org/10.1063/1.4971377
https://doi.org/10.1063/1.4971377
https://doi.org/10.1063/1.4971377
https://doi.org/10.1063/1.4971377
https://doi.org/10.1088/0143-0807/34/1/161
https://doi.org/10.1088/0143-0807/34/1/161
https://doi.org/10.1088/0143-0807/34/1/161
https://doi.org/10.1088/0143-0807/34/1/161
https://doi.org/10.1103/PhysRevA.26.1200
https://doi.org/10.1103/PhysRevA.26.1200
https://doi.org/10.1103/PhysRevA.26.1200
https://doi.org/10.1103/PhysRevA.26.1200
https://doi.org/10.1002/qua.560240302
https://doi.org/10.1002/qua.560240302
https://doi.org/10.1002/qua.560240302
https://doi.org/10.1002/qua.560240302
https://doi.org/10.1103/PhysRevLett.97.013005
https://doi.org/10.1103/PhysRevLett.97.013005
https://doi.org/10.1103/PhysRevLett.97.013005
https://doi.org/10.1103/PhysRevLett.97.013005
https://doi.org/10.1038/nchem.2535
https://doi.org/10.1038/nchem.2535
https://doi.org/10.1038/nchem.2535
https://doi.org/10.1038/nchem.2535
https://doi.org/10.1103/PhysRevA.39.3761
https://doi.org/10.1103/PhysRevA.39.3761
https://doi.org/10.1103/PhysRevA.39.3761
https://doi.org/10.1103/PhysRevA.39.3761
https://doi.org/10.1103/PhysRevA.35.2377
https://doi.org/10.1103/PhysRevA.35.2377
https://doi.org/10.1103/PhysRevA.35.2377
https://doi.org/10.1103/PhysRevA.35.2377
https://doi.org/10.1103/PhysRevLett.111.153001
https://doi.org/10.1103/PhysRevLett.111.153001
https://doi.org/10.1103/PhysRevLett.111.153001
https://doi.org/10.1103/PhysRevLett.111.153001



