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Abstract

Superconducting instability can occur in three-dimensional quadratic band crossing semimetals only

at a finite coupling strength due to the vanishing of density of states at the quadratic band touching

point. Since realistic materials are always disordered to some extent, we study the effect of short-ranged-

correlated disorder on this superconducting quantum critical point using a controlled loop-expansion

applying dimensional regularization. The renormalization group (RG) scheme allows us to determine

the RG flows of the various interaction strengths and shows that disorder destroys the superconducting

quantum critical point. In fact, the system exhibits a runaway flow to strong disorder.
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I. INTRODUCTION

Three-dimensional isotropic systems with a quadratic band touching (QBT) point, supple-

mented by Coulomb interactions, were studied by Abrikosov back in 1971 with the renormalization

group (RG) technique in 4− ε spatial dimensions [1]. It was argued that the long-ranged Coulomb

interactions may stabilize a non-Fermi liquid ground state [1, 2]. Such a system is then possibly

the simplest example of a non-Fermi liquid. Recently, there has been a revived interest in these

systems [2–6] motivated by their relevance to pyrochlore iridates A2Ir2O7 , where A is a lanthanide

element [7, 8]. Furthermore, if the spin-orbit coupling is strong enough in three-dimensional gap-

less semiconductors, then it can cause the Fermi level to lie at a QBT point [9], and such a model
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is indeed relevant for gray tin (HgTe). These systems have been dubbed as “Luttinger semimetals”

[10], since the low-energy electronic degrees of freedom are captured by the Luttinger Hamiltonian

of inverted band gap semiconductors [11, 12]. The interplay of disorder and Coulomb interactions

at the QBT has been investigated in Ref. [13–15], where the RG flows of the coupling strengths

show that disorder is a relevant perturbation to Abrikosov’s non-Fermi liquid fixed point, and that

the disordered problem undergoes a runaway flow to strong disorder [14, 15].

When the chemical potential is at the QBT point, an attractive four-fermion interaction can

lead to a superconducting instability only at a finite coupling strength due to the vanishing density

of states at QBT, leading to the possibility of a quantum critical point. Such a scenario for

a clean system and in the absence of Coulomb interactions has been studied in Ref. [10] and

a stable quantum critical point for s-wave superconductivity identified. Neglecting the Coulomb

interaction is justified if it is rendered sufficiently weak by a large dielectric constant of the material.

In this work, we examine the fate of this superconducting quantum critical point in the presence

of disorder. It is worth mentioning that in the context of two-dimensional systems, interplay of

superconducting critical points and disorder has been previously studied in Ref. [16, 17] for the

case of massless spinful Dirac fermions (relevant for graphene). The half-Heusler compound YPtBi

is a noncentrosymmetric multiband superconductor with QBT point and a promising candidate

for hosting topologically nontrivial superconducting states in three dimensions. The bulk and

surface states of two prototypical pairing states in YPtBi, one preserving time-reversal symmetry,

the other breaking it, have been studied in Ref. [18]. In Ref. [19], the authors have showed that

for a centrosymmetric superconductor with a QBT point and a broken time-reversal symmetry,

the low-energy excitation spectrum has two-dimensional Bogoliubov Fermi surfaces in the bulk

instead of point or line nodes. Furthermore, instabilities of various non-Fermi liquid scenarios [20]

towards superconductivity have been studied extensively in the literature [21, 22].

This paper is structured as follows: In Sec. II, we introduce the basic non-interacting model and

add the superconducting s-wave pairing channel. In Sec. III, we revisit the existence of the infrared

stable superconducting quantum critical point using the minimal subtraction scheme of RG. In

Sec. IV, we study the interplay of superconductivity and disorder by the same RG scheme. We

show that the superconducting quantum critical point is destroyed, and the problem continues to

flow to strong disorder. We conclude with some discussion and overview in Sec. V. The appendices

contain technical results used in the computations.

II. MODEL

We consider a model for three-dimensional quadratic band crossings, where the low energy bands

form a four-dimensional representation of the lattice symmetry group [2]. Then the standard k ·p
Hamiltonian for the non-interacting system, in the absence of disorder, can be written by using
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the five 4× 4 Euclidean Dirac matrices Γa as [3]:

H0 =
5∑

a=1

da(k) Γa + ξ k2 , (2.1)

with the Γa providing one of the (two possible) irreducible, four-dimensional Hermitian represen-

tations of the five-component Clifford algebra defined by the anticommutator {Γa, Γb} = 2 δab. In

d = 3, the space of 4 × 4 Hermitian matrices is spanned by the identity matrix, the five 4 × 4

Gamma matrices Γa and the ten distinct matrices Γab = 1
2 i

[Γa,Γb]. The five anticommutating

gamma-matrices can always be chosen such that three are real and two are imaginary [23]. We

choose a representation in which (Γ1,Γ2,Γ3) are real and (Γ4,Γ5) are imaginary. The five functions

da(k) are the real ` = 2 spherical harmonics, with the following structure:

d1(k) =
√

3 ky kz , d2(k) =
√

3 kx kz , d3(k) =
√

3 kx ky ,

d4(k) =

√
3 (k2

x − k2
y)

2
, d5(k) =

2 k2
z − k2

x − k2
y

2
. (2.2)

The isotropic ξ k2 term with no spinor structure introduces band-mass asymmetry to the band-

structure.

A. Interactions for generating superconductivity

In this subsection, we review the derivation of the effective action which can lead to a super-

conducting instability, as discussed in Ref. [10]. In order to generate Copper pairing, we add local

attractive interactions, such that the zero-temperature Euclidean action is given by:

S[ψ] =

∫
dτ ddx

[
ψ† (∂τ +H0)ψ + V (ψ†ψ)2

]
, (2.3)

where τ is the imaginary time, d is the number of spatial dimensions, V < 0 is an attractive

coupling constant, and ψ(τ,x) = (ψ1, ψ2, ψ3, ψ4)T is the four-component Grassmann field. The

engineering dimension of V is [V ] = 2− d, which means that it is an irrelevant coupling in d = 3.

As a result, the conventional BCS pairing for infinitesimally small attractive V is not possible.

Physically, this is because the density of states vanishes at the QBT [24]. Nevertheless, there is a

possibility of quantum phase transition at a sufficiently large value of coupling, where the system

may lower its ground state energy by opening a gap at the Fermi level.

It was shown in Ref. [10] that there can be two competing superconducting orders: φ =

〈ψT Γ45 ψ〉 and φ̃ = 〈ψT Γ45 Γa ψ〉, corresponding to s-wave and d-wave components respectively.

It was also argued that s-wave ordering is energetically preferred as the gap is rotationally symmet-

ric. Therefore, we set φ̃ = 0 and investigate only the case of s-wave superconducting instability.
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To capture the above physics, we can write the effective Lagrangian as:

L(ψ, φ) =ψ†
[
∂τ + d (−i∇) · Γ− ξ∇2

]
ψ + φ∗

(
y ∂τ − c2 ∂2

τ −∇2 + r
)
φ+ ζ |φ|4

+ g
(
φψ† Γ45 ψ

† + φ∗ψT Γ45 ψ
)
. (2.4)

The tuning parameter r, as usual, is proportional to (V − Vc), where Vc < 0 is the critical value of

the attractive interaction. Hence, the quantum critical is located at r = 0. The complex bosonic

field φ is coupled to the fermions as a Majorana mass [25]. The fields and the time coordinate have

been rescaled such that the coefficients of the terms ψ† ∂τψ,
[
ψ† d (−i∇) · Γψ

]
and [−φ∗∇2 φ] are

unity. We set r = 0, assuming the theory to be close to its critical point.

B. Engineering dimensions

Let us determine the engineering dimensions of all the fields and coupling constants at the non-

interacting Gaussian fixed point (g = ζ = 0) from the kinetic term with [x] = −1. Then, from the

fermion dispersion, we get [τ ] = −2, leading to [ψ(x)] = [φ(x)] = d
2

and [ψ(P )] = [φ(P )] = −d+4
2

.

Finally, [ξ] = [y] = 0, [c] = −1, [g] = 4−d
2

and [ζ] = 2 − d. Hence, for d = 4, the coupling g is

marginal. Since c and ζ are irrelevant for any dimension d > 2, we drop them.

Therefore, we study the s-wave superconducting quantum critical point of the system by gen-

eralizing the theory to d = 4− ε spatial dimensions (assuming 0 < ε� 1) in terms of the critical

(r = 0) effective action

S0 =

∫
dτ ddx

[
ψ†
{
∂τ + da (−i∇) Γa − A3 ξ∇2

}
ψ + φ∗

(
y ∂τ − A5∇2

)
φ

+ g µε/2
(
φψ† Γ45 ψ

∗ + φ∗ ψT Γ45 ψ
) ]
,

(2.5)

which includes all the relevant and marginal couplings at the Gaussian fixed point. A mass scale

µ is introduced to make g dimensionless.

III. SELF-ENERGIES AND BETA FUNCTIONS FOR THE CLEAN CASE

In this section, we compute the self-energies of the fermions and complex bosons, generated

due to the interaction between them. We use these results in the minimal subtraction scheme to

determine the beta functions for the RG flows. Although similar calculations have already been

done in Ref. [10], we find it necessary to rederive those because our RG scheme is different from

Ref. [10], and also because the numerical factors obtained differ from the previous calculation.

We will consider the RG flow generated by changing Λ, which is the ultraviolet cut-off for the

spatial momenta, by requiring that low-energy observables are independent of it. This is equivalent
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FIG. 1. The one-loop (a) fermion and (b) boson self-energy diagrams.

to a coarse-graining procedure of integrating out high-energy modes . We note that for quadratic

dispersion, the ultraviolet cut-off for energy is
√

Λ. When the loop-diagrams have a divergent

dependence on Λ, this turns into a pole in ε in the dimensional regularization scheme, where we

perform the energy and momentum integrals by integrating from −∞ to ∞ setting d = 4− ε. For

the angular integrals, we use the “Moon-scheme” described in Sec. B.

A. One-loop calculations

Let Σ1 and Π1 denote the one-loop corrections to the fermion and boson self-energies, respec-

tively, where we use the sign convention where the self-energy subtracts the bare action in the

dressed propagator as G(P ) = 1
G−1

0 (P )−Σ1(P )
and D(P ) = 1

D−1
0 (P )−Π1(P )

. Here we have used the

convention P ≡ (p, p0), and denoted the zeroth order boson and fermion propagators by:

G0(P ) =
1

(i p0 + ξ p2) 1N + d(p) · Γ =
− (i p0 + ξ p2) 1N + d(p) · Γ
p2

0 + (1− ξ2) p4 − 2 i p0 ξ p2
, (3.1)

and

D0(P ) =
1

i y p0 + p2
. (3.2)

Note that we have generalized to N fermion components (flavors), where N is a multiple of four. In

the Feynman diagrams, we will represent the fermion and boson propagators by solid and dashed

lines respectively.
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The explicit expressions for the one-loop self-energy corrections are 1:

Σ1(P ) = −g2µε
∫
Q

D0(Q+ P ) Γ45G
T
0 (Q) Γ45 , (3.5)

Π1(P ) = g2µε
∫
Q

Tr
[
Γ45G0(Q) Γ45G

T
0 (P −Q)

]
, (3.6)

as can be seen in Fig. 1. Throughout the equations, we have denoted the integrals by:∫
Q

=

∫
q0

∫
q

,

∫
q0

=

∫
dq0

2π
,

∫
q

=

∫
ddq

(2π)d
. (3.7)

Using Eq. (A6), we get:

Σ1(P ) = −g2µε
∫
Q

D0(Q+ P )G0(Q)

= −2 g2µε
∫
Q

(i q0 − ξ q2) 1N + d(q) · Γ
[ q2

0 + (1− ξ2) q4 − 2 i q0 ξ q2]
[
i y (q0 + p0) + (q + p)2] , (3.8)

Π1(P ) = g2µε
∫
Q

Tr [G0(Q)G0(P −Q)] . (3.9)

Performing the trace in the numerator of Π1 yields

Tr
[{
i q0 + ξ q2 − d(q) · Γ

}{
i (p0 − q0) + ξ (p− q)2 − d (p− q) · Γ

}]
= N

[
(−i q0 − ξ q2)

{
i (q0 − p0)− ξ (q− p)2

}
+ da(q) da(q− p)

]
= N

[
(−i q0 − ξ q2)

{
i (q0 − p0)− ξ (q− p)2

}
+

4

3

{
q · (q− p)

}2 − q2

3
(q− p)2

]
, (3.10)

where we have used Eq. (B3). Therefore,

Π1(P ) =

∫
Q

g2µεN
[
(−i q0 − ξ q2)

{
i (q0 − p0)− ξ (q− p)2

}
+ 4

3

{
q · (q− p)

}2 − q2

3
(q− p)2

]
[q2

0 + (1− ξ2) q4 − 2 i q0 ξ q2]
[
(p0 − q0)2 + (1− ξ2) (p− q)4 − 2 i (p0 − q0) ξ (p− q)2] .

(3.11)

For the fermion self-energy, we expand in p to get the divergent terms after integrating over q0,

1 A sample contraction of terms leading to the fermion self-energy can be written as:

φ∗
(
ψT Γ45 ψ

)
φ
(
ψ† Γ45 ψ

†) = −ψ†δ
[
(Γ45)

δ,γ (
GT0
)
γ,β

(Γ45)
β,α

D0

]
ψα . (3.3)

There are two such terms possible. Similarly, a sample contraction of terms leading to the boson self-energy can

be written as:

φ∗
(
ψT Γ45 ψ

)
φ
(
ψ† Γ45 ψ

†) = φφ∗
[
ψα (Γ45)

α,β
ψβ

] [
ψ†γ (Γ45)

γ,δ
ψ†δ

]
= φφ∗

[
(Γ45)

γ,δ (
GT0
)
δ,α

(Γ45)
α,β

(G0)β,α

]
. (3.4)

Again, there can be two such terms.
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such that:

Σ1(P ) ' g2µε

2

∫
q

[
1

i p0 y + q2 (1 + y − ξ y)
+
p2
{

(d(q) · Γ− q2) (1 + y − ξ y − cos2 θ)
}{

i p0 y + q2 (1 + y − ξ y)
}3

]

' g2µε π2

2

∫
dq qd−1

(2 π)d

[
2

i p0 y + q2 (1 + y − ξ y)
+

2 p2
{
q2 (1 + y − ξ y)

}
+ 3 q2 d(p)·Γ

2{
i p0 y + q2 (1 + y − ξ y)

}3

]

=
g2

16 π2 (1 + y − ξ y)2 ε

(
µ√
|p0|

)ε [
−i p0 −

3 d(p) · Γ
4 (1 + y − ξ y)

+
p2

3 (1 + y − ξ y)

]
, (3.12)

where, in the second line, we have used the relation in Eqs. (B3) and (B6).

For the boson self-energy, applying a similar expansion in p, we get the divergent parts as:

Π1(P ) =
g2N

16 (1− ξ2) ε

(
µ√
|p0|

)ε [
i p0

1− ξ2
− 11 p2

18

]
. (3.13)

B. RG equations

The counterterm action is given by:

SCT =

∫
P

[
ψ†(P )

{
A1 p0 + A2 da (p) Γa + A3 ξ p

2
}
ψ(P ) + φ∗(P )

(
A4 y p0 + A5 p

2
)
φ(P )

]
+ g µε/2

∫
P

∫
K

A6

[
φ(P )ψ†(K) Γ45 ψ

∗(P −K) + φ∗(P )ψT(P −K) Γ45 ψ(K)
]
,

An =1 + Zn , Zn =
Zn,1
εn

. (3.14)

Adding the counterterms to the original S0, and denoting the bare quantities by the index “B”,

we obtain the renormalized action as:

Sren =

∫
PB

[
ψ†(PB)

{
p0B + da (pB) Γa + ξB p

2
B

}
ψ(PB) + φ∗(PB)

(
yB p0B + p2

B

)
φ(PB)

]
+ gB

∫
PB

∫
KB

[
φ(PB)ψ†(KB) Γ45 ψ

∗(PB −KB) + φ∗(PB)ψT(PB −KB) Γ45 ψ(KB)
]
. (3.15)

The bare and renormalized quantitites are related by the following convention:

(p0)B =
Z1

Z2

p0 , pB = p , ψB(PB) = Z
1/2
ψ ψ(P ) , φB(PB) = Z

1/2
φ φ(P ) ,

ξB =
Z3

Z2

ξ , yB =
Z4

Z5

(
Z2

Z1

)
y , gB =

µε/2 Z6

Z
1/2
φ Zψ

(
Z2

Z1

)2

g , Zψ = Z2

(
Z2

Z1

)
, Zφ = Z5

(
Z2

Z1

)
,

(3.16)

with [p0] = 2, [p] = 1, [ξ] = [y] = 0 .
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Let us define:

z = −∂ ln p0

∂ lnµ
= 2−

∂ ln
(
Z2

Z1

)
∂ lnµ

, ηψ =
1

2

∂ lnZψ
∂ lnµ

, ηφ =
1

2

∂ lnZφ
∂ lnµ

, (3.17)

where z is the dynamical critical exponent, and ηψ and ηφ are the anomalous dimensions of the

fermion and boson respectively. Furthermore, they are related by:

2 ηψ =
1

Z2

∂Z2

∂ lnµ
+ 2− z , 2 ηφ =

1

Z5

∂Z5

∂ lnµ
+ 2− z . (3.18)

Since the bare quantitites do not depend on µ, their total derivative with respect to µ should

vanish. Therefore, d ln gB
d lnµ

= 0 gives:

− ∂g

∂ lnµ
≡ −βg =

[ε
2
− 2 ηψ − ηφ + 2 (2− z) +

∂ lnZ6

∂ lnµ

]
g . (3.19)

To one-loop order, we have Zn = 1 + Zn,1
ε

, where

Z1,1 = − g2 y

16π2 (1 + y − ξ y)2
, Z2,1 = − 3 g2

64π2 (1 + y − ξ y)3
, Z3,1 =

g2 (1− 3 y + 3 ξ y)

48 π2 (1 + y − ξ y)3
,

Z4,1 =
g2N ξ

16 π2 (1− ξ2)2 , Z5,1 = − 11 g2N

288π2 (1− ξ2)2 , Z6,1 = 0 . (3.20)

Using the expansions:

z = z(0) + ε z(1) , ηψ = η
(0)
ψ + ε η

(1)
ψ , ηφ = η

(0)
φ + ε η

(1)
φ ,

βξ = β
(0)
ξ + ε β

(1)
ξ , βy = β(0)

y + ε β(1)
y , βg = β(0)

g + ε β(1)
g , (3.21)

and comparing the powers of ε from the µ-derivatives of Eqs. (3.16), we get:

z = 2− g2
{

3− 4 y (1 + y − ξ y)
}

64 π2 (1 + y − ξ y)3
,

ηψ =
g2
{

3− 2 y (1 + y − ξ y)
}

64 π2 (1 + y − ξ y)3
,

ηφ =
g2

1152π2

[
22N

1− ξ2
+

9
{

3− 4 y (1 + y − ξ y)
}

(1 + y − ξ y)3

]
, (3.22)

and the beta-functions:

βξ =
g2 ξ

{
13− 12 y (1− ξ)

}
192 π2 (1 + y − ξ y)3 ,

βy =
g2 y

576π2

[
2N (11 + 18 ξ − 11 ξ2)

(1− ξ2)2 − 9
{

3− 4 y (1 + y − ξ y)
}

(1 + y − ξ y)3

]
,

βg = −ε g
2

+
g3

1152π2

[
22N

(1− ξ2)2 +
9
{

3− 4 y (1 + y − ξ y)
}

(1 + y − ξ y)3

]
. (3.23)
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(a) (b)

(c)

FIG. 2. The RG flow diagrams in the (a) g = 24π
√
ε√

22N+27
-plane, (b) ξ = 0-plane, and (c) y = 0-plane.

C. Fixed points and their stability

The fixed points (ξ∗, y∗, g∗) are given by:

(0, 0, 0) and

(
0, 0,

24π
√
ε√

22N + 27

)
. (3.24)

To analyze the stability of the non-Gaussian fixed point, we write down the linearized flow

equations in its vicinity, which are:

d

dl

 δξ

δy

δg

∣∣∣∣∣
(ξ∗, y∗, g∗)

≈M

 δξ

δy

δg

 , (3.25)
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where l = − lnµ is the logarithmic length scale determining the RG flows towards the infrared,

and

M =
ε

22N + 27

 −39 0 0

0 − (22N − 27) 0

0 540π
√
ε√

22N+27
−1

 . (3.26)

The eigenvalues of M are given by:(
− 39 ε

22N + 27
,−ε,−(22N − 27) ε

22N + 27

)
, (3.27)

which are all negative, since N is a multiple of four. This shows that the fixed point is stable in

the infrared. Some representative flow diagrams are shown in Fig. 2.

IV. EFFECT OF SHORT-RANGE-CORRELATED DISORDER

In this section, we consider the effect of adding disorder to the system of the form:

Hdis =

∫
ddx

[
V0(x)

(
ψ† ψ

)
τ

+ V1(x)
∑
a

(
ψ† Γa ψ

)
τ

+ +V2(x)
∑
a<b

(
ψ† Γab ψ

)
τ

]
, (4.1)

where Vα(x)’s are produced by impurities or defects with and without spinor structure. We consider

the case of short-range-correlated disorder such that

〈Vα(x)Vα′(x
′)〉avg = Wα δ(x− x′) δαα′ . (4.2)

The parameter Wα measures the strength of the disorder induced by the distribution of impurities.

We introduce n copies of the fields ψ → ψi with i ∈ [1, n], and average over the disorder using

Eq. (4.2). This is the standard treatment of disorder in the replica formalism, where the number

of replicas n→ 0 at the end of the computation. The replica term in the action is then given by:

Sdis =−W0 µ
ε
∑
i,j

∫
dτ dτ ′ ddx (ψ†i ψi)τ (ψ†j ψj)τ ′ −W1 µ

ε
∑
i,j

∑
a

∫
dτ dτ ′ ddx (ψi

† Γa ψi)τ (ψ†j Γa ψj)τ ′

−W2 µ
ε
∑
i,j

∑
a<b

∫
dτ dτ ′ ddx (ψi

† Γab ψi)τ (ψ†j Γab ψj)τ ′ . (4.3)

The tree-level mass dimension is [Wα] = 4− d. Let us denote the corresponding matrices by Mα,

such that

(M0,M1,M2) = (1Nc ,Γa,Γab) , (4.4)

where Nc is the dimensionality of the gamma matrices. For the current problem, Nc = 5.
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P P

q, p0

Wα

FIG. 3. One-loop correction to fermion self-energy from a disorder vertex.

g Wα k− p, k0 − p0

p, p0

q, p0

k− q, k0 − p0

k, k0

(a)

q + p + k− ℓ, p0 + q0 Wα

p, p0 k, k0

g

g

ℓ, k0

p + k− ℓ, p0

q, q0

q + k− ℓ, q0

(b)

FIG. 4. One-loop correction to (a) fermion-boson vertex from disorder, and (b) disorder from fermion-

boson vertex.

A. Fermion self-energy correction from disorder

The one-loop fermion self-energy correction from disorder, shown in Fig. 3, is given by the term
2 :

Σ1d(P ) = −2µε

[
W0

∫
q

G0(q, p0) +W1

∑
a

∫
q

ΓaG0(q, p0) Γa +W2

∑
a<b

∫
q

ΓabG0(q, p0) Γab

]

= −2µε
[
W0 +NcW1 +

Nc (Nc − 1)

2

] ∫
q

−i q0 − ξ q2

p2
0 + (1− ξ2) q4 − 2 i p0 ξ q2

=
(1 + ξ2) i p0

[
W0 +NcW1 + Nc(Nc−1)

2

]
4 π2 (1− ξ2)2 ε

(
µ√
|p0|

)ε

, (4.5)

using Eqs. (A1) and (A2).

2 A sample contraction of terms leading to this looks like:

(
ψ†M ψ

) (
ψ†M ψ

)
=
(
ψ†γM

γ,δψδ
) (
ψ†λM

λ,σψσ
)

= ψ†γ

[
Mγ,δ (G0)δ,λ M

λ,σ
]
ψσ .
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B. Fermion-boson vertex correction from disorder

Let us compute the one-loop fermion-boson vertex correction coming from the disorder vertices,

which involves loop integrals of the form 3:

I(α) = 2 gWα µ
3 ε
2

∫
q

MαG0(k− q, k0 − p0) Γ45G
T
0 (q, p0)MT

α

=

∫
q

MαG0(k− q, k0 − p0)G0(q, p0) Γ45M
T
α

= 2 gWα µ
3 ε
2

∫
q

Mα

[
i (p0 − k0)− ξ (q− k)2 + d (q− k) · Γ

]
[−i p0 − ξ q2 + d (q) · Γ] Γ45M

T
α[

(p0 − k0)2 + (1− ξ2) (q− k)4 + 2 i (p0 − k0) ξ (q− k)2] [ p2
0 + (1− ξ2) q4 − 2 i p0 ξ q2 ]

,

(4.6)

corresponding to the one-loop vertex correction figure shown in Fig. 4(a). We set k = k0 = 0

without any loss of generality, as this will still allow us to extract the divergent part. Using

Eq. (A6), for α = (0, 1), we get:

I(α) = −2 gWα µ
3 ε
2

∫
q

Mα [i p0 − ξ q2 + d (q−) · Γ] [−i p0 − ξ q2 + d (q) · Γ]Mα[
p2

0 + (1− ξ2) q4 + 2 i p0 ξ (q− k)2] [ p2
0 + (1− ξ2) q4 − 2 i p0 ξ q2 ]

Γ45 .

(4.7)

Using Eq. (A7), we get:

I(2) = 2 gW2 µ
3 ε
2

∫
q

M2

[
i p0 − ξ (q− k)2 + d (q− k) · Γ

]
[−i p0 − ξ q2 + d (q) · Γ]M2[

p2
0 + (1− ξ2) (q− k)4 + 2 i p0 ξ (q− k)2] [ p2

0 + (1− ξ2) q4 − 2 i p0 ξ q2 ]
Γ45 .

(4.8)

Let us now compute the integral

J ≡
∫

q

[i p0 − ξ q2 + d (q) · Γ] [−i p0 − ξ q2 + d (q) · Γ]

[p2
0 + (1− ξ2) q4 + 2 i p0 ξ q2] [ p2

0 + (1− ξ2) q4 − 2 i p0 ξ q2 ]
. (4.9)

Dropping the terms which do not contribute to vertex correction, we are left with:

J ′ ≡
∫

q

− [i p0 + ξ q2] [i p0 − ξ q2] + d2(q)

[ p2
0 + (1− ξ2) q4]

2
+ 4 p2

0 ξ
2 q4

= −(1 + ξ2) |p0|−
ε
2

8π2 (1− ξ2) ε
. (4.10)

3 A sample contraction of terms leading to this looks like:

φ∗
(
ψT Γ45 ψ

) (
ψ†M ψ

) (
ψ†M ψ

)
= φ∗

(
ψα (Γ45)

α,β
ψβ

) (
ψ†γM

γ,δψδ
) (
ψ†λM

λ,σψσ
)

= φ∗ ψδ

[
(G0)α,γ M

γ,δ (Γ45)
α,β

(G0)β,λ M
λ,σ
]
ψσ

= φ∗ ψδ

[(
MT

)δ,γ (
GT0
)
γ,α

(Γ45)
α,β

(G0)β,λ M
λ,σ
]
ψσ .

or

φ
(
ψ† Γ45 ψ

†) (ψ†M ψ
) (
ψ†M ψ

)
= φ

(
ψ†α (Γ45)

α,β
ψ†β

) (
ψ†γM

γ,δψδ
) (
ψ†λM

λ,σψσ
)

= φψ†γ

[
Mγ,δ (G0)δ,α (Γ45)

α,β
(G0)σ,β M

λ,σ
]
ψ†λ

= φ∗ ψ†γ

[
Mγ,δ (G0)δ,α (Γ45)

α,β (
GT0
)
β,σ

(
MT

)σ,λ]
ψ†λ .
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Hence, using Eqs. (A1) and (A2) in Eqs. (4.7) and (4.8), the divergent part of the fermion-boson

vertex correction from disorder is given by:

ΓV = −
g µ

ε
2 (1 + ξ2)

[
W0 +NcW1 − Nc(Nc−1)W2

2

]
4 π2 (1− ξ2) ε

(
µ√
|p0|

)ε

. (4.11)

C. Correction to disorder vertex from fermion-boson vertex

Fig. 4(b) shows how the fermion-boson vertex can generate a one-loop correction for each

disorder vertex. The contributions will be given by integrals of the form 4 :

4Wα g
2 µ2 ε

∫
Q

Γ45G
T
0 (Q)MT

α G
T
0 (q + k− `, q0) Γ45D0 (q + p + k− `, p0 + q0)

= 4Wα g
2 µ2 ε

∫
Q

G0(Q)MαG0(q + k− `, q0)D0 (q + p + k− `, p0 + q0) , (4.12)

using Eq. (A6). For extracting the divergent parts, we can set p = k = ` = 0.

Using Eqs. (A1), (A2), (A3) and (B6), the contributions for scalar, vector and tensor disorders

reduce to:

Js = 4W0 g
2 µ2 ε

∫
Q

(i q0 + ξ q2)
2

+ q4

[q2
0 + (1− ξ2) q4 − 2 i q0 ξ q2]

2
[i y (q0 + p0) + q2]

, (4.13)

Jv = 4W1 g
2 µ2 ε

∫
Q

(i q0 + ξ q2)
2 − (Nc−2)q4

Nc

[q2
0 + (1− ξ2) q4 − 2 i q0 ξ q2]

2
[i y (q0 + p0) + q2]

, (4.14)

Jt = 4W2 g
2 µ2 ε

∫
Q

(i q0 + ξ q2)
2

+ (Nc−4)q4

Nc

[q2
0 + (1− ξ2) q4 − 2 i q0 ξ q2]

2
[i y (q0 + p0) + q2]

. (4.15)

On performing the integrals, we get:

Js =
g2W0 µ

ε y

4π2 (1 + y − ξ y)2 ε

(
µ√
|p0|

)ε

, (4.16)

Jv =
g2W1 µ

ε [1 + 2 y −Nc (1 + y)− (Nc − 1) ξ y]

4π2Nc (1 + y − ξ y)2 ε

(
µ√
|p0|

)ε

, (4.17)

Jt = −g
2W2 µ

ε [2− y (Nc − 4 + 2 ξ) ]

4 π2Nc (1 + y − ξ y)2 ε

(
µ√
|p0|

)ε

, (4.18)

for the scalar, vector and tensor disorder vertices respectively.

4 A sample contraction of terms leading to this looks like:

φ∗
(
ψT Γ45 ψ

)
φ
(
ψ† Γ45 ψ

∗) (ψ†M ψ
) (
ψ†M ψ

)
= φφ∗

(
ψα (Γ45)

α,β
ψβ

)(
ψγ (Γ45)

γ,δ
ψδ

) (
ψ†λM

λ,σψσ
) (
ψ†M ψ

)
= −ψδ

[
φφ∗ Γδ,γ45

(
GT0
)
γ,σ

(
MT

)σ,λ (
GT0
)
λ,α

(Γ45)
α,β
]
ψβ
(
ψ†M ψ

)
.

There are eight such terms.
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D. RG equations

The counterterm action for the disorder part is given by:

Sdis
CT =− µε

∑
i,j

∫
p0

∫
k0

(
4∏

m=1

∫
pm

)
(2 π)d δd (p1 + p3 − p2 − p4)

×
[
A7W0

{
ψ†i (p1, p0)ψi(p2, p0)

}{
ψ†j(p3, k0)ψj(p4, k0)

}
+ A8W1

∑
a

{
ψ†i (p1, p0) Γa ψi(p2, p0)

}{
ψ†j(p3, k0) Γa ψj(p4, k0)

}
+ A9W2

∑
a<b

{
ψ†i (p1, p0) Γab ψi(p2, p0)

}{
ψ†j(p3, k0) Γab ψj(p4, k0)

} ]
, (4.19)

where An = 1 + Zn and Zn = Zn,1
εn

as before. Adding these counterterms, the disorder part of the

renormalized action is:

Sdis
ren =

∑
i,j

∫
p0B

∫
k0B

(
4∏

m=1

∫
pmB

)
(2π)d δd (p1B + p3B − p2B − p4B)

×
[
W0B

{
ψi
†
B(p1B , p0B)ψiB(p2B , p0B)

}{
ψj
†
B(p3B , k0B)ψjB(p4B , k0B)

}
+W1B

∑
a

{
ψi
†
B(p1B , p0B) Γa ψiB(p2B , p0B)

}{
ψj
†
B(p3B , k0B) Γa ψjB(p4B , k0B)

}
+W2B

∑
a<b

{
ψi
†
B(p1B , p0B) Γab ψiB(p2B , p0B)

}{
ψj
†
B(p3B , k0B) Γab ψjB(p4B , k0B)

}
,

(4.20)

where, in addition to Eq. (3.16), we now have:

W0B =
µε Z7

Z2
ψ

(
Z2

Z1

)2

W0 , W1B =
µε Z8

Z2
ψ

(
Z2

Z1

)2

W1 , W2B =
µε Z9

Z2
ψ

(
Z2

Z1

)2

W2 . (4.21)

The disorder beta functions are now obtained from d lnWαB

d lnµ
= 0, which take the form:

− ∂W0

∂ lnµ
≡ −βW0 =

[
ε+

∂ lnZ7

∂ lnµ
− ∂ lnZ2

∂ lnµ

]
W0

− ∂W1

∂ lnµ
≡ −βW0 =

[
ε+

∂ lnZ8

∂ lnµ
− ∂ lnZ2

∂ lnµ

]
W1

− ∂W2

∂ lnµ
≡ −βW0 =

[
ε+

∂ lnZ9

∂ lnµ
− ∂ lnZ2

∂ lnµ

]
W2 . (4.22)
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We have found that:

Z1,1 = − g2 y

16 π2 (1 + y − ξ y)2
+

(1 + ξ2)
{
W0 +NcW1 + Nc(Nc−1)W2

2

}
4 π2 (1− ξ2)2 , Z2,1 = − 3 g2

64 π2 (1 + y − ξ y)3
,

Z3,1 =
g2 (1− 3 y + 3 ξ y)

48π2 (1 + y − ξ y)3
, Z4,1 =

g2N ξ

16 π2 (1− ξ2)2 , Z5,1 = − 11 g2N

288π2 (1− ξ2)2 ,

Z6,1 = −g (1 + ξ2)
{
W0 +NcW1 − Nc(Nc−1)W2

2

}
4 π2 (1− ξ2)2 , Z7,1 = − g2 yW0

4 π2Nc (1 + y − ξ y)2
,

Z8,1 = −g
2W1 [1 + 2 y −Nc (1 + y)− (Nc − 1) ξ y]

4 π2 (1 + y − ξ y)2
, Z8,1 =

g2W2 [2− y (Nc − 4 + 2 ξ) ]

4π2Nc (1 + y − ξ y)2 .

(4.23)

Finally, using the expansions in Eq. (4.24) and

βW0 = β
(0)
W0

+ ε β
(1)
W0
, βW1 = β

(0)
W1

+ ε β
(1)
W1
, βW2 = β

(0)
W2

+ ε β
(1)
W2
, (4.24)

we get:

z = 2− g2
{

3− 4 y (1 + y − ξ y)
}

64π2 (1 + y − ξ y)3
− (1 + ξ2) {W0 + 5 (W1 + 2W2)}

4 π2 (1− ξ2)2
,

ηψ =
g2
{

3− 2 y (1 + y − ξ y)
}

64π2 (1 + y − ξ y)3
+

(1 + ξ2) {W0 + 5 (W1 + 2W2)}
8π2 (1− ξ2)2

,

ηφ =
g2

1152π2

[
22N

1− ξ2
+

9
{

3− 4 y (1 + y − ξ y)
}

(1 + y − ξ y)3

]
+

(1 + ξ2) {W0 + 5 (W1 + 2W2)}
8 π2 (1− ξ2)2

, (4.25)

and the beta-functions:

βξ =
g2 ξ

{
13− 12 y (1− ξ)

}
192π2 (1 + y − ξ y)3 ,

βy =
g2 y

576 π2

[
2N (11 + 18 ξ − 11 ξ2)

(1− ξ2)2 − 9
{

3− 4 y (1 + y − ξ y)
}

(1 + y − ξ y)3

]
− y (1 + ξ2) {W0 + 5 (W1 + 2W2)}

4 π2 (1− ξ2)2 ,

βg = −ε g
2

+
g3

1152π2

[
22N

(1− ξ2)2 +
9
{

3− 4 y (1 + y − ξ y)
}

(1 + y − ξ y)3

]

− g (1 + ξ2) {(1 + 3 g) (W0 + 5W1) + 10W2 (1− 3 gW2)}
8π2 (1− ξ2)2 ,

βW0 = −εW0 +
g2W0

{
3− 32W0 y (1 + y − ξ y)

}
64π2 (1 + y − ξ y)3 ,

βW1 = −εW1 +
3 g2W1

64π2 (1 + y − ξ y)3 ,

βW2 = −εW2 +
g2W2

{
15 + 32W2 (1 + y − ξ y) (2− y − 2 ξ y)

}
320π2 (1 + y − ξ y)3 . (4.26)
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E. Fixed points and their stability

The fixed points (ξ∗, y∗, g∗,W ∗
0 ,W

∗
1 ,W

∗
2 ) are given by:

(0, 0, 0, 0, 0, 0) ,

(
0, 0,

24π
√
ε√

22N + 27
, 0, 0, 0

)
,

(
0, 0,

8π
√
ε√

3
, 0, 0,

15π
√

3 ε

8

)

and

(
0, 0,

8π
√
ε√

3
,

88N π2 ε

27
− 5W ∗

1 ,W
∗
1 , 0

)
(4.27)

in the perturbative region, to leading order in ε. All these fixed points are unstable in the infrared.

This can be seen from the linearized flow equations in the vicinity of each fixed point, which can

be represented as:

d

dl



δξ

δy

δg

δW0

δW1

δW2


∣∣∣∣∣
(ξ∗,y∗,g∗,W ∗0 ,W ∗1 ,W ∗2 )

≈ M̃



δξ

δy

δg

δW0

δW1

δW2


, (4.28)

where M̃ are composed of the appropriate coefficients of the linearized equations. The eigenvalues

of M̃ for the three non-Gaussian fixed points are:( −39 ε

27 + 22N
,

22N ε

27 + 22N
,

22N ε

27 + 22N
,

22N ε

27 + 22N
, −(22N − 27) ε

27 + 22N
, −ε

)
,(

−0.083974, 0.064456, −0.001662, −0.001438, 4× 10−6, 4× 10−6
) ∣∣∣

for ε=0.001, N=4
,

(0.000114 + 0.002781 i, 0.000114 + 0.002781 i, −0.001444, 0.001000, 0, 0)
∣∣∣
for ε=0.001, N=4,W ∗1 =0

,

(4.29)

respectively, which demonstrate the instability due to the presence of positive eigenvalues in each

set. In Fig. 5, we have illustrated the behavior of the RG flows in different planes, as indicated in

the labels.

Hence we conclude that the presence of disorder destroys the superconducting quantum critical

point and the the solutions show flows to strong disorder.

V. ANALYSIS AND DISCUSSION

We have analyzed the effect of short-range correlated disorder on the superconducting quantum

critical point in systems with quadratic band crossings in three dimensions. We have employed a

perturbative RG framework in the minimal subtraction scheme. The problem includes all types of
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. The RG flow diagrams in the presence of disorder.
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disorder as well as band-mass asymmetry (due to the term ξ k2 in the Hamiltonian of Eq. (2.1)).

We have found that disorder disrupts any possibility of getting a non-trivial stable superconducting

quantum critical point at weak coupling, and simultaneously, exhibits a runaway flow to strong

disorder.

The possibility of the conventional BCS type of superconductivity is already ruled out for these

systems even in the clean limit, due to the vanishing density of states at the QBT point. Although

superconductivity can occur at a finite coupling strength leading to a quantum critical point in

the clean limit, presence of disorder completely destroys this as well.

We should remember that in our ε expansion, we have to put ε = 1 in the final results,

in the same spirit as for the case of the Wilson-Fisher fixed point. We have not done higher

loop calculations to check that the overall coefficients are significantly smaller than one-loop ones.

Hence, our conclusions are suggestive taken into account the above fact. Furthermore, we neglected

Coulomb interaction and it would be interesting to see the conclusions in presence of the Coulomb

interaction. Lastly, in future works one can study the effect of cubic anisotropy in the scenario

considered.
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Appendix A: Gamma matrix algebra

In this appendix, we list various identities which follow from the Clifford algebra. First, for Nc

gamma matrices Γa (a = 1, 2, . . . , Nc), we have∑
a

Γa Γa = Nc . (A1)

Other relations that have been used in various computations in the main text are:∑
a<b

Γab Γab =
Nc (Nc − 1)

2
, (A2)

Γf Γab Γf = (Nc − 4) Γab . (A3)

In our representation, where Γ1,2,3 are real and Γ4,5 are imaginary, we have:

(Γa)
T = ζa Γa, where ζa =

1 a = 1, 2, 3

−1 a = 4, 5
, (A4)

19



which follows from Γ†a = Γa. Furthermore,

Γ45 Γa = ζa Γa Γ45, (A5)

following from the fact that Γ45 is proportional to the product of Γ4 and Γ5. Thus we have

Γ45 (Γa)
T = Γa Γ45 , (A6)

and

Γ45 (Γa Γb)
T = Γ45 ΓT

b ΓT
a = Γb Γ45 ΓT

a = Γb Γa Γ45 . (A7)

Appendix B: da-function algebra

We state some non-trivial relations for functions da(p) derived in Ref. [10]. Firstly, we have:∑
a

da(p) da(k) =
1

d− 1

[
d× (p · k)2 − p2 k2

]
. (B1)

For k = p we obtain: ∑
a

d2
a(p) = p4. (B2)

For d = 4, we get: ∑
a

da(p) da(k) =
1

3

[
4 (p · k)2 − p2 k2

]
. (B3)

Due to reasons explained in Ref. [14], we have used the regularization scheme developed by

Moon et al [2]. This involves continuing to four dimensions while keeping the angular and gamma

matrix structure the same as in d = 3. This translates into performing the radial momentum

integrals with respect to a d = 4 − ε dimensional measure
∫

p3−εdp
(2π)4−ε

, but computing the angular

momentum integrals only over the two-sphere parametrized by the polar and azimuthal angles (θ

and ϕ). Nevertheless, the overall angular integral of an angle-independent function is taken to be

2π2 (since this is the total solid angle in d = 4), and hence, the angular integrals are normalized

accordingly. Therefore, the angular integrations are performed with respect to the measure∫
dS (. . .) ≡ π

2

∫ π

0

dθ

∫ 2π

0

dϕ sin θ (. . .) , (B4)

where the π/2 is inserted for the sake of normalization. We refer to this as the “Moon scheme”.

Defining da(p) = p2 d̂a(p), we have:∫
dS d̂a(p) = 0 , (B5)∫
dS d̂a(p) d̂b(p) =

2 π2 δab
Nc

. (B6)
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