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Abstract

An Unmanned Aerial Vehicle (UAV) is a flying machine which does not carry a
human operator and is either autonomous or remotely piloted. UAVs are very
promising robotic systems for their potential to achieve many applications with
reduced cost/ danger associated with the absence of human pilots on board. This
is particularly true for the so called Miniature UAVs (MAVS), i.e. autonomous
flying vehicles of narrow size, typically small enough to be man-portable. These
devices usually have low payloads and, consequently, low on-board computational
capabilities and poor sensor equipment. On the other hand, their small size makes
it possible to employ them in indoor environments. An example of this kind of
platform is the quadrotor, a particular kind of rotor-craft propelled by four fixed-
pitch rotors disposed on the vertices of a square and independently actuated. By
combining rotor speeds in different ways the quadrotor can move in any direction
of the space and also rotate around the yaw axis.

In this thesis we deal with the problem of developing a motion planning algo-
rithm and a suitable controller that allow a quadrotor, equipped with a gripper,
to perform the grasping of a moving target object in a minimum time.

Possible applications of this study are in search and rescue operations, good
transportation and aerial manipulation.

First a mathematical formulation of the problem is derived. Then a possible
solution is presented, that is based on theapplication of the Pontryagin’s minimum
principle. Since this approach is not easy to handle from a numerical point of
view, a different strategy is proposed that is based on the composition of multiple
sub-trajectories to obtain the complete grasping trajectory. A controller is also
described that is able to track the trajectories generated by the developed motion
planning algorithm. T he performances of the proposed method are finally tested
using realistic physical simulations.






Sommario

Un velivolo senza pilota (UAV) € una macchina volante priva di operatore umano
a bordo, pilotata da remoto o completamente autonoma. | velivoli senza pilota so-
no sistemi robotici molto promettenti. Essi possono essere impiegati efficacemente
in diverse applicazioni, riducendo i costi e i pericoli hormalmente associati alla
presenza di piloti a bordo. Cid & particolarmente vero per i velivoli senza pilota
di dimensioni ridotte tipicamente abbastanza piccoli da poter essere trasportati
a mano. Questi dispositivi hanno solitamente ridotte capacita di carico e, di con-
seguenza, scarse capacita computazionali ed equipaggiamento sensoristico. Grazie
alle loro ridotte dimensioni, tuttavia, [pOSsSoNo venire impiegati anche in am-
bienti chiusi. Un esempio di questo tipo & il quadriroctore un particolare velivolo
ad ala rotante dotato di quattro rotori ad asse fisso disposti ai vertici di un qua-
drato e attuati in modo indipendente. Combinando opportunamente le velocita
dei singoli rotori il quadrirotore pué muovers in tutte le direzioni dello spazio e
ructare intorno al suo asse verticale.

In questa tesi s affronta il problema dello sviluppo di un pianificatore di tra-
iettorie e di un controllore che permettano ad un quadrirotore, equipaggiato con
una pinza a bordo, di afferrare oggetti in moto in un tempo minimo.

Possibili applicazioni di questo studio vanno dalle operazioni di ricerca e salva-
taggio al trasposto di merci e alla manipolazione aerea.

Dopo aver derivato una formulazione matematica del problema, viene proposta
una prima soluzione basata sul principio del minimo di Pontryagin. Poiché tale
strategia non s presta ad una soluzione numerica, viene proposto un approccio
alternativo basato sulla composizione di diverse sotto-traiettorie per Fottenimento
della traiettoria di grasping completa. Viene inoltre descritto un controllore in
grado di eseguire effettivamente le traierrorie generate dall’algoritmo di pianifica-
zione sviluppato. Infine le prestazioni del metodo proposto vengono dimostrate
con 'ausilio di un simulatore fisico realistico.
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Chapt er :I_

Introduction

An Unmanned Aerial Vehicle (UAV) is a flying machine which does not carry a
human operator and is either autonomous or remotely piloted. UAVs are very
promising robotic systems for their potential to achieve many powerful applica-
tions with reduced cost/ danger associated with the absence of human pilots on
board. Such autonomous vehicles are mostly employed in military applications
where they are used both for passive surveillance and for carrying and launching
rockets, thusreducing the cost of the missionsand the risks for human pilots. UAVs
are also employed in civil applications concerning environment surveillance, traffic
control, pesticide-spraying, landscape survey, ad-hoc communication network and
autonomous exploration of dangerous and inhospitable areas. T he diffusion of this
Kind of devices in the field of entertainment is also remarkable.

The reason why there has been great interest for UAVs in the last years is
that they are both cheap and versatile. This is particularly true for the so called
Miniature UAVs (MAVs) or Small UAV s (SUAVS), i.e. autonomous flying vehicles
of narrow size, typically small enough to be man-portable T hese devices usually
have low payloads and, consequently, |low on-board computational capabilities and
poor sensor equipment. On the other hand, their small size makes it possible to
employ them in indoor environments.

An example of this kind of platform is the quadrotor, also called quadcopter
or gquadrocopter (see fig 1.1). This is a particular kind of rotor-craft propelled
by four fixed-pitch rotors disposed on the vertices of a square and independently
actuated. By combining rotor speeds in different ways the quadrotor can move in
any direction of the space and also rotate around its vertical axis. When all rotors
are spinning at the same angular velocity, they generate a thrust that, together
with the gravity force, moves the robot vertically. Trangational acceleration is
achieved by maintaining a non-zero pitch and/or roll angle. To compensate the
anti-torque generated by the air drag on the rotating blades, the propellers do not

1



Planning and control of aerial grasping wit h a quadrotor UAVY

Figure 1.1: The Microkopter robotic system

turn all inthe same verse each propeller, instead, rotates in the same direction of
the opposite one and in the opposite direction of the two adjacent ones. Each pair
of blades rotating in the same direction also controls one axis, either roll or pitch
one. Torques about the roll or pitch axes are indeed achieved by unbalancing the
velocities of rotors belonging to the same pair. Finally torques about the yaw axis
are obtained by unbalancing the velocity of one co-rotating couple with respect to
the other one, thus unbalancing the compensation of the anti-torque.

T he absence of complex mechanical linkagesto vary the rotor blade pitch angle
asthey spin, makesthis system much simpler and robust with respect to standard
helicopters, egpecially in the case of small size vehicles. Moreover the relatively
large displacement between opposite rotors makes it possible to generate high ro-
tational torques and thus to perform complex and agile maneuvers as it has been
demonstrated in [1, 2, 3].

T he use of four rotors ingtead of one allows each of them to have a smaller
diameter than the equivalent helicopter rotor. T he blades will consequently have
less kinetic energy during flight, thus reducing the damage in case of collisions with
an obstacle. This makes it safer to navigate in narrow and cluttered environments.

I n this thesis we deal with the problem of using a quadrotor helicopter to per-
form the grasping of a moving target object. Thevehicleisassumed to be equipped
with a pseudo-claw/ gripper that can grasp a target object only if some constraints
on the position and velocity of the gripper with respect to the target are satis

2



1. Introduction

fied. The grasping mug also be accomplished in a minimum time. Finally we take
into accout realigic limitations on the quadrotor control authority (upper/ lower
bounds on the propeller speeds) and the need of a finite time for the gripper in
order to successfully perform the grasping task.

Possible applications of this study are in search and rescue operations, good
transportation and aerial manipulation.

Consider, for example, the cass of a man that must be saved from drowning in
a river. In this case the trajectory of the target is only partially known from the
river path and water velocity and it is not possible to stop his motion. Moreover
it is clear that the grasping must take place in a minimum time.

Another possible application is that in which one wants to transfer a ship-
ment parcel from a mean of transport to another one without stopping neither of
them. Also in this case we can assume to have a partial knowledge of the target
trajectory before grasping, given the path that the target carriers are following
(roads, railways, maritime courses, efc...) and some information about the range
of achievable velocities. T he duration of the transfer might affect the cost of the
operation and then its minimization might be an important goal. A quadrotor
could also be used to autonomously move parts in assembly operations as it has
been shown [4]. Note that the problem of grasping an object and that of placing
it in a specified position are equivalent. In this case time congtraints might be due
to the necessity to interact with other machines, e g. in assembly lines.

Finally quadrotors have also demonstrated to be able to perform cooperative
aerial manipulation and transportation tasks(see[5, 6, 7, 8]). Inthiscontext it may
be useful for a quadrotor to have the possibility to grasp an object which is being
hold in air by one or more other vehicles, already performing some manipulation
tasks It is also possible that a quadrotor wants to change the grasp configuration
by leaving the object and grasping it again in a different way. In these cases it is
also very important to consider what the robot does soon after the grasping has
been accomplished because it clearly influences the motion of the other robots.

Different motion planning algorithms for the quadrotor, without a focus on
grasping tasks, have been proposed in the literature. In [9, 10, 11] the trajecto-
ries are parameterized using polynomials or splines and the optimal values of the
parameters are obtained by resorting to numerical methods. In[12, 3, 13] the Pon-
tryagin’s minimum principle is applied to a simplified model of the quadrotor. All
t he above planning methods assume hovering (i.e. parallel to the ground) initial
and final configurations of the robot, thus not allowing for an arbitrary selection
of the full-3D orientation of the quadrotor.

An approach to overcomethislimitation is presented in [1] where the quadrotor,

3
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after having reached a launch configuration, switches to an attitude-only controller
in order to attain the desired orientation. Nevertheless this approach relies on
heuristics and require a learning experimental phaseto tunethe controller param-
eters accounting for errors in the dynamic model and noise. A similar strategy
is adopted in [14] for perching on a vertical surface. Also in [15] acrobatic ma-
heuvers with multiple flips are obtained using a learning strategy for a low-order
first-principles 2D model of the quadrotor.

As for quadrotor grasping applications, several previous works have also ex-
plored possible solutions. In [8] a gripping mechanism is developed and a control
algorithm is presented to estimate and compensate the effects of the payload on
the system dynamics. In [16], the authors discuss the issues involved in automatic
assembly and congruction of structures using flying vehicles. However, in both
these works, the target is assumed to be gill and the grasping is assumed to be
performed in a hovering condition. The planning process is then reduced to a
point-to-point motion without specific optimality considerations.

Compared to these previous works, the main contributions of this thesis can be
listed as follows:

» atimeoptimal planning strategy is applied in order to minimizethe duration
of the grasping trajectory;

» the quadrotor is allowed to attain generic, also non-hovering, states during
the grasping phase in order to enrich the search space for the optimization;

» the case of a target moving at constant velocity during the grasping is con-
sidered.

This is also complemented by the presence of additional ‘real-world’ constraints
such as limited actuation capabilities and the need of a finite time to actually lock
the gripper and perform the grasp.

Part of thethesisisalso aimed at developing a control algorithm that isableto
track the generated trajectoriesand at the implementation of the proposed method
in a realistic physical simulator.

The thesis is organized as follows

» in chapter 2 the dynamical model of the robot is derived using Newton-Euler
approach;

* in chapter 3 the grasping problem is introduced and a mathematical formu-
lation is provided;
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in chapter 4 an important property of the system is introduced, that is the
differential flathess. Some considerations about the controllability of the
system are also provided;

in chapter 5 a strategy is proposed for solving the grasping problem by using
the Pontryagin’s minimum principle;

in chapter 6 an alternative approach is described that is based on the com-
position of different sub-trajectories,

in chapter 7 some planning results obtained by applying the latter strategy
are presented;

in chapter 8 a controller is described that can be used to track the generated
trajectories;

in chapter 9 the implementation on the physical simulator Swvarm3mx is
described;

in chapter 10 some conclusion are drown and possible further developments
are proposd.






Chapt er 2

Dynamic model of the quadrotor

Before addressing the actual grasping problem we need to derive the dynamical
model of the quadrotor. To this purpose we adopt the Newton-Euler approach.
We gtart by introducing two reference frames: the world inertia frame W and
the robot frame B, whose origin Og corregponds to the robot center of mass (see
fig. 2.1).

In our notation weindicate with a right subscript theframeto which a quantity
is referred and with a left superscript the frame in which a quantity is expressed.
For instance the expression " g will indicate the position of the frame B expressed
intheframe W. Whenever the left superscript isabsent, quantities are assumed to
be expressed in the world inertial frame W, then rg will be used instead of “rg.

The configuration of the quadrotor can then be described in terms of the posi-
tion and orientation of theframe B with respect tothe frame W. Itsstate, denoted
by x , will also comprise information on the derivatives of thess quantities, i.e the

Figure 2.1: Reference frames
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linear and angular velocity of the frame B with respect to the frame W, namely

e

I'IB
W

Rg

B
Weywy

X = eX = SE(3) x so(3).

I n some cases, for more clearance, we will also usethe roll, pitch and yaw (RPY)
anglesto represant the orientation of therobot. Therotation matrix corresponding
to a given RPY configuration is given by:

"Ra(¢, 8, 9) = RYRy(SR(¢)

CyCs CySeS, — Sylp CySsCy t SyS, (2.1)
= Syl SySeSp T GGy SyShG, T &S

~ Sy Cs S, GGy

It is also immediate to verify that the inverse transformation is given by:

§=atan2 -ra,t i+ 15, (2.2a)
@ = atan2(rsz, rss) (2.2b)
W= atan2(rzq, rq1), (2.2¢)

where r;; indicates the component on the i-th row and j-th column of 'Rg. The
transformation has a singularity of representation for cog(3) = 0.

As known, the derivative of the rotation matrix is given by:
"Rg = "Rg"Qaw, (2.3)

where BQgy is the skew-symmetric matrix built with the components of Bwgy, .
M ore specifically, assuming that

P
Boew = q (2.4)
r
we have
0 -r ¢
BQBW = r 0 -p
-qg p O

The map that relates Bwgy, to the corresponding skew-symmetric matrix 5Qgyy is
often called hat-map. Itsinverse typically takesthe name of ves-map. T heangular

8



2. Dynamic model of the quadrotor

velocity of the robot is also related to the vector of roll, pitch and yaw angles
derivatives, indeed

P 0 0]
few = Ru(9)' 0 +RU(P)'Ry(S) 8 +Ru(@)'Ry(S)'R(W)T o,
0 0 W
then
¢
Bew = T (S8,¢) &
W
where
1 0 — S8y
TEe= 0 c s,
0 -5 &G
Since

det (T (3, ) = cos($),

the above relation is invertible out of the singularities of representation and its
inverse is

(F) 1 Scptg thg
$ = 0 ¢ -8, “Wew. (2.5)
W 0 s/ C/C

Asit iswell Known (see e g. [17]), each of the four propellers produces a force of
modulus F; along zg and a torque of modulus M; about zg. Both are proportional
to the square of the motor rotational speed w:

ke uf
ki .

ke and ky are the thrust and drug factors respectively. They are both positive
and their value depends on the shape of the propellers.

Fi
M

Motor dynamicsarerelatively fast and hence negligible with respect to therigid
body dynamics, then we can consider the rotor velocities w as the control inputs
of the system. We also introduce the following input transformation:

U1 ke ke ke = (.L)%

u= W oo 0 kel 0 -kl W (2.6)
Uz - kel 0 kel 0 (.L)%
Uy Ky —kv Kv =Ky 0
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where | isthe distance between the rotor axes of rotation and the geometric center
of the quadrotor. The matrix A has always maximum rank, then the transfor-
mation is also invertible. T he transformed input vector comprises the total thrust
force u; along zg and thetorques u;, U; and Uy around X, yg and zg respectively.

Since we want the robaot to perform the grasping in the minimum time, it would
be reasonable to consider the aerodynamic effects, which become consistent when
the robot reaches high velocities. Dynamic models and controllers dealing with
aerodynamic disturbances have been developed in eg. [18, 19, 2, 20]. However
these effects are rather complex to manage and they are typically only modeled
in an empirical fashion. For these reasons we will neglect any aerodynamic effect,
entrusting the control action for their compensation.

Having said that, the forces acting on the system are the gravity force directed
along zyy, = e3 (being e the i-th column of the identity matrix) and the total
thrust force generated by the propellers and directed along zg. Ve also assume
that the robot center of mass is coincident with its geometric center, where the
total thrust is applied. With these assumptions, the transiational dynamics of the
system is given by the following Newton's equation:

mfg = — mge; + U;Zg, (2.7)

where m is the total mass of the robot.

T he angular acceleration is governed by the Euler’s equation. Sincethe gravity
force is applied to the robot center of mass, the only torque acting on the system
is the one generated by the propellers, hence

uz
J Biogw + Pwaw x J Pwgy = 28
Wew + “Weywy Wew = Uy (2.8)
Uy

where J isthe constant inertia matrix referenced to the center of mass of the robot
and expressed in theframe B. If the robot is assumed to have a perfect cylindrical
symmetry with respect tothe axis zg, theinertia matrix isalso diagonal and two of
its eigenvalues, namely Jy and J,y, areequal. This makesit possible, if desired, to
heglect the gyroscopic term Bugyy *x J By, without introducing large modeling
errors (see for example [1]).

10



Chapt er 3

Problem formulation

I n thissection we provide a mathematical formulation of the aerial grasping prob-
lem. The quadrotor is initially in the given state x;. It has to move from this
state, to grasp the target and to reach a final assighed gate ¢, in @ minimum
time. The trajectory of the target object is assumed to be fully known a-priori.
Moreover we do not optimize the point along the target trajectory in which the
grasping is performed. |nstead we only specify the position and velocity that the
target will have when the grasping takes place. If the target is being transported
by an active carrier {such asa mobile robot or a human driven truck, and so on)
we can imagine that the quadrotor agrees with the carrier on a meeting point in
a preliminary phase. Since the instant in which the quadrotor will actually reach
the meeting point is a result of the optimization, we also assume that the carrier
is able to adapt its motion to the above result in such a way that it reaches the
meeting point together with the quadrotor.

The problem can be formulated as that of constructing a feasible trajectory
X (" [t tr]— X

for the state of the quadrotor, such that the robot fulfills the given task.

To satigy the given initial and final conditions we will impose
X (t) = xi
X (t)" = Xr.

As we already said, the quadrotor gripper can grasp the target only if some
geometric and kinematic constraints are satisfied. Assuming that the target is
grasped at the time ingtant ty, we will then impose

X (tg)" €Xy,
where X, isthe set of states for which the grasping is admissible, i.e. such that:

11
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» the position of the center of grasping is equal to that of the target;

» thevelocity of the center of grasping with respect to the target is zero;

To mathematically specify these constraints we need to introduce two more
reference frames (see again fig. 2.1). The frame G attached to the gripper has a
fixed position Brg and an orientation FR ¢ with respect to the body frame, then:

re=rg+ "Rgrg (3.1a)
re=rg+ "Rg Swgw x e . (3.1b)
The frame T attached to the target has a position r+ and an orientation "R+
with respect to the world inertial frame We assume that the target has a spher-

ical symmetry so that we can neglect its orientation. T he above conditions then
translate to the following set of equations

re(ty) = re(ty) + "Re(ty) “re = rr(ty) (3.2)
Fa(te) = relty) + "Re(ty) Pwsw (tg) x Bro = ry (). (3.3)

From eg. (3.2) we obtain
"Rp(ty) fre=rr (ty) - re(ty),
and substituting this in eq. (3.3) provides
Fe(tg) = I (to) + "Re(t) "wew (tg) x (re(te) = rr(ty)), (3.4)

which simply meansthat the robot mugt instantaneously rotate around the target
for t = tg. In practice the gripper will require a finite time, namely Tg’”” > 0, to
actually grab the object. It is therefore much more realigtic to plan a trajectory
during which the robot rotates around the target for a possibly small but non
infinitesimal time, hamely Ty = Tg’””. T he grasping constraint then becomes:

X () eEXy Me tgty+ T

Therobot isfinally subject to dynamic constraints dueto the limited authority
of its actuators. T hese constraints act on the minimum and maximum values of
propeller rotational speed

w €[ww, (3.5)

defining an hypercube in the space of admissible motor velocities
00 Crf= [wo]x [ww]x [we]* [wn].

12



3. Problem formulation

This hypercube is then mapped into the space of admissible transformed inputs
through eq. (2.6)

uelU= uer?: u=Alwheell €U

Note that, since the propellers can not change their direction of rotation during
the motion, we have to assume w = 0 and obviously also u; = 0.

The ingtant of grasping t, is not fixed in principle by the problem and can be
considered as a variable to be optimized. The same is true for the final time t; .
Since we want to do the grasping in a minimum time we end up with the following
optimization problem:

min  t;
{(t) ta.te }
st. x (t)"= X
X (t)"= Xt
X (D) EXy Me tgtg+ TS
X (" eX
uel
tg> 0

= tg,

13






Chapt er 4

D ifferential flatness

Now we demonstrate an important property of the quadrotor system: the differ-
ential flatness. T his property wasfirgt introduced in the early 1990s (see [21]) and
makes it possible to express the complete state of a system as well as the value of
its control inputs, as functions of a certain number of its outputs (which take the
name of flat outputs) and of a finite number of their time derivatives. Differential
flatness has been widely exploited in the literature of motion planning because it
allows to move the trajectory generation problem to the space of the flat outputs
in which it is easier, in general, to deal with possible geometric constraints. I n [22]
a comparison is proposed between differential flathess and dynamic feedback lin-
earization in motion planning. Indeed the two properties are equivalent in the
senge that any feedback linearizable system is also differentially flat and vice versa
as it is demonstrated in [23]. Moreover the feedback linearizing outputs and the
flat outputs of a system coincide.

Thanks to this analogy it is well known in the literature that the quadrotor
is differentially flat and its flat outputs are the three components of the position
vector and the yaw angle(see, e g, [24]). We can then definea flat output vector as:

T
= X Yy z Y

Trajectory planning algorithms for the quadrotor based on the flathess prop-
erty have already been proposed in other papers such as[25, 9, 10, 26, 11]. The
following description retrace the mathematical passages of [11]. With respect to
that work we adopted a more widely used definition of the roll, pitch and yaw
angles, defined in the sequence X-Y'-Z" as commented in chapter 2. We also cor-
rected the computation of the last components of the angular velocity and angular
acceleration.

15
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41 Flat transformation

| nthissection weassumethat a sufficiently smooth® trajectory o(t) isdefined in the
space of flat outputs and we will show that the state of the system and the control
inputs can be written in terms of o(t) and its time derivatives. In the following
we will drop the notation of time dependencies for the sake of compactness.

T he position and velocity of the quadrotor center of mass are simply the first
three terms of 0 and 6. Similarly we can compute the acceleration g, the jerk
ag and the snap ag. From the fourth components of 6, ¢ and & we can instead
obtain the yaw angle y and its derivatives y and .

Defining

t=rg+ ges,
and considering that u, is always positive, from eqg. (2.7) we obtain the direction

of the robot vertical axis ¢

Zg = T (4.1)

and also the total thrust
u=mt . (4.2)

Given the yaw angle ¢ = 04 we can define the vector:

.
yc = R (Wey; = - sny cosy O

and from eq. (2.1) it is easy to verify that:
YcX Zg = COS¢XpE.

Provided that cosq > 0, we are then able to compute xg as

_ YcxZg _ XB
Xg = = —
Yc* Zg Xg

The last axis of the frame B is simply given by
¥B = Z * XB,

and the rotation matrix describing the full 3D orientation of the robot is

Now we take thefirst derivative of eq. (2.7):

mag = UZg + Wew X WZg. (4.3)

1T he exact meaning of this will be clear later.

16



4. Differential flatness

Projecting this equation along zg we obtain:
Uy = mzgag. (4.4

We can now substitute u, and u; back in eqg. (4.3) getting

Wew * Zg
(4.5)

Weassumed in eq. (2.4) that weyw hascomponentsp, g, andr in the body frame, i.e.

Wew = PXg+ Q¥ye + g,

then
h=(pXxg+ Qys+ rzg)x zg = — pys + oKp,
and hence .
= —-h ’
P YB (4.6)
q= h'xg.
The third component r is found by considering that from eq. (2.3)
= ygXs,
and .
. XE
Xg= | = XpX§ T
then, since yIxg = 0, we can conclude that
r=yl Xe _ yg C XX ll:JZB"'ny h
Xg Xg
1 T ' T
= x5 Xc ¥ex Wz - yclysx h) (4.7)
1 .
= XCXgW+ yizgq .
Xg

Once we know the values of p, qand r we are able to compute wgy as

p
wew = "Rg ¢
"

To calculate the angular acceleration Bugy we operate in the same way. By
deriving eq. (4.3) with respect to time we obtain:

mag = U1z + 2Wew % U1Zg + Waw X WiZg+ Wew X (Wew X Uizg). (4.8)
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Projecting this equation along zg we have
T.. o + T x x
mzgag = U1+ zg [Wew * (Wew X U4Zg)],
from which we can isolate Uy:
- _ T . U']
U= mMzZg ag— Wew X Wew * EZB . (4.9)

Substituting U4 back in eq. (4.8) and putting

0= éB—wBWx Weyw X %ZB =éB—wBW>< t h, (4.10)
we obtain
. 1
Wy X Zg= — mMd—-m Zgﬁ Zg — 20w X UiZg
} (4.11)
=+ | - zgzg 8-2 zgag h = 1.
. . T
Now assuming that Bgy = m n o , and hence
Wew = MXg + nyg + OZg,
it is easy to verify that
m=-1I"
ye (4.12)
h=1"xg.

The third component o is found by taking the derivative of eq. (4.7)

1 Ty 02 T of Ty T ' T T
o= % YeXBW + XcXpW+ X cXgW— XcZgqW+ ychr + ycozgn
..T.:
XBXB Ty 4T
- — 3 XcXsY+ ¥czZgq
XB
_ T o1 Tw o T ' T T TS
= XcXgW+ XcXgW— XczpqW+ ychr+ yozgh— XgXpr
Snce
T — T _ T o _ o
ych = —wgy (Ycx zg) = —wgyXg =~ Xg p
Te _ T ' T _ o7 To o
XgXp = Xc XX zZgW - yc(Xg*x h)= yczgp- XcysY,
then
1 T T T . T . .
0= e XcXpW+ XcXgW+ XYY - Xczgqy+ yozg(n- pr) - pg
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4. Differential flatness

Moreover from eq. (2.3) we obtain

XgXg =0
Tw  —
¥gXg =T
Tw _ —
ZBXB_ _q:

then
To _ oT _
XcXg = Xc (¥slrh — zg9)

and we conclude that
1 : .
0= —— 2 XTYel = XcZed WHXXeW+ycza(n- pr) —pa (413)

Finally from eq. (28) we compute the remaining inputs (us, us, uy).

In order to guarantee the continuity of the state we will require that oy, o
and o, have continuous derivatives at least up to the third order, while for g,
it is sufficient to require continuity up to the first order. If we also wanted the
continuity of the inputs, then we would also require oﬁé”, 0(24], 054) and of) to be
continuous.

4.2 Reachability analysis

Differential flathess isa powerful property in control theory being strictly related to
t he concept of controllability and dynamic feedback linearization. Indeed any flat
system is also controllable while the converse is not true (see [21]). Neverthelessin
the study of controllability in general the presence of input limitations is not taken
into account.

In this section we analyze how the presence of input boundaries affects the
controllability of the system. We show that the quadrotor can always move safely
(i.e satisfying actuators congtraints) from any initial value of the flat outputs
to any other one, provided that the derivatives of the flat output trajectory are
small enough. In order to prove this we study the behave of the inputs when the
derivatives of the flat outputs tend to zero in horm.

We gtart from the thrust input. From eq. (4.2) we can write
uy=mt =mrfg+ges =m( g +g,

then

lim uy= mg
0rg O—0

and, provided that u; = mg is a feasible thrust, it is always possible to properly
limit u; by operatingon g .
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Now we consider the torque inputs. From eq. (2.8) we have

Usg = J Bdgy + gy x J Bugw
< J B(DBW + B(..UBW x J BUJBW
< JBew + Bwsw J Bew

. 2
J Buogw +  Buwgw

then u.4 tendstozerofor Bugw and Buwgy going to zero.
From eq. (4.6) and eq. (4.7) we get

Ty 11, T7-hT 2
3 2 3 XX+ ZegN ' Xpg
By hTyg 2+ hixg + cXBY )'ZYC
B

1A
M
=
[
+

It is easy to see that if rg tends to zero then zg tends to zyy and becomes
orthogonal to y-. As aconsegquence Xg becomes closeto 1 and we can conclude
that Bwgy tendsto zeroif h and qJ do. From eq. (4.5)

1 .
h =T |_ZBZ; aB =

ag
t

For g g t = gand h tendstozerofor dg @Qoingto zero.

From eg. (4.12) and eq. (4.13) we get

: 2 2 2
BUJBW = |TyB + |TXB
: . 2
T T T T T
2 Xe¥plh— XoZgg W+ X XgW+ Yoz | Xg— pr -
Xp
5 5 22 .2 5 5
S 1 i o R e .
€21+ — + |pal”.

XB

Aswe already commented ¥g tendsto 1for g goingto zero, then Bugyy

tendsto zero if Buwgy , | and Lp do. From eq. (4.11)
=ti | - ze2L 8- 2 zlag h
1 . 5 ag -
L — =
< 3 (0 +2ag h) . + 2 n
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4. Differential flatness

We have already demonstrated that the last term goesto zero for g and ag
going to zero. Moreover from eq. (4.10) we conclude that

¢ 1
— = — (ag-wgy x t h
t t (ag B )
< atB + wsyw h = iB + BUJBW h
Shee t = gfor fg g, then the first term tends to zero for ag going to

zero. Finally, for previous computations, also the sscond term goes to zero when
g and ag goto zero.

We have demonstrated that if the derivatives of the flat outputs tend to zero
in nhorm, the robot tends to remain in an almost hovering condition and the input
vector tends to

u= = Umin, (414)

thus, provided that thisvalueis admissible, the trajectory can be performed. Note
that obviously it is not necessary to require that the velocity of the center of mass
I's tends to zero.

Now assume that we have planned a rest-to-rest trajectory o (t) with initial
and final values of the derivatives of the flat output equal to zero, and that this
trajectory violates the input constraints. If we scale the trajectory in time such
that

t

s(t)=0 -

then the k-th derivative of theflat output scales by afactor A, gtill maintaining the
boundary conditions satisfied (as they were both zero). While the geometric path
followed by the quadrotor center of mass remains the same, the orientation of the
robot gets closer to hovering and theinput vector tendsto its minimum value u,,.
As a consequence the trajectory will eventually become feasible for a value of A
sufficiently large T his property has been exploited in [11] where a post-processing
time scaling of the trajectory is used to satisfy input constraints assuming zero
initial and final values of the flat output derivatives (i.e. only rest-to-rest motions
are considered).

If the initial and/or final states of the robot are not hovering states, then the
corregponding values of the flat output derivatives are not zero and the previous
reasoning is not valid anymore. Indeed a simple uniform scaling of all the deriva-
tives would also modify their values at the initial and final points, thus affecting
t he satisfaction of the boundary conditions.
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Neverthelessit is possible to provide a qualitative demonstration that the robot
can actually move from any state to any other, provided that the input value u.,
isan interior point of the set of admissible inputs, i.e provided that there exists
an open st centered at u,,, that is contained in U.

To provethis lel’sfirst demonstrate that it isalways possible to reach from any
initial state, the zero state, i.e. the state in which the position, velocity and angular
velocity are zero and the orientation of the robot isdescribed by theidentity matrix.

T hanks to the cascade structure of the system, the rotational dynamics influ-
ences the trandational one (since it determines the direction of the thrust), but
the converse is not true. We can then operate in two steps first we regulate the
rotational part of the dynamics to the desired value, then we also regulate the
translational part while maintaining the former unaltered.

Since the rotational dynamics isfully actuated and, by assumption, both posi-
tive and negative values (possibly close to zero) of the torques are admissible, the
robot can always control its attitude so that it is parallel to the ground and its
angular velocity is zero. |n this condition, since Ui, is an interior point of U,
and given the controllability of the rotational dynamics, the robot can compensate
the gravity and make use of a residual thrust (or of a hot completely compensated
gravity) to apply forces in any direction, remaining arbitrarily close to the hover-
ing condition. The trandational dynamics then becomes a fully actuated double
integrator with both positive and negative admissible inputs and the robot can
always reach the zero state in a finite time (see [27]).

Now we want to demonstrate that, starting from the zero state, the robot can
reach any other state. Again, since the rotational dynamics is fully actuated and
with the same assumptions as beforeg, therealwaysexistsa trajectory for theinputs
that regulates the rotational part of the state to the desired value in a arbitrarily
long but finite time T. Lets call thistrajectory u (t)*. Now assume that, starting
from the zero state and applying u™*(t) for the time T, the trandational part of
the state would reach the value

e f

Xtf = . ,
e

and that the desired value of the translational part of the final state is instead

Xtd= .
re.d

We can compute a launch state whose trandational part is
Xtl = Xtd— Xtf
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4. Differential flatness

and whose rotational part hasan identity rotation matrix and zero angular velocity.
Thisisthe state from which, applying the input u (t)* we would reach the desired
final state y q after atime T. Again, since uy,in isan interior point of U, the robot
can alway reach the launching state from any initial state and then, applying the
input u ()% it can evolve to the desired final state ¥, 4.

To reach the launching state we can adopt a similar strategy as before in the
sense that:

» we compute an input trajectory that brings the robot from the zero stateto
a state in which the velocity, orientation and angular velocity are the same
asin X, but the position is in general different;

» we compute a launch state in which all the velocities are zero and the orien-
tation is parallel to the ground;

+ wegotothelaunch statevia a regt-to-rest motion (always feasible for previous
reasonings) and then we apply the previously derived inputs until we reach
the launching state .

Since the robot can reach the zero state from any initial state and vice versa,
then it can also move between two arbitrary states, possibly passing through the
zero gtate.

4.3 I|nverse flat transformation

Now we deal with the inverse problem of the one studied of section 4.1. we are
given the state of the robot in termsof rg, rg, "Rg and Swew and possibly the
input vector u and we want to compute the value of the flat outputs and their
derivatives.

The position vector and its derivative are simply contained in the state and can
immediately be extracted from it.

Using the equations reported at the beginning of chapter 2 we can conpute the
roll, pitch and yaw angles and their derivatives from the state components “Rg
and Fwgyy .

The linear acceleration is given by eq. (2.7).
fe= L'Hz - ge
BT %8 des

If thethrust isfixed then g is univoquelly defined, otherwise any value satisfying
t he equation
| - zgzg fg=-9 | - zszy e
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isvalid. In general we can split g into its component s orthogonal and paralle to
the local axis zg

_ T T
fe=-9 | - 2Zgzg €3+ U - gzge: Zg,

and it isclear that the latter component can be chosen at will (inside an admissible
interval) since it is controlled by the total thrust input u;.

Once we know g, we define
t=rg+ ges,
and we compute the component of ag orthogonal to zg from eq. (4.5) solving
| - zgzg dg= t "“RgBwsw x zs.
T he minimum norm solution is
ag= t "“RgPwpw x zs. (4.15)

If U4 is fixed, then we must add to ag a component along the zg axis such that
eqg. (4.4) is satisfied, i.e.

) u
ag = t WRBB(.UBW X Zg + —125
m

Assuming that the torque inputs u,, us and u, are known we can compute the
angular acceleration in the body frame from eq. (2.8)

Uz
BmBW =J Us -~ BUJBW x J BU.)BW
Ug

and using eg. (4.13) we compute Lp as

. (o+py %s - 2 xLysr- xLzsq w+ ylzg(n- pr)
LIJ:

X Lxp
where n and o are the last two components of Bugyy.

We also compute the component of & orthogonal to zg by solving the system
| - zgz§ 8= t Wgw+ 2 Zgdg Waw X Zg.
derived from eq. (4.11). Again the minimum norm solution is
6= t wWew+2 zgdg Wew X Zp.
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4. Differential flatness

If uy is not fixed and we chose ag according to eq. (4.15), then the above equations
simplify to
| - zgzy 0= wew *x t zg,

and
o= (.A-JBW x t ZE.

It is easy to demondrate that if also U is given, then in order to satisfy eq. (4.9)
we have to add to & a component along zg, i.e.

0= t wgy t+2 Zga.B Wewy XZB+:_JT:ZB.
Finally, inverting eq. (4.10), we obtain

agd= O+ Wew * (Wew x Tt Zzg).
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Chapt er 5

Planning based on Pontryagin’s
minimum principle

As we have already said in chapter 1, the problem of generating optimal trajec-
tories for a quadrotor UAV has been addressed in [12, 3, 13] using Pontryagin's
minimum principle. T his optimal control theory principle has been formulated
by Lev Semenovich Pontryagin in 1956 and defines a necessary, but not sufficient,
condition for optimality of a system trajectory. Consider a general dynamic system
described by a differential equation in the form:

X (@) =1 (x({),u®)
and assume that we want to find a trajectory for the state and the input

x ()*: [0,T]—X
u(t)*: [0,T]—U

that minimizes the cost function

.
V= h(x (T)9+ ; a(x (H)", u(®)Hdt,

subject to
X (0)"= X
X (T)"= Xi.
Neglecting the time dependencies, we define the Hamiltonian of the system as
H(x,u,p)= g(x,u)+p'f (x,u),

where the vector p is also called the costate vector and plays a similar role to the
Lagrange multipliers.
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The Pontryagin’s principle states that if u ()™ is an optimal trajectory for the
inputs and x (t)™ is the corresponding optimal trajectory for the state, then the
following conditions hold

X ()= (x ()" u())
X (0)°= X
X (T)"= X
pt)=-VyH XM ut)",pt).

and for allt €[0,T]
()= arggin{H (x (B, u, p(t)} .

Moreover if thetotal time T is not fixed by the problem, the following condition
also holds true

H(x ()", u(t)y p)=o0.

For a detaild explanation of the Pontryagin’s principle, refer to eg. [27].

We tried to apply the Pontryagin's minimum principle to a simplified two-
dimensional version of the grasping problem in which we assume that the robot
and the target move in the same vertical plane and that the yaw angle of the
robot is fixed. With this assumptions we can consider a simpler planar model of
the quadrotor as it has been done by the authors of [3, 13]. We have taken the
inspiration for the following description from these articles but, in contrast with
them, weassume to control the pitch/ roll acceleration instead of the corresponding
velocities.

In the next sections we describe the simplified 2D model of the quadrotor and
the two dimensional version of the constraints introduced in chapter 3. We then
apply the Pontryagin’s minimum principle to the resulting optimization problem.

5.1 Two dimensional model of the quadrotor

In this section we derive a two dimensional model of the quadrotor dynamics. To
this purpose we assume that the gyroscopic effect is negligible and that the yaw
angle is constant and is such that the axis yg is orthogonal to the plane in which
the robot and thetarget are moving. Projectingeq. (2.7) on this plane and eq. (2.8)
on the axis orthogonal to this plane, we easily obtain the following two dimensional
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5. Planning bassd on Pontryagin’s minimum principle

model of the quadrotor:

U .
X = sng
m
U
Z= —00s8- ¢
m
S= —
J)()(

with state vector:

and input vector:
u= u; u

The input constraints specified by the problem act on the single thrusts gener-
ated by each propeller, that are coupled in eq. (2.6) to generate thetotal thrust and
thetorque around yg. Nevertheless we can assumethat it is possible to determine
conhservative boundaries on the thrust and torque that always result in admissible

values of the single propeller rotational speeds. Having said that we assume

U e ug, Uy
u; €[-4,d].

Wetry tofollow the samestrategy adopted in [3]. In particular wetry to reduce
the number of parameters by using a scaled version of the above dynamic model.

Given the gtate transformation

*T iag
z= a z
Jixg
the input transformation
Ur = 2 e ur, Ur
g -

a
= —[-1,+
Up = = €[=1,+1],

and the transformed time

we have
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where the derivatives are taken with respect to the transformed time.

Neglecting the hat notation the system state dynamics can be written as
X
Ur sing
z
(= 5.1
X Ur coss - 1 (.1
$
Ur

T he dimensionless model contains two model parameters, namely the lower and
upper limit of the collective thrust input (ur and UT).
5.2 Two dimensional constraints

T he constraints for the grasping can also be easily transformed in their two dimen-
sional version obtaining

8 -dng By
X5 _ X + C.OS an G _ X7 (52)
Zs z snd cos$ Bz Zr
X X cos$ -sn® 0 -8 B X
o= T+ - S eo= T (5.3)
Zs z shg ©osH g 0 Zs 2

from which, as for eqg. (3.4), it follows that

X X7 + 0 -8 X— X7
ZG Z"|' 8 0 Z— Z7

In order to put the problem in the form described at the beginning of this chapter
we assumethat thefinal state has been fixed to any of the statesthat are admissible
for the grasping, i.e that satisfy egs. (5.2) and (5.3).

5.3 Pontryagin’s minimum principle

Snee in our case we only want to minimize the total time nesded to complete the
trajectory we have

that is

h(x*(T)) =0
alx O, u® =1,
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and then we define the Hamiltonian as

H(x,u,p)= 1+p'f(x,u)

. . : (5.4)
= 1+ X+ poUrsSy + P32+ Py (UrGs — 1)+ psB + PeUr

and we impose
p=-VyH({X u%p). (5.9)

Since the terminal time for the maneuver is not fixed, we also have to impose
H(x%u*p)=0 (5.6)
Equation {5.5) brings to:

=20 > =G
PR=-p1 = m= - gt
=0 => 3= C3
1= —P3 = = G- Gt

where the constants ¢ = (¢, ¢, €3, ¢4) remain to be determined. Note that these
constants actually correspond to the initial conditions of the costate variables

¢ = p1(0)
¢ = p2(0)
3= p3(0)
¢ = pa(0)

The last two elements of the cogtate vector p are given by
Ps = — pUr COSS+ pyUr Sing
ps =~ s

and their initial conditions have to be determined too.

Since the control inputs do not appear in the same summand in the Hamilto-
nian, the lattert can be minimized separately for ur and ur.

Optimal control input ug

For the rotational control input the minimization of eq. (5.4) bringsto:

us = argmin {psUr} (5.7)

Up g~ 1+1]
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If we define a switching function of ur as

2R = Po, (5.8)
then the resulting control law is
+1 Zp <0
UE= Ui Zr=0. (9.9)
-1 Zp >0

If 2 is zero for a nontrivial interval of time, then eq. (5.7) is insufficient to
determine ug. In these intervals, which are called singular arcs, u? is determined
using the condition that =r remains zero, which implies that also >k and g
vanhish, i.e

SR=-p=0,
and
Sk = pUFcosSt- puuf sin & 510
= (¢ - cit) uf cosS* - (¢ — Gt) uFsin®*= 0. '
From eg. {(5.10) we conclude that:
§= arctan 2 = ardtan 2 o (5.11)
Py Cy— Cgt

Differentiating eq. (5.11) twice w.r.t. time we obtain

§* = GG — GGy
(- o)’ + (ca— cat)’

and

N 2(CC— cie) [(co— at) e + (¢ — cat) ¢
uR,sing - :

2
(C- cit)’ + (¢ - cat)’

Optimal control input uf

| norder to compute the optimal thrust input u¥ we have to solve the minimization
problem:
ur = argmin {{(p:sin®*+ pycosSMur} . (5.12)
ur eur ]
As for the rotational input, we define a switching function for the thrust in-
put as

1 = ppenS*+ pyoosS*

(5.13)

(C;— cit) sinS*+ (¢4 — cat) cos ™,
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We will now demonsgtrate that no singular arcs exist for =1, then the resulting
control law is:

U Z7=0

uk = (5.14)

ur $1>0

For a singular arc to exist, 21 must be zero for a nontrivial interval of time.
Setting 21 to zero yields:

Gt - ¢
C— th

9% = arctan —% = arctan

(5.15)

The angle 8* is determined by the rotational control input ug. If u® isin a non-
singular interval, then $* is a parabolic function of time(§*= cost) and eq. (5.15)
can not be satisfied over a nontrivial time interval. If, instead, u? is singular, ©*
is given by eq. (5.11) and then for uf to be singular too, eqg. (5.11) and eq. (5.15)
must be equal:

Cy— ¢t Gt- o

arctan —— = arctan
Cq— Cot G- ¢t

Taking the tangent of both sides we obtain:
(- ety + (c- et)? = 0,

which can not be truefor a nontrivial time unless for thetrivial casec = (0,0, 0, 0).
T herefore we conclude that the thrust input ur does not contain singular arcs.

Augmented system

Since only the second order derivative of the switching function Zr is known, we
introduce an augmented system that contains the quadrotor gtate, the switching
function Zr and itsfirst derivative SR:

Xa= X* ZrR 2R . (5.16)

The evolution of this system is governed by the following first order differential
equation:

Xa= fa(t,Xa)= (5.17)

Ur
2R
(¢, — cit) uf coso*+ (Gt — ¢y) uf sinv™*
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where the control inputs u and uy are given by the control laws of eq. (5.9)
and eq. (5.14). A quadrotor maneuver from ¥; to X that satisfies the minimum
principle solves the boundary value problem (BVP)

Xa = fa(t,Xa) (5.18)
X (0) = Xi (5.19)
X (to) € Xo. (5.20)

T his problem has seven unknowns. the final time T, the four constants ¢ and the
initial value of the switching function 2 (0) and of its first time derivative >R (0).
Thess last two unknowns must also satisfy the condition eg. (5.6). In particular,
assuming that the state, costate and input trajectories are known, and considering
eg. (5.4) and eg. (5.6) we can write

1+ pX + PoUr SINS+ Pz + Py (Ur cosS— 1) + psS
- Ug

ZR=

and, being ps = - g,

1+ piX + poUr SINS+ P32 + py (Ur cosS - 1) - 58
1+ X+ (C;— ct)ur SINS+ 2 + (s — Cst) (Ur cosD— 1) - 58
_UR

ZQ=

(5.21)

We tried different numerical algorithmsto solvethis problem but none of them
was able to find an optimal solution. Indeed these algorithms are in general very
sensible to the initial guesses of the unknowns and, apart from the total time T,
these guesses do not have any physical meaning and are then hard to determine.
Moreover even if we found a solution to this problem, the resulting trajectory
would only satisfy a necessary condition for optimality. Finally we would still need
to generalize the method to the original three-dimensional problem in which the
grasping state is only partially fixed and the conditions for grasping have to be
maintained for a finite time. For all these reasons we decided to abandon this
strategy and to try a different solution that is described in the next chapter.
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Compound trajectory generation

A different approach to solve the grasping problem is to split it into different
subproblems. T he complete grasping trajectory can indeed be obtained as a com-
position of three sub-trajectories

» an approach transfer trajectory bringing the robot from the starting state x;
to the state xig in which the robot reaches the target, for t = tg;

» a gipper-closure trajectory maintaining the grasping conditions satisfied for
a finite time interval T, > Tg””, while bringing the robot from the state )(ig
to the state x |;

» a leaving trangfer trajectory bringing the robot from the final state along of
the gripper-closure trajectory, namely Xf_;;, to the desired final state y, for
t= tf .

Each of these sub-trajectories must be chosen according to an optimality criteria,
i.e. with the aim of minimizing the duration of the complete trajectory.

In this chapter we describe each of the above steps separately. VWe start by
introducing two possible classes of gripper-closuretrajectories satisfying egs. (3.2)
and (3.3). Fird we consider the case of a fixed target and then we extend our
resultsto the case of a target moving at congtant velocity during the grasping Ve
will finally show how the flatness property can be exploited to generate the two
transfer trajectories needed to connect the gripper closure trajectory to theinitial
and final states.

In the following we denote with {a, B, p) the polar coordinates (i.e., azimuth,
zenith distance and radius) of the (constant) vector Br defining the position of
the center of grasping Og in the frame B.
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6.1 Horizontal circular paths

A possible trajectory satisfying the condraints defined by egs. (3.2) and (3.3) is
that in which the robot rotates at constant velocity around an axis parallel to zyy
and passing through Oy . | nthese conditionsthe robot acts asa massattached to a
fixed point through a wire, rotating around the axis of gravity. Theonly difference
isthat here the reaction force of the wire must be substituted by the thrust force
generated by the propellers.

To analyze this class of trajectories it is convenient to consider the reference
frame R, obtained by trandating the world inertial frame to the position of the
target and rotating it around the axis zy, by anangle (t) = Q; (t - ty) + {; where
Q); and {; are constant:

"Rr = R (Q(t- )+ &y).

In thisframe the velocity of the robot must be zero and its position and orien-
tation mugt be fixed. We assume, without loss of generality, that the robot center
of mass, i.e the point Og, always lies on the plane defined by xr and zr, i.e

(I’B— I'T)TYR = 0.

T he forces acting on the robot, as shown in figure fig. 6.1, arethe gravity force,
the thrust produced by the actuators and the (fictitious) centrifugal force, due to
the fact that the reference frame is rotating.

In order for the acceleration to be null in the non inertial frame we have to
impose the equilibrium of the forces acting on the system. Since there is no force
acting on the direction of yr, in order to guarantee that the robot has a constant
tangential velocity along the circular trajectory the component of the thrust vector
along yr must be zero, i.e.

zgyr = 0.

M oreover the following relations involving the thrust input must hold true

- u1cos(ég+ B) = mg, (6.1a)
ursin(§g + B) = mQfpsingg. (6.1b)

Given a desired value of &;, we immediately compute the value of the thrust
force that is necessary to compensate the gravity action using eq. (6.1a)

_ mg
T os(E + B (62)
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",

(b)

Figure 6.1. Side (a) and top (b) views of the horizontal gripper-closure sub-
trajectory, with forces and relevant parameters. Note that &y is constant in this
case, while {(t) isatime-varying quantity starting from the initial value { (ty) = {4

t hen we obtain the angular velocity using eg. {6.1b)

_ -gtan(ég + B)
Q= pdngg . (6.3)

The position and orientation of the robot in the rotating must befixed in such
a way that Og is positioned on the target, i.e. in the origin of the rotating frame.
This result in the following condition on the position of the robot center of mass
OBZ

psinég
re= 0 . (6.4)

PCOSg,

Concerning the orientation, the robot must first be rotated around zy by and
angle (11— a) and then around yr by an angle (¢, + B — ). Thisis described by
t he following rotation matrix:

"Re = Ry(§+ B~ MR (- ). (6.5)

By considering the simple rigid transformation between the rotating frame and
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the world frame we can compute the trajectory of the robot state

rg=rr+ "RgFreg
rg= Wrw *x "RrFrg

"Rg = "RrRE

B

FmTR
Wy RB Wy -

In particular the orientation of the robot is given by
"Re = "Rr"Re = Rz (QRy (& + B~ MR (T- a)
and applying eq. (2.2¢) we can compute the yaw angle along the trajectory
Y= atan2 ¢;S;Ce+p + SaCr CuCiCey+p — SuSt - (6.7)

T he angular velocity in the local frame is given by:

0 ~ CuSey+
"wew = FRETwrw = Rz(@- MR, (M- &-PB) 0 =Q -suSgep
Q ~ Gy

and differentiating eg. (6.7) w.r.t. time we can easily verify that
y=7=0Q

We can then simplify the calculation of Y by considering that

p= Q(t- to) + w,
where obviously
Wy = atan2 ¢,y Ce v p + SaCyy, CuCr,Ceyrp — SuSy, -
T he angular acceleration is obviously null

Sgw = 0,

then the torque inputs, assuming that the inertia matrix is diagonal, are

u; 5 ~SaSp+ 28 (Jyy = Jzz)
Us = BUJBW x J BUJBW = é CaSoy+ 2B (Jxx - Jzz)
U4 _SQr:xsgngg(Jxx = Jyy)

and are constant over time. If the quadrotor is symmetric, then
Jyx = Jyy,
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and the inputs further simplify to

u2 7 _SC(
Us = Sz (o= dz) & (6.8)
Uy 0

By inverting eq. (26) we also obtain the actual inputs

- mg
4kF ng+B

- mg
4kF C£g+B

- mg
4K Coy+ p

& & & &

- mg
4kF Cﬁg*ﬁ

that simplify to

& & & &

_ Qg 52u5§g+3(Jxx—JW) + CE(S?EWEB(JH—JH)
4 I e
Qg 52u5%g+B(Jxx—JW) _ SuS2ge 20 {dyy = Jzz)
4 T o
_ Q% Szusgg»,B(Jxx—Jw) _ Cus?ig’f?B(Jxx—Jzz) )
4 2 v
Q_g S2u 5%g+B(Jxx—JW;' + Sg S5+ 26 (dyy = Jzz)
4 Tk e
_ mg  _ OF cusaggeap(doc- Jzz)
e cggrp 4 ke |
- mg - O'f, Su82§g+2B(J){x—Jzz)
e Cgep 4 ke l
- __mg OF Ca 5254+ 2 (dux = Jzz) (6.9)
Ak Cig+ B 42 Ke 1
- __mg QF Su 525+ 2p (Jxx — Jzz)
ApCrgep A ke |

if the quadrotor is assumed to be symmetric.

The quantities needed to compute the state and the inputs using the flat trans-

formation are

Mgt =
Mgt =
Fgt =
agy =
agy =

g =

W =

%:

rr+ Rz (Q; (t- tg) + g) rg

Wryy X
Wrw X
Wrw X
Wrw X
Q (t-
o

0.

(rgt=T71)
gt

FBt

apt

ty) + Ll"ig

Before describing the other possible class of gipper-closure trajectories it is
worth to analyze how the position of the gripper with respect to the quadrotor
(defined by the parameters a, p and p) influences the possible horizontal circular

trajectories.
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Figure 6.2: Admissible values for ¢y depending on .

The azimuth a determines the way in which the control effort is distributed
among the motors in order to generate the needed torques From eg. (6.9) it is
clear that if a = k5 only one pair of motors is used to generate the necessary
torque To guarantee that every motor is contributing in the same way and then
to reduce the effort required to each of them it is more convenient to chose

a= (2k+ 1)2.

T he parameter  has a strong influence on the determination of the admissible
values of §; [0, 1. Indeed from egs. (6.2) and (6.3), we note that we must impose
cos(¢y + B) < O for having a positive thrust, and tan(¢; + B) = 0 for €2; to be real
(notethat sin§, = 0). Therefore the only admissible interval for 5+ B is (5, 1],

implying

g€ max 0,7~ B =B = (S, Gamal (6.10)

The resulting admissible set of ¢, and B is represented by the gray shaded area
infig 6.2
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The case §; = &ymac cOrresponds to hovering trajectories (fig. 6.2(a-c)(e)(h)),
i.e. to trajectories for which Q; = 0 and Og isin a fixed position with respect to
the target. A singularity arises when B = (0, ), since Q; becomes undefined in
this case (fig. 6.2 (a)(h)).

Now conhsider separately the two cases in which the gripper is above or below
the quadrotor horizontal plane, i.e., B [0, T/ 2) or B < [T/ 2, 11], respectively.

Thefird caseyields&ynr = T/ 2- f > 0 makingthechoice§, = &,y unfeasible
(fig. 6.2(f)), as it would imply a perfectly vertical quadrotor with the total thrust
applied in a direction orthogonal to that of the gravity (in fact, eq. (6.2) becomes
singular in this case).

The second case yields §qns = 0 and §q = &yinr, COrresponds to the situation
in which Og is exactly abovethe target. If B = T, this second case is not feasible
because, as it is clear from eq. (6.3), it would require an infinite Q; (fig. 6.2(g)).
On the other hand, if B = 1T then Q; becomes indefinite, thus corresponding to
another hovering case (fig. 6.2(h)).

It is also clear that, in general, values of B that are too close to 11 reduce
the range of admissible values of &y, and then the number of possible grasping
trajectories. In particular, if p = 1, it is easy to verify that the sole admissible
solutions reduce to the hovering ones (fig. 6.2(h)).

It is also important to consider that a zenith distance B close to /2 might
invalidate the assumption of having an almost symmetric inertia matrix, and then
t he possibility of neglecting the weight of the target.

In the same fashion, a large value of p (the gripper length) also increases the
inertia introduced by the target after performing the grasping. Additionally, the
length p also determines the angular velocity €); for a given value of &,, and thus
the amount of necessary torques as it can be ssen from egs. (6.3) and (6.8).

Concerning additional possible geometric constraints of the problem, values of
B larger or smaller than 1 2 are clearly most suited for targets lying on the ground
plane or hanging from the ceiling, respectively.

6.2 Vertical circular paths

We now analyze a different class of trajectories in which the robot center of mass
rotates around an axis orthogonal to z,;, and passing through O;. In this case it
is convenient to consider a rotating frame R having the origin on the target, the
axis yr coincident with the axis of rotation of Og, and the axis zg pointing toward
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(b)

Figure6.3: Side(a) and top (b) views of the vertical gripper-closure sub-trajectory
at constant angular velocity, with forces and relevant parameters. Note that, con-
trarily to the horizontal case, here ¢4 is a constant parameter, while g(t) changes
over time with initial value & (tg) = &.

Og. The orientation of this frame with respect to the world frame is given by:
W =
Rr = Rz (§) Ry (§(1))

Let’sfirst consider thecass of a congtant tangential velocity alongthetrajectory.
I n this case we have

()= Qeft- 1)+ &

T he scheme of the forces acting on the system is represented in fig. 6.3. Aswe can
see the main difference with regpect to the previous case liesin the direction of the
fictitious centrifugal force which remains constant in norm.

As we did for the previous case we must impose that the robot does not move
in the rotating frame. Again we assume that Og always lies on the plane defined
by xp and zgp, i.e

(rg-r1) yr = 0.

In order to guarantee that the robot does not leave this plane, the component of
the thrust vector along yr must be zero, i.e

zgyr = 0.
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The equilibrium of forces is given by:
urcosp = mQp- mgcos(Qs (t- tg) + &)
UrsinB = mgsin(C: (t - ty) + &y).
Multiplying the first equation by sin B and the second one by cosp and then sub-
tracting we get
0= mQfpsinB - mgsin(Qx (t - t) + & - B),
which cannot be satisfied for a nontrivial time unless
f)g =0

which corregpondstothe hovering case. Thismeansthat it isimpossibleto perform
thistrajectory at constant non-zero angular velocity. More in general we will have
a hon-zero angular acceleration of the rotating frame which implies the presence
of another tangential fictitious force as reported in fig. 6.4. In this cass we have

u; cosPp = mé2p- mgcosé (6.11a)
ursin = mgsiné - mép. (6.11b)

If we multiply eqg. (6.11a) by sin 3 and eq. (6.11b) by cos3, and then we subtract
t heresulting equations, we obtain the nonlinear differential equation governing the
evolution of £ (t).

mp &2sinB+ £cosp - mgsin(E+ B) = 0. (6.12)

We can put it in the form of a first order differential equation introducing

_ g - &2
¢ = . =& = gan(sirB)-pedan
poosp

If instead we multiply eq. (6.11a) by cos3 and eq. (6.11b) by sin B and we sum
we get an expression of the thrust input:

ur=mp §2cosp- Esinp - mgcos(§+ B).

Also in this case the position and orientation of the robot in the rotating frame
must be chosen such that the gripper is always in the origin of the frame. The
coordinates of the robot in the rotating frame are ssimply given by

0
g = 0
P

R
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(b)

Figure6.4: Side(a) and top (b) views of the vertical gripper-closure sub-trajectory
at non-congtant angular velocity, with forces and relevant parameters. Note that,
contrarily to the horizontal case, here , isa constant parameter, while {(t) changes
over time with initial value & (tg) = &.

Concerning the orientation, the robot must first be rotated around zp by an
angle (- a) and then around yr by an angle (B — ). This is described by the
following rotation matrix:

RRe = R, (B- MR, (- a). (6.13)

As we did before, by considering the simple rigid transformation between the
rotating frame and the world frame we can compute the trajectory of the robot
state as follows

re=rr + “Refrg
g = wrw * “RgFrg
"Rg = "RrRE

B
Weyy

RRELRugy.
T he orientation of the robot is given by
"Rg="Rr"Re = R;(§)Ry(§+ B- MR (- )
and applying eq. (2.2¢) we can compute the yaw angle along the trajectory
W= atan2 ¢;S;,Ce+p + S Cry, CaCryCerp — SuSy, - (6.15)
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The angular velocity in the local frame is given by

0 Sy
Bogw = "RLRwrw = Rz(a- MR, (MT-B) € =¢ -¢ ,
0 0

while the yaw rate can be obtained by derivation of eq. {6.15)

. é . "
Y= ms@B C, Sy~ S, Gy - (6.16)

where §, and €, are thefirgt and last argument in eq. (6.15).

Similarly the angular acceleration is given by

0 Sy
gy = "RErw = Ro(a- MRy (m-B) & =& -¢
0 0

and differentiating eq. (6.16) we obtain the yaw acceleration

CC( .- . . . .. . .
7'(% ESeep + E-'QC§+B Cy Sy~ S,y + BWSep 81,8y + ¢ Gy
(6.17)

Assuming again that the robot inertia tensor is symmetric, the torque inputs
are given by

Uz ‘c:?qux

u; = J By + Popw x J Bwgy = = &Cydyy :
]

U4 %SQCC (Jox = Jyy)

and in case of perfect symmetry the gyroscopic effect disappears and they simplify
to the following expression

uz Sy
Us = §dux —Cp . (6.18)
U4 0

The corresponding squared motors velocities are

urig) 4 Ecgdyy + 22520 (s = Jyy)

wf 7l oy S
('L)g U] + ESadux _ 5_,252E((Jxx = dyy )
= dkp 2k | ) Skim
(‘03 Uil _ ECadyy + E.,ESEu(Jxx—Jw]' !
Al 2k | ) Shipg
(,Lﬁ upi) _ CSodux _ E,\ESEE(NH‘JW]‘

ke ke | SR
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in the general case and

IEILS) + E,Ca Jix

(‘012 45{2] C2kp
1y £S5 dxx

(‘Ug = 4kg + L2kl

('L)g U108} _ o ux !
4kp kg |

Uﬁ uqi&) — £50Jux
Akp 2kF |

in the symmetric one.

It is easy to verify that the quantities needed to compute the state and the
inputs using the flat transformation are:

ree = rr+ "Rr(€) Frg

et = Wrw X (Frgr— 1)

Fe: = Wrw X (Fet— 7))+ WRw X It

apy = Wrw X (Tgr— 1)+ 2WRw X Tt + Wrw X Fp;

apy = AQrw X (rgr— 1)+ 3Wrw X g+ 3Wrw X ey + WRw X Ay

W = atanZ CySy,Cep + SuCyy, CuCryCerp ~ SuSyy

: G « -
W= s O Sl
. _ CC( - 2 . . . . .
T g+d ESeep + §Coop  CuSy— S8y + XWSep S8y + 0Ty
]
where

wWrw = Rz (g) 0 & 0
Grw = Ry() 0 € 0
)

Rz(g) 0 € 0

Grw= R, () 0§ 0

R vy

Once we have obtained ¢ and ?; solving the differential equation, we are able to
compute the higher order derivatives, indeed

: _ gsin(§+ B) - pg’sinp

: pcosp

. gcos(E+ B) - 20Esinp

g = 50058 :

o O ST B - Sn(g+ B)E? - 2p8np §E+ ¢

pcosf
Concerning the position of the gripper with respect to the robot, the comments
we made in the previous paragraph regarding the parameter a are sill valid. In
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Figure 6.5 Total thrust trend for different values of 3.

particular from eq. (6.18) it isclear that if a = kT only one pair of motors is used
to generate the necessary torque. To guarantee that every motor is contributing
in the same way and then to reduce the effort required to each of them it is more
convenient to chose

a= (K+ 1)2.

To guarantee that this trajectory is actually feasible, uqs must lie within its
admissible range and, in particular, it must be positive. Ditferently from the pre-
vious case, here in general the input u, can remain admissible only for a finite
time interval. The length of this interval depends both on the parameters B and
p and on the initial value of ¢ and § namely &, and ég. An explicit expression
of this relationship is hard to deduce since the algebraic solution of eq. {(6.12) is
not known. However we can get a qualitative overview by considering a numerical
example. |n fig. 6.5 we report the time profile of the thrust input obtained by
numerical integration of eq. (6.12) for a fixed &, ﬁg but for different values of 3.
There seems to be an optimal value of B, resulting in the maximum duration of
the trajectory, around 2.7rad. Nevertheless the optimum changes depending on
the initial value of £ and then there does not exist a unique best choice for B.

The comments we made about the influence of the target weight for B close
to 1/ 2 and large values of p remain valid.

6.3 Translating circular paths

T he above results can easily be extended to the case of a target moving at congtant
velocity or, morein general, if it is possibleto assumethat the velocity of thetarget
remains almost constant during the duration T, of the gripper-closure trajectory.
In this case, indeed, the real and fictitious forces acting on the system remain the
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same and we just need to properly trandate the trajectory:

rg=rr+ "RgFrg (6.19a)
Fg=rr+ Wrw X (Ig = 1) (6.19b)
“Rg= "Rr"Rg (6.19¢)
Boew = TRE “wrw. (6.19d)

The flat outputs and their derivatives become:

res= 1+ R, (Q(t-tg) + &) frg
Mgt = I1T+ Wrw X (gt — 1)
Fer= Wrw X (Mt~ IT)
agt = Wrw X Fpy
apt = Wrw X ap

W= (t-ty)+ yy

W=

W =0
in the firg case and

rer = rr + "Rg (§) Rreg

Mgt = It + Wrw X (g = 1)

Fet = Wrw * (Mgt — rT)+ Wrw X (rgr— rr)

agt = Wrw X (Fgt = 1)+ 2Wpw X (Fgr = 1)+ Wrw X Fp;

agt = drw X (Fpr = 1)+ 3Wrw % (Ipr — 1)+ 3Ry * g + Wrw * apyt
W = atan2 Cq;Sy,Cvp + SuCry, CaCryCe+p — Sa Sy,

14 5 _ oo R

W= ms&ﬁ Cigsw Sigcw

. (o - . . . .. . .

W= g+ EScep + §Cop (CBy = S(By) + 28Wsep (S(8y + CTy)
[

in the second one.

6.4 Selection of the gripper-closure trajectory

At this stage we can assumethat, once a particular gripper-closure trajectory and
its duration T, have been chosen, a method exists to generate the two transfer
trajectories that connect it to the initial and final robot states in the minimum
timesT; and T; respectively. If thisistrue, then thetotal duration of the grasping
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depends only on the choice of the gripper-closure sub-trajectory. T he variables to
be optimized are then the gripper-closure trajectory parameters, i.e.:

1. the class (either horizontal or vertical) of the gripper-closure trajectory;

2. thevalues of the parameters identifying a trajectory within the chosen class,
that isthe values of {, &, and sign Q; for the horizontal trajectory and those
of ¢y, & and &, for the vertical ong

3. the amount of time T, during which the chosen gripper-closure trajectory is
being followed.

The selection of the optimal parameters can be doneg, for a given class, using
a local optimization routine that is briefly described in algorithm 1. Here)(fg and
xg denote the state of the robot at the beginning and at the end of the gripper
closure trajectory (i.e fort = t,and t = ty+ Ty) respectively. By means of the
expression terminating conditions we want to indicate a series of checks that are
performed at the end of each iteration. These checks are strictly related to the
particular optimization algorithm that is being adopted and concern, in general,
the number of iterations, the derivatives of the constraint and objective functions,
t he disgtance between the current guess and the previous one, and so on.

At the beginning of the computation a class type is chosen together with the
sing of €; (for the first class of gripper-closure trajectories). This is done in order
to avoid the introduction of binary variables that are not well managed by local
optimization algorithms. T he optimization is then repeated for the remaining class
and Q; sign. Finally the best solution is selected.

6.5 Transfer trajectories generation

In this section we deal with the problem of generating two transfer trajectories
connecting a chosen gripper-closure trajectory to the initial and final states of the
robot in a minimum time. T he resulting algorithm is used in lines 3 and 4 of
algorithm 1.

Thanks to the flathess property it is possible to move the trajectory planning
problem from the control space to the output space. Since the flat transformation
is invertible, as it has been shown in section 4.3, we can transform the conditions
on the initial and final states in equivalent conditions on the flat outputs and their
derivatives that we indicate with

G= rgi, fsi,, fei, 8B W, W
(6.20)

G res, Ier, Fer, aBf, W, W
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Algorithm 1 Compound trajectory optimization
Require: Gripper-closure trajectory class, xi, X, rr, It
Require: Initial guessesfor ¢, &y, T, (and possibly &g).
1. loop _
2. Compute the gripper-closure trajectory for {g, &g, Tg, (&g)
3 Compute a minimum-time initial trandfer trajectory from ¥, to )(ig, denote
its duration with T; (algorithm 2);
4. Compute a minimum-time final trander trajectory from )(g to x;, denote
its duration with T; (algorithm 2);
5. Compute the constraint function, i.e., the maximum and minimum values of
the inputs along the compound trajectory;

6:  Compute the objective function T; + Ty + T
7. If Terminating conditions are satisfied then
8: return ¢y, &g, Tg, (&g)

g endif _

10:  Select new guesses for ¢y, &g, Tq, (Eg);

11: end loop

The values of the flat outputs and their derivatives at the beginning and at the
end of the gripper closure trajectory, namely
&= Thy The by dbg W W

f (6.21)

%= Teg Tog feg dpg Wb U

can also be easily computed. The problem can then be solved by constructing a
trajectory for the flat outputs going from g (gg) to gé (G ) in a minimum time
T (Ty) and satisfying eq. (3.5). Note that, as we commented in section 4.3, the
components of g and ag along the axis zg are not related to the state but to the
thrust input and its derivative. In principle they could then be st at will, within
an admissible interval. By imposing the conditions on the whole vectors i g and
ag we are implicitly also guaranteeing the continuity of the thrust input up to the
first order of derivation.

I n the following we indicate with ¢; and ¢; the generic boundary conditionsand
withty and t; theinitial and final time. Notethat t1 isfixed: for thefirst connection
it corresponds to t; which is specified by the original problem; for the second
connection it corresponds to ty + T, where Ty is fixed by the parent optimization
in which thisalgorithm is nested and tq isthe result of thefirst transfer trajectory
optimization. In both cases the quantity that must be optimized is thefinal time
t; or, equivalently, the total duration T = t; - t1.

First of all we need to reduce the dimension of the problem to a finite amount,
such that it can be then solved using a numerical optimization algorithm. This
is done by introducing a parametrization of the flat output trajectories. Such a
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parametrization consists in expressing the function as a linear combination of a
certain number of predefined basis functions
m

f(s)= pB (9. (6.22)
j=1

Different parametrization techniques have been proposad in the literature which
are characterized by the use of different basis functions. Among the possible solu-
tionswe can cite sinusoids, polynomials, Chebyshev polynomials, Laguerre polyno-
mials and Taylor series expansion polynomials. A comparison of these techniques
can be found in [9, 28]. Once the basis functions B, (s) have been selected, the
curve is univocally defined by choosing the set of coefficients p , according to the
conditions imposed by the problem and, possibly, to a certain optimality criteria.

When a high number of basis functions is desired in order to satisfy multiple
conditions gill leaving some room for optimization, polynomial functions are not
a good choice. Indeed to increase the number of parameters in a polynomial we
need to increase its degree. Nevertheless a polynomial of degree n can have up to
n—- 1 stationary points (in fact its derivative is a polynomial of degree n - 1) and
then the number of oscillations grows when n gets bigger.

In these cases it is preferable to use piecawise polynomial curves, also called
splines. These functions are obtained as a composition of a certain number of
polynomials, each of whom isdefined in a limited sub-domain of the overall function
domain. T he advantage of this solution isthat we can increasethe number of curve
coefficients by increasing the number of polynomial components, while maintaining
a low degree of the single polynomials. |n particular a spline is said to be of degree
n if it iscomposed by polynomials of degree n. Given the complete function scalar
domain

D = [S1,Sm]
and a domain partition
[81182: ':Sm—1:Sm]
the spline is defined as
% (s), for s €[sy, s)

f(s) = b (s), for s €8s, 83)

%—1(8)! forSE[Sm—'l:Sm]:

where
q (s) = apt aj1(s— SJ_1)+ e+ g (s- Sj_1)n.
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The points s, defining the domain partition are usually called break points. The
coefficients g, must be determined according to the conditions imposed by the
specific problem. Typically these conditions affect the values of the function and
its derivatives at some points

s (s) = s,
where in general the points s, do not coincide with the break points. Assuming
that s <[sk-1,8k) the above conditions will be satisfied if and only if

q’ (s)=s.
Notethat the splineis infinitely differentiable everywhere (as every polynomial
function) except for the break points. To guarantee a desired level of continuity at
the break points we must impose appropriate conditions in the form

lim s (s)= lim s (s),
t—sy t—sy

that is
d’ (s = d (s).
Since the spline is linear in the coefficients, it is easy to verify that the above
conditions are linear too and lead to a linear system of equations.

T he splines we presented so far are in the so-called piecawise polynomial form
or pp-form. A more efficient way to represent splinesisin the so-called Basic form
or B-form. Also in thiscasethe function, which usually takes the name of B-spline,
isdefined as a linear combination of basic functions as expressed in eq. (6.22). The
computational etficiency of this representation comes from the fact that the basis
functions can be computed using a fast and numerically stable recursive algorithm
also known as de Boor’s algorithm. Letting s = [s,8;,...,8:,,,] be a vector of
ordered real numbers, not necessarily digtinct, called knots, the j-th B-spline of
degree n (or equivalently of order n + 1) is defined as

1, forse€[s,si+1)

Bi(s)= .
0, otherwise
S— S _ S— S _

B/ (s)= —— B '(s)- ——"B"(s)
j+n_Sj Sj+n+']_Sj+']

T he B-spline representation can also be easily be extended to the multidimen-
sional case by introducing vector coefficients such that

m

f(s)= pi B (s).
i=1

T he coefficients p; are called control points.

It is possible to demonstrate the following properties of the B-splines:
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Property 1: B[ (s) is a piecewise polynomial of degree n,

Property 2: B[ (s) has a compact support, i.e. it is equal to zero outside the
interval [S, S+ 1];

Property 3. the B-spline basis functions define a partition of the unity, i.e

m
Bl (s)=1 W &[s),Snnul;
j=1

Property 4. in every knot span [s;, Si. 1] at most n+ 1 basis functions are not null,
namely B/ ,... B['. Moreover the change of a control point p; only modifies

the spline in the interval [s;, §;+ n+ 1]

Property 5. the B-splineisinvariant under affine trangformations (trandation, ro-
tation or scaling) of its control points,

Property 6. the B-spline can be scaled or translated in time by scaling or trans
lating the knot vector. The derivatives will scale or translate accordingly, in

) . Ali) 4y = SO0
particular if § = As then 81 (t) = =1,

Property 7. the B-spline always lies within the so called control polygon which is
the convex hull of the spline control points. T he segments joining consecutive
control points also represent a piecewise lingar approximation of the curve,
In general the lower is the degree of the spling, the better is the linear ap-
proximation (if the degree of the spline is one then it actually coincides with
the approximation). Moreover the value of the spline at its endpoints isthe
same asthefirst and last control points, i.e. f (Sp) = poand s(s.,,,.) = Pm;

Property 8. the B-spline is of class C” in the interior of every knot span and it is
of class G ¥ in a knot of multiplicity k;

Property 9: the number of knots Ny, s + 1 is related to the number m of control
points and to the degree n of the spline by Ny = M+ n.

Property 10: the derivative of a B-spline is also a B-spline of lower degree. Indeed

m
fe= B
j=1
and it is possible to efficiently compute the i'" order derivative of the basis
functions in terms of the basis functions of degree n— i defined on the same
knot vector u _
- nt -
B (s) = a B! (s)
] _ kP
(n=0r _,
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where the ooefficients g | are defined in a recursive way

Ao = 1
a-1.0
Qo= ——
Sj+n-i+17 §
A= Q- 1p- ,
a = M ST for k=1L, 0= 1
Sj+n—i+k+‘]_ Sj+k
_ T @-1j-1
Q= —m.
Sj+n+']_ Sj+i

T hanks to all this properties, B-splines have been widely used in different ap-
plications such as computer graphics, data interpolation and trajectory planning.
For an exhaustive description of the B-splines and their properties see [28], from
which we took theabove introduction, or other specific books such as[29, 30]. Tra
jectory planners for quadrotors based on piecewise polynomials were also proposed
in other papers (sse for example[1, 10, 26, 9]). Nevertheless these planners cannot
be ussd in our application because they only deal with rest-to-rest motions.

To define a curve in B-form it is necessary to specify:

+ the degree n of the spling
» the knot vector s;

+ the control points p; .

Aswe already said, to guarantee the continuity of the state, the position must
be continuous up to the third order of derivation while the yaw angle must be
continuous up to thefirst order. To keep the degree of the spline as low as possible
we use two different splines one for the position vector and another {scalar) one
for the yaw angle. The parameter s can be directly equal to the time and we can
chose the knot vector so that all the internal nodes have multiplicity 1. Thanks
to property 8, this choice guarantees the maximum possible order of continuity,
namely n— 1, intheinternal knots. Wethen haveto chosen;, = 4 for the position
and ny = 2 for the yaw angle.

T he number m of control points obviously depends on the number of conditions
that we want to impose to the spline and on the redundancy we want to keep for
further optimization. For each of the two connecting trajectories we must satisfy
boundary conditions determined by the initial/ final state and by the continuity of
the junction with the gripper-closure trajectory. Also in this case the continuity
of the state is guaranteed by the continuity of the position up to the third order
of derivation and of the yaw angle up to the first order of derivation. This results
in a total amount of eight conditions on the position spline and four conditions
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6. Compound trajectory genheration

on the yaw spline (see eqgs. (6.20) and (6.21)). Therefore, in order to satisfy these
conditions, we need at least eight control points for the pesition {m,, = 8) and
four control pointsfor the yaw (my = 4). If we choose these values we end up with
two sguare linear systems in the control pointsthat can be conveniently written in
a matrix form

A,P,=B

re’ e re:
Aypy = by,
where the system variables are
p;’ra,'l p[U.']
T
P, = pr:E. 2 b= pwz
p;’ra 3 qu-4

The coefficients matrices A, and A, contain the values of the B-spline basis
functions and their derivatives at the initial and final times

B (t), Bi,(t), ..., B a(t)
B/ (ty, BAY(t), ..., B Yty
Bl A (t), BiA(t), ..., B3t
AL - Brat(t), Bid(t), ..., Bii3(t)
Bfy1(t2), Bla(t), ..., B s(t)
Biil(t), BU(t), ..., Bili(t)
B/ (t), BiA(t), ..., BlI(t)
B/ (1), B3 (t), ..., By,
and
B (t), Bi.(t), ..., Bi.(t)
A, - Byl (t), BoY (), ..., BoY (t)
B2 (t), B2 (t), ..., B24(ts)
BV (t), BiY (), ..., B (ty)
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Algorithm 2 Trangfer trajectory generation

Require: ¢, &
Require: Initial guess for T (transfer duration).
1. loop

2. Compute the interpolating B-spline for time T;

3 Computethe constraint function, i.e, the maximum and minimum values of
the inputs along the transfer trajectory;

4.  Compute the objective function T;

5. if Conditions for terminating are satisfied then

B: return T

7. endif

8. Select new guessfor T,

g: end loop

Finally the known terms are determined by the boundary conditions ¢; and ¢;:
re
rg;
rgn W
ag

5
Mgz

€€ €

T
g2
--T

. T
ag o

The system has a unique solution, provided that t; = t; and that the knots
are properly chosen. Moreover thanksto property 6 the curve isfully defined once
T = t2 — t4 has been fixed. This can be done in an optimal way: thetime T must
be the minimum time such that the resulting trajectory is feasible that is such
that the quadrotor can follow the resulting trajectory without violating the limits
on the propeller rotational speed. T he problem can be then put in the form:

min T (6.23a)
st. w(t) E[ww MeEt,t],i=1,..., 4 (6.23b)
T>0 (6.23¢)

Also for this problem we used a local optimization method. The procedure is
described in algorithm 2.

6.6 Considerations on the existence of solutions

I n section 4.2 we have demonstrated that the robot can movefrom any stateto any
other, provided that the limits on the propeller rotational speeds are not too strict.
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Asa consequence, whatever aretheinitial and final states and the chosen (feasible)
gripper-closure trajectory, there always exist two feasible trander trajectories that
link them in a compound trajectory. Nevertheless with the introduction of the
B-spline parametrization, we have reduced the search space so that it may not
contain these feasible transfer trajectories. Moreover even when our search space
contains some feasible solutions, it may not contain the optimal one in the sshse
that we might ill find a better solution if we enlarged the ssarch space.

Let us consider the problem of generating a single rest-to-rest trajectory, i.e. a
trajectory between two hovering states. In thissimple case the desired values of all
the derivatives of the flat outputs at the beginning and at the end of the trajectory
are obviously zero. Now assume that a trajectory has been found, using B-spline
interpolation, that goes from the initial state to the final onein a time T. Also
assume that after computing the value of the inputs along the trajectory we realize
that these are not feasible. Now if we scale the knot vector by a factor A > 1 such
that § = As then, thanksto property 6, the derivatives of the spline will uniformly
scale by a factor A'. The new spline will gtill satisfy the boundary conditions
because the scaling will keep the initial and final values of the derivatives at zero
as they were. Moreover since the derivatives scale, for the results of section 4.2,
the robot will tend to perform the trajectory in a quasi hovering condition with
the inputs close to their minimum value u.,;, = (mg, 0,0, O)T. As a consequence
the trajectory will eventually become feasible, provided that A is big enough and
that u,;, isan interior point of the set U of admissible inputs. In this case it is
then always possible to find a feasible B-spline trajectory. T his property has been
exploited in [11] to generate feasible point-to-point trajectoriesin an efficient way.

In the more general case in which we have non zero initial and/ or final values of
theflat output derivatives, this property doesnot hold anymore. | ndeed if we scaled
the knot vector, the derivatives would change everywhere and also at the initial
and final instants. Asa conssquence the boundary conditions would no longer be
satisfied. If we want to complete the trajectory in a longer time interval we need
to repeat the interpolation with the new knot vector, i.e with different coefficient
matrices A, and A,. The interpolation will lead to a new trajectory which, in
general, is completely different from the previous one apart from the initial and
final points. T he new trajectory does not necessarily have smaller derivativesof the
flat outputs and then it does not necessarily imply a reduction of the input effort.
As a consequence the existence of a feasible solution is no longer guaranteed.

To convince oursalves about this fact we consider a numerical example: we try
to connect a fixed hovering initial state of the robot to the start point of a non
hovering (&, < - ) horizontal circular trajectory. We let the time T change
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from an initial value Ty to a final one T4 and we observe how the maximum and
minimum values of the inputs correspondingly change. More in details we start
from hover at o; = (0,- 10, 2, 0)T and we want to connect to the horizontal circular
trajectory corregpondingto {; = Oand &; = 0.5, resultingin thefollowing boundary
conditions:

T
0.3894 0 09211

s =
. T
reg = 0 12449 0O

T
fgg = —-39798 0 0O

T
agr = 0 -127227 0
gy = 2.3181
W = 3.1968.

Thetime T is made vary from 4s to 28s. T he values of minimum and maximum
thrust and torque inputs along the resulting trajectories are depicted in fig. 6.6.
Aswe see while the minimum thrust is almost congtant, the maximum grows with
T. Concerning the torques, the firgt two seem almost constant, but for the third
one the minimum decreases with T while the maximum grows. |f we look at the
maximum and minimum values of the thrusts generated by the single propellers
(fig. 6.7) wenoticethat all the quantitiesshow a stationary point (either a minimum
or a maximum) and only some of them eventually enter the admissible interval,
denoted by dashed blue lines. T he reason for that is made clear by figs 6.8 and 6.9
where we can see that an increase of T cause bigger deviations of the trajectories
from the straight line joining the initial and final positions.

6.7 Introduction of further degrees of freedom

T he probability of finding a feasible solution, and in general the quality of the sub-
optimal solution found, is obvioudly proportional to the dimension of the search
space. It is indeed a general property of the B-splines, that of being able to
approximate any smooth curve when the number of control points go to infinity.
I n the algorithm described in section 6.5 the only variable which is kept free for the
optimization isthe interpolating time T. Assoon asthis is specified the trajectory
isfully determined. T his happens because we decided to use the minimum possible
amount of control points needed to satisfy the given boundary conditions As
we already commented, one of the advantages of using B-splines {(and piecewise
polynomials in general) for the interpolation is that we can easily introduce more
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Figure6.6. Minimum and maximum values of the thrust/ torque inputsfor different
total times T
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Figure 6.7 Minimum and maximum values of the single thrusts for different total
times T. Note that the four traces are superimposed in pairs.
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Figure 6.8 XY trajectories for different total times T
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Figure 6.9: Yaw angle trajectories for different total times T
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degrees of freedom (i.e. more control points) without increasing the degree of the
single polynomials. In this way we can increase the dimension of the search space
at will. On one hand we can exploit these redundant degrees of freedom to get a
better solution but, on the other hand, the problem will obviously become more
complex to handle from a numerical point of view. We will still end up with a
linear system of the form
ArgPrg = Brg,
Aypy = by.

but if the number of control points is greater than the number of conditions, then
the matrices A, and A, are wide matrices instead of square ones, i.e. they have
more columns than rows. Moreover, thanks to property 4 the central columns of
t he coefficient matrices are null. T he corresponding control points are then unde-
fined and can be moved freely without affecting the satisfaction of the boundary
conditions. In particular we can position these redundant control pointsin such a
way that the control effort of the propellers, for a given interpolation time T, is
minimized. In practice we have to nest another optimization routine in the previ-
ous two. Also this optimization requires the specification of an objective function
and, possibly, of some constraints. We tried two different approaches that will be
described in the following sections.

Minimum snap trajectories

In this case we used a similar strategy to the one adopted in [11] for fixing the
redundant control points: since the torque control inputs are proportional to the
position snap (fourth derivative) and to the yaw acceleration, we try to minimize
both by using an objective function of the form:

1 B " -
V(Propy) =5 o as(t) T+ oul(t) o
L
where ¢ and ¢; are two positive scalar weights. Note that for the linearity of the
integral operation we can minimize the above optimization function by separately
minimizing the integral of the fist and second term of the sum. Asa consequence

the weights have no effect on the final solution. Moreover since
ag(t) “= a3, () + &g, () + g, (t)
we can also separately optimize each scalar component of the snap.

Lets consider for simplicity the minimization of the yaw angle acceleration. Ve

have
m

Wt = puBY O,

j=1
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and
m

W= pyBLYT (M),

j=1
then the objective function can be written as

2
Py, ijfi (t) dt
j=1

tz Ltz m

1 , 1
Vy (Py) = 3 W (t)dt = 5,
1 1

m ta 2 ts
s B2A(t) “dt+  pupx BIP B (dt

i=1 tq j Bk ty

N =

and we can put it in a matrix form as

1
Vy (pPy) = EPLprw

where the matrix Qy is symmetric and positive definite

2(2 z 2(2 2(2
’ B,V () ... BYY (MBI ()
Qy = : dt.
ty 2
2(2
By, (1)
We can repeat the same process also for the shap obtaining an objective function
of the form

Vig (Prg) = %P;Qrapra
where ,
B T BB M
Q= : ot
B0, ()

In both cases, considering also the interpolation conditions, we obtain a linear
quadratic optimization problem in the general form

. 1 -
nlln QX Qx

st. Ax = c.

T he problem is obviously convex and then it always has a global optimum. More-
over it can be solved numerically using very efficient algorithms. Nevertheless the
use of this technique did not induce a significant reduction of the minimum in-
terpolation time, but did noticeably increase the computational time needed to
compute the trajectory.
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Direct inputs minimization

T he previous technigque has the significant advantage that the resulting optimiza-
tion problem is convex and can be efficiently solved using numerical methods. On
the other way the inputs of the system do not depend only on the minimized
quantities but also on lower order derivatives of the flat outputs.

Another possibility would be to directly reduce the inputs by solving the fol-
lowing optimization problem

{Pr:;{gw} max rgg?_;({tu B} -nw ??,'i?{‘” ()}
We tried to solve this optimization using the previously described one to gen-
erate an initial guess for the control points Nevertheless we were not able to
demonstrate the existence of a solution for this problem and the introduction of
another optimization step caused a further increase of the necessary computational
resources, such that the algorithm was prematurely terminated due to a lack of
system memory.

These numerical difficulties suggested usto limit the number of control points
at its smallest amount.
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Chapt er 7

Planner implementation and
examples

In this chapter we provide some details about the implementation of the above
described algorithm and we present some numerical results.

For the general optimization (algorithm 1) a Sequential Quadratic Programming
(8QP) algorithm has been used. T his algorithm consists of solving a sequence of
optimization sub-problems, each of whom optimizes a quadratic approximation of
t he objective function, subject to alinearization of the constraints. Morein details,
for a general optimization problem of the form

in f
e
st. g(x)= 0
h(x)= 0,
we define the Lagrangian as
LOGA, ) =F 00+ ATh(x)+ pTc(x) (7.1)

where A and | are the Lagrange multipliers. At algorithm iteration k, the search
direction d, for the new guess is obtained as the solution of the following linear
quadratic problem:

i 1
min L (X, A, B + VL 0G0 A, BT di + 208 V2 L (X, A, B die

{1dk} 2
st. g(x) + Vg(x) di s 0
h(x)+ Vh(x,) d, = 0.
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T he new guess is then computed as

Xier 1 X
A1 = Ag + Bdk
Hi+1 Mk

where 3 is an appropriately chosen positive parameter. In particular in thisthesis
we used an implementation of the SQP provided by the Matlab® Optimization
Toolbox through the function fmincon. For more information about the LQR
algorithm see [31]. For details about the implementation please refer to Matlab®
documentation.

As we already said, the class of circular trajectories to be used is fixed, at
the beginning of the computation, together with the sing of €; (for the first class
of grasping trajectories). This has been done in order to avoid the introduction
of binary variables which are not well managed by local optimization algorithms.
However the optimization can be easily repeated for all the possible choices and
then one can select the best solution.

Concerning the transfer trajectories, for the sake of efficiency of computation,
we transformed eq. (6.23) in an unconstrained optimization problem. The con-
straints defined by eq. (6.23b) can indeed be written in the form

max{w (1)} = ©
minfw (0} 2 w

or, equivalently,
max fggaf{w ()} - ww- ggi_p{m ()} =0 (7.2)
| |

Since the objective function does not have any stationary point, the optimal solu-
tion must lie on the boundary of the admissible set, i.e. it must satisfy eq. (7.2)
with the equal sign. We can then try to solve the problem in an alternative un-
constrained form

min - max lggfg{m (0} - Ww- l{p}ip{m (1)}

The optimization has been solved using a numerical local algorithm. Snce
the problem has been transformed in an unconstrained optimization, we can use
the Nelder-Mead simplex direct search solver available in the Matlab® function
fminssarch. This algorithm does not require the knowledge of any derivative of
the optimization function and can also recover from Not a Number intermediate
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solutions. The latter property is necessary because we return a NaN whenever the
generated guess for the interpolation time T is negative. We adopted this strategy
to guarantee that eq. (6.23¢) is satisfied.

Note that this unconstrained problem is not equivalent to the previous one.
Indeed the solution of this problem might correspond to a positive value of the
optimization function. If this happens the final solution is either not optimal
(if max max; 3 {w ()} - Ww- ming;; {w(t)} < 0) or not admissible (when
max maxg i {w ()} - 0, w- ming; {w(t)} > 0). Inthe latter case the solu-
tion must obviously be rejected. To take care of this agpect we pass the value
of eq. (7.2) (before squaring) to the parent optimization where it is still being
considered as a hard constraint.

The initial guess for T needed by the numerical solver has always been cho-
sen proportional to the euclidean distance between the initial and final position,
through an heuristic congtant v

1

T= - rg1—Ies .
v . .

Since an explicit expression of the dependence of eq. (7.2) on T is not available,
for a given T we compute the value of the inputs along the resulting trajectory
with a fixed time resolution using the flat transformation described in chapter 4.
Then we search the maximum and minimum values that the inputs assume. A
remark must be done concerning the computation of the actual inputs from the
force/ torques inputs using eq. (2.6). The above trangformation can indeed be
written in terms of the forces generated by the single propellers

U1 1 1 1 1 Fi
U = Us _ 0 | 0 = F»
Us -1 0 | 0 Fs

T his second form has been preferred to the previous one because an approximate
measure of the maximum and minimum admissible values of the single propeller
thrugt for a real quadrotor was available.

Finally, for the computation, derivation and integration of the B-splines, we
used the Curve Fitting Toolbox in Matlab® .

We will now present some trajectories that have been obtained using the pre-
viously described algorithm. The robot parameters that have been used for the
planning are collected in table 7.1.
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Parameter Value
m 0.74906kg
1.008x 1002 -1679%x 1004 -2443x 10° 10
J -1.679x 1074 1.027x 1072 -4740% 10°% kgm?
-2443x 107" - 4740x 10°°© 1946 x 1072
a T rad
B 1 rad
Bra m
I 25hem
KM 35mm
Fi 10N
Fi ON
Tomin 01s

Table 7.1. Physical robot parameters used for planning and simulation

7.1 Case of a fixed target

In the first simulation that we present the robot is initially in a hovering state
with:
T
rgi = 0 4 3

and is required to reach another hovering state with

T

rgg = 0 -4 3

after grasping a target that is positioned in
.
rr= 0 0 04/8

and has zero velocity. The initial and final yaw angles are equal and have been
chosen in such a way that at the beginning of the simulation the gripper points
toward the position of thetarget (y = - %Tr).

We darted the optimization from an initial guess in which the robot stops in
a position close to the target and remains still with respect to the target for the
whole time needed by the gripper to closs More in detail the initial guesses for
the optimization variables have been chosen as follows

11

Cg=§= G=T-B, §&=0 Tg=T,

min

As we have already commented, the existence of a solution in this case is al-
ways guaranteed. T he optimization returned a solution equal to the initial guess
both for the vertical and for the horizontal gripper-closure trajectories. Snce in
these conditions the two classes of gripper-closure trajectories coincide, also the
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Figure 7.1 Grasping of a fixed target using a hovering gripper-closure trajectory
with thefirst set of initial and final robot states: position (@) and velocity (c) of Og
(continuous line) and target (dashed line); position (b) and orientation (d) of the
robot. A magenta dashed lineis superimposed to every plot, indicating the gripper
state from completely open (lower value) to completely closed (upper value).

compound trajectories are the same T he results are reported in fig 7.1. We can
see that, during the grasping interval Ty, the gripper is actually positioned on the
target. Note that in this situation, in which both the robot and the target are in
a fixed position with respect to the world frame, the problem reduces to a simple
point-to-point motion planning and is not particularly interesting for our study.

7.2 Case of a moving target

We repeated the same simulation as before, but with a target moving along the
yw axisat a constant velocity of 1 m/s. Also in this case the optimization did not
modify the initial guess and the two classes of gripper-closure trajectories produced
the sameresult that isrepresented in fig. 7.2 We can notice that, since the target
is moving toward the desired final position of the robot, the quadrotor maintains
a higher average velocity and the total time needed to complete the grasping is
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Figure7.2 Grasping of a movingtarget using a hovering gripper-closure trajectory
with thefirst set of initial and final robot states: position (a) and velocity (c) of O
(continuous line) and target (dashed line); position (b) and orientation (d) of the
robot. A magenta dashed line is superimposed to every plot, indicating the gripper
state: from completely open (lower value) to completely closed (upper value).

consequently shorter.

7.3 Influence of the initial guesses

In order to better understand the nature of the optimization problem, we repeated
the same simulations as before, but providing a different initial guess to the opti-
mization algorithm. Ye maintained the same guesses for {, and T, but we changed
the values of ¢y and cﬁg so that in the resulting gripper-closure trajectory the robot
has a hon zero velocity with respect to the target and then it is actually following
a circular path. In particular we used &, = M- [ — 0.3 for the horizontal gripper-
closure trajectory and &, = m- B - 0.1 and ég = — 0.1 for the vertical one. Even
in this casethe optimization returned values of the optimization variables that are
very close to the initial guess Nevertheless while for the vertical gripper-closure
trajectory this resulted in a dight shortening of the total duration of the grasping,
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Figure 7.3. Grasping of a fixed target using a non-hovering horizontal gripper-
closure trajectory: position (a) and velocity (c) of Og (continuous line) and target
(dashed line); position (b) and orientation {d) of the robot. A magenta dashed line
is superimposed to every plot, indicating the gripper state. from completely open
(lower value) to completely closed (upper value).

for the horizontal gripper-closure trajectory the total time grew noticeably (see
figs. 7.3 to 7.6). This demonstrates that the numerical optimization gets stuck in
local minima and is not able to find the actual optimum.

In this case, since the robot is actually following a circular path during the
gripper-closure phase, the two trajectories are different as we can see from the
time profile of the roll, pitch and yaw angles in figs. 7.3 to 7.6(d). We can notice
that, during the grasping, in the case of a horizontal gripper-closuretrajectory, the
roll and pitch angles remain constant and the yaw changes at constant velocity.
In the case of the vertical gripper-closure trajectory, instead, the yaw remains
constant during the grasping, while the roll and pitch angles change.

71



Planning and control of aerial grasping wit h a quadrotor UAVY

! | '
L e S

&
|
.
A
et

J# A)[rad]

rolrm' g

L

Figure 7.4. Grasping of a fixed target using a hon-hovering vertical gripper-closure
trajectory: position (a) and velocity (c) of Og (continuous ling) and target (dashed
ling); position (b) and orientation (d) of the robot. A magenta dashed line is
superimposed to every plot, indicating the gripper state from completely open
(lower value) to completely closed (upper value).

7.4 Influence of the initial/ final states

T he same kind of simulations have been repeated for different values of the initial
and final robot states. T he robot always starts and endsits motion in a still state
but now we have

-
reg;= -1 43 , y=0
and T -
rgs= 3 -4 3 Lpf=§.

Thetarget is positioned as before, possibly with a velocity of 1 m/ s along yw .

Again the local optimization has proven inadequate to find the begt solution,
always returning results that are very close to the initial guesses. Also in this
case when the grasping is performed with the robot standing still with respect to
the target, the two classes of gripper-closure trajectories are perfectly equivalent.
M oreover, when also thetarget isfixed with respect totheworld frame, the problem
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Figure 7.5 Grasping of a moving target using a non-hovering horizontal gripper-
closure trajectory: position (a) and velocity (c) of Og (continuous line) and target
(dashed line); position (b) and orientation {d) of the robot. A magenta dashed line
is superimposed to every plot, indicating the gripper state. from completely open
(lower value) to completely closed (upper value).

reduces to a simple point to point motion planning and the results obtained for
different initial and final states are not particularly interesting.

It isinstead interesting to mention that in this case the use of a hon hovering
initial guess resulted in a better solution both for the vertical and for the horizon-
tal gripper-closure trajectories. Moreover the use of a horizontal gripper-closure
trajectory resulted in a better solution with respect to the vertical one. T he results
obtained with non hovering initial guesses and for a moving target are represented
in figs. 7.7 and 7.8.
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Figure 7.6. Grasping of a moving target using a non-hovering vertical gripper-
closure trajectory: position (@) and velocity (c) of Og (continuous line) and target
(dashed line); position (b) and orientation (d) of the robot. A magenta dashed line
is superimposed to every plot, indicating the gripper state: from completely open
(lower value) to completely closed (upper value).

7.5 Concatenation of compound grasping
trajectories

So far we have always referred to the situation in which the robot has to grasp an
object which is located somewhere in the world frame. Nevertheless this problem
is perfectly equivalent to that in which the robot isinitially carrying an object and
has to place it in a desired position. Not only the same planner can be used, but
also multipletrajectories of the two types(either pick or place) can be concatenated
by considering the final state of a trajectory as the initial state of the following
one.

In fig. 7.9 we present the result of the concatenation of two pick& place opera-
tions using four compound grasping trajectories. It iseasy to notice that in each
grasping (placing) phase, delimited by blue vertical lines, the gripper follows the
same trajectory of one of the target present in the scene.
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Figure 7.7: Grasping of a moving target using a non-hovering horizontal gripper-
closure trajectory for the second set of initial and final robot conditions. position
(@) and velocity (c) of Oy (continuous line) and target (dashed line); position (b)

and orientation (d) of the robot.
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Figure 7.8. Grasping of a moving target using a non-hovering vertical gripper-
closure trajectory for the second set of initial and final robot conditions. position
(a) and velocity (¢) of Og (continuous line) and target (dashed line); position (b)
and orientation (d) of the robot. A magenta dashed line is superimposed to every
plot, indicatingthe gripper state: from completely open (lower value) to completely
closad (upper value).
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Figure 7.9: Multiple pick& place operations. position (a) and velocity (b) of Og
(continuous line) and target (dashed line); position (c) and orientation (d) of the
robot. A magenta dashed lineis superimposed to every plot, indicating the gripper
state from completely open (lower value) to completely closed (upper value).
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Chapt er 8

Control in SE(3)

T he problem of controlling the dynamics of a quadrotor has been addressed for a
long time in the literature. Many different controller have been proposed, bassd
on feedback linearization (see [24]), Linear Quadratic Regulators (see [9]), Back-
stepping techniques (see [32]), diding mode control {(see again [32]), model approx-
imations in quasi hovering conditions (sse [17]) just to cite a few of them.

Since in our application the quadrotor will be asked to perform agile maneuvers,
we have to deal with significant divergences of the roll and pitch angles from the
hovering condition. T herefore we need a controller that is developed in SE(3) and
has almost global convergence properties. A controller with this features has been
developed and proved to be stablein [33]. The performances of a simplified version
of this controller have also been proven experimentally through theimplementation
onh areal robot in[11].

Given a desired trajectory for the flat outputs and their derivatives (indicated
with a subscript t in the following) and the current state of the robot, we compute
the position and velocity errors as

=TIt~ IB
e, = gy~ Ig,

and we define a desired force vector containing a feed forward term, a PD action
and a gravity cancellation term

fa=mfg; + Kpep, + K,e, + mges, (8.1)

where K , and K, are two positive scalar matrices. f4 is a force that, if it were
applied tothe quadrotor center of mass, would make the position and velocity error
converge to zero asymptotically. Ve can also definea desired acceleration rg 4 such
that

fg=m (FB,d + geg) = mty, (8.2)

79



Planning and control of aerial grasping wit h a quadrotor UAVY

then obvioudy
Fea= Far+ %erp+ %K\,e\, = Fg+ Kpep+ Kooy, (8.3)

Due to the dynamics of the robot, we can only apply forces along the current
direction of the local vertical axis zg. T herefore we operate in two steps i) we
apply the component of f 4 along zg directly, using the total thrust input u4; ii ) we
use the torque inputs u;, Us, Uy, to orient the robot in such a way that the vertical
axis zg is parallel to f 4 and the yaw is the one specified by the trajectory. First
we project the desired force vector onto the current direction of the body frame zg
axis in order to compute thefirst input

up=flzg=f,] "Rges. (8.4)

To determine the remaining inputs we assume that f4 = 0 and we compute
the desired direction of the zg axis, i.e. the direction of the desired force, as
fq
fq
T he other columns of the matrix describing the desired attitude of the quadrotor
are computed following the steps of chapter 4. We start by defining

Zp 4= (85)

.
Ycd= -—snhy cosy O
and then we compute
_ YcdX Zpd XB.d
XBd = I ;
Ycd* Zggd Xg

and
YBd = ZBd* XBd-
The desired value of YR, denoted by 'R 4, is then given by

W _
Rgd= Xgd ¥YBd ZBd

and we can define an orientation error in 80O(3) as

or = 1
RT3
where the v symbol indicates the vee-map that relates a skew-symmetric matrix

to the corresponding vector (see chapter 2).

K
"REYRea- "RE"Re

To compute the desired angular velocity consider that, since the structure of
the equations remains the same, we can retrace the same steps of chapter 4, sub-
stituting to each quantity the corresponding desired value. We therefore define

- T ;
hd— H | - ZB.dZB,d aBld
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and we compute the desired angular velocity B%wgyy 4 as

-hg-¥Yed
5 Mg g = hq Xg.d
xLoXeaWt+y L Ze, a0

%o d

Differentiating eq. (8.3) with respect to time we obtain
aBld = a.Blt + K pe\.-' + K \.-'ea, (86)
where e, isthe acceleration error
g = rB,t - I'B
Considering the system dynamics described by eq. (2.7) we conclude that
. Uy
€= g+ gdez— HZB.

Since Bwew and Bwew ¢ belong to different spaces, we cannot compare them
directly, but we first have to rotate them to the same reference frame. T herefore
we rotate B'dew,d first to the world frame and then to the body frame. The
resulting tracking error for the angular velocity is defined as

_ WRTW B B
e,= "REWRE ¢ Wwew g - Fwew.

We operate in a similar fashion for the desired angular acceleration. We start
putting

t hen we compute

1 .
lq= ? | - zBIdz;d 04—~ 2(zZgd-aBd) ha ,

and we finally obtain

-lg-¥YBd

B'd(i.)Bwld = Id "X B.d
20k g¥e.afa=x L 4ZB,a00 )W+ XL oo alh+ YL 478 alNa=-para)

OtgO - pdqj
Differentiating eq. (8.6) with respect to time we obtain
éB,d = éB,t + K p€a + K\,ej
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where e; isthe jerk error that, considering eq. (4.3), is given by

€ = aB.t - ag

. U1
agy — —Zp~ —Wew X Zp
' m m

dgy— [dgg-2Ze + ty- (Wew * Zg)]zg — (tq- Zg) Wew * Zg.

To conclude we compute the remaining control inputs as

Uz
us; = Krer+ K ey + Sogy x J Bwgy

Ug (8.7)

Bo T W B.d: B W T W B,
+J PR}, "Red®%ewa- BQaw "RE"Req® e g

where Kr and K, are two positive scalar matrices. Note that this control law
contains a PD action, a cancdllation of the gyroscopic force and a feed forward
term.

T he demonstration of the stability of this controller is contained in [33] and it is
not reported in this thesis. Intuitively, the proof is based on the cascade structure
of the quadrotor dynamics. Indeed it is possible to demonstrate that the attitude
controller described by eq. (8.7) has a large basin of attraction. Provided that, it
is straightforward to demonstrate that the trajectory tracking controller defined
by egs. (8.2) and (8.4) is stable when the attitude tracking error is zero.
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Chapt er 9

Physical simulations

Aswe already commented the proposed algorithm for the grasping trajectory gen-
eration has been entirely implemented in Matlab® . All the optimizations have
been done using the routines available from Matlab® Optimization Toolbox and
for the computation of the B-spline basis functions as well as for the evaluation of
the B-splines and of their integrals, we used the Matlab® Curve Fitting Toolbox.

The computation of a complete trajectory takes around two minutes, that is
too long to be performed on line Therefore, as stated in chapter 3, we only
considered t he case of full apriori knowledge of the target trajectory. T he grasping
trajectory is computed off-line and no on-line adaption is performed. The result
of the planning phase is an array containing the value of the planned trajectory
with a fixed time resolution of 10ms. T his constitutes the input for the trajectory
controller of the quadrotor.

The controller described in chapter 8 has been implemented in Simulink® .
In this process care has been taken to organize the code in such a way that it
resembles as much as possible a hypothetical real implementation. This would
make it easier, if desired, to model non-idealitiesthat possibly affect the real system
(communication delays, noise, ...) and also to implement the controller on a
real system. Before describing the Simulink® model we then have to introduce a
possible hardware implementation.

The quadrotors available at the Max Planck | nstitute for Biological Cybernetics
are produced by MikroKopter (see [34]). One of them isshown infig. 1.1. Thesize
of the robot {i.e the distance between opposite motors) is about 40cm and the
weight is around 750¢.

The Institute also has a Vicon motion capture system ([35]) at disposal. T his
system is able to determine the position and orientation of the quadrotor by track-
ing some markers attached to the robot, using a sst of cameras and sophisticated
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vision algorithms. T he system has an accuracy of lessthan 1cm.

An acceptable estimate of the linear velocity of the robot can be obtained
by numerical differentiation of the position provided by the Vicon. The angular
velocity obtained by differentiation of the orientation is, instead, too noisy to be
used. A much better measure of this quantity is made available by an inertia
measurement unit {IMU) mounted on board of the quadrotor.

T he quadrotor is also equipped with an on-board micro-controller that gener-
ates setting points for the low-level brush-less motor controllers. This can wire-
lessly communicate with a remote base station using an Xbee® module, connected
to a serial port of the micro-controller. T he computational power of the on-board
micro-controller is limited, but part of the computation can be carried on in the
base gtation (a Linux based PC), and sent to the quadrotor through the Xbec®
communication channel. T he remote desktop can also be used to generate and store
the reference trajectories and as an interface with the Vicon to receive the state
measurements at a high rate. It isalso possible to equip the robot with a high per-
formance Atom board directly connected to the serial port of the micro-controller,
but this significantly increases the robot payload, thus reducing its agility.

Given this hardware setup, the control algorithm must be distributed in such
a way that:

» it minimizes the computation effort for the on-board micro-controller;

« it reduces the amount of data which is being transmitted through the X bee®
wireless connection;

» it uses the begt possible sensor measurements, i.e. the position, orientation
and linear velocity provided by the Vicon tracking system and the angular
velocity measured from the on-board IMU,;

» it usesthe referencetrajectory computed and stored by the remote computer.

From the equations of chapter 8, we can notice that for the computation of the
first input (i.e. thetotal thrust) we need the reference trajectory and the position,
velocity and orientation of the robot. This information is provided by the Vicon
and is available in the remote high performance computer. The first input can
then be computed here and sent to the on-board micro-controller via the wireless
communication.

T he torque input computation also requires the angular velocity of the robot.
More in detailsthefirst term in eq. (8.7) requires position velocity and orientation
of the robot and then can be computed remotely. The second term also requires

84




























































