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Ab initio multiscale simulation of high-order harmonic generation in solids
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High-order-harmonic generation by a highly nonlinear interaction of infrared laser fields with matter allows
for the generation of attosecond pulses in the XUV spectral regime. This process, well established for atoms,
has been recently extended to the condensed phase. Remarkably well-pronounced harmonics up to order ∼30
have been observed for dielectrics. We establish a route toward an ab initio multiscale simulation of solid-state
high-order-harmonic generation. We find that mesoscopic effects of the extended system, in particular the realistic
sampling of the entire Brillouin zone, the pulse propagation in the dense medium, and the inhomogeneous
illumination of the crystal, have a strong effect on the harmonic spectra. Our results provide an explanation for the
formation of clean harmonics and have implications for a wide range of nonlinear optical processes in dense media.
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The generation of high-order harmonics (HHG) in the
nonlinear interaction of intense ultrashort infrared (IR) laser
pulses with matter has turned out to be a highly successful
route toward the generation of attosecond pulses in the EUV
and XUV spectral regimes [1–4]. It has become the workhorse
of investigation of a vast array of electronic processes on the
attosecond time scale [5]. Expanding the range of accessible
photon energies and intensities faces, however, fundamental
limitations. Experimental and theoretical investigations have
established a scaling of the cutoff energy Ecut ∝ λ2 for HHG
from atoms in the gas phase, raising hopes to reach ever higher
photon energies by increasing the wavelength λ of the driving
laser pulse. However, the intensity in the cutoff region was
found to scale unfavorably, Icut ∝ λ−5.3, due to the large spatial
dispersion of the electron wave packet upon return to its parent
atom [6–10]. Propagation effects in gas-filled capillaries have
been found to partially offset this suppression at high λ [11].

Extending HHG to the condensed phase promises to over-
come some of these limitations to enable compact and brighter
light sources and to open up the novel field of solid-state pho-
tonics on the attosecond scale. The recent observation of HHG
in solids for intensities below the damage threshold [12–18]
suggests opportunities for controlling electronic dynamics
[16,17] and for an all-optical reconstruction of the band
structure [19].

The observed solid-state HHG substantially differs from the
corresponding atomic spectra. For example, while for atoms
the cutoff frequency ωHHG

cut scales linearly with the (peak)
intensity I0 of the driving pulse [20,21], for HHG from bulk di-
electrics or semiconductors ωHHG

cut scales linearly with the peak
field F0 (or

√
I0) [14]. The processes underlying solid-state

HHG have remained a matter of debate. Several simplifying
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models have been proposed accounting for Bloch oscilla-
tions within a single band (“intraband harmonics”) [22,23]
and nonlinear interband polarization (“interband harmonics”)
[15,24,25] as sources of HHG. Most descriptions involve
the semiconductor Bloch equations (SBE [26]) using input
parameters on various levels of sophistication and a varying
number of energy bands [27,28]. Recently, first simulations
employing time-dependent density functional theory (TDDFT
[29]) have become available [30,31].

One major puzzle has remained so far unresolved: While
many experiments display remarkably “clean” harmonic spec-
tra with pronounced peaks near multiples of the driving fre-
quency (odd multiples when inversion symmetry is preserved)
all the way up to the cutoff frequency, corresponding simu-
lations display a noisy spectrum lacking any clear harmonic
structure over a wide range of frequencies in the “plateau”
region above the band-gap energy. In previous theoretical
works [16,17,32–35], this problem was addressed by proposing
remarkably short dephasing times T2 in the SBEs of the order
of T2 ≈ 1 fs or less than an optical half-cycle. While such
short decoherence times yield “cleaner” harmonic spectra, in
qualitative agreement with the experiment, they raise impor-
tant questions as to the ultrafast decoherence processes for
electronic excitations in solids.

The point of departure of the present work is a realistic
ab initio multiscale simulation of HHG by self-consistently
treating the microscopic nonlinear response and the meso-
scopic propagation of the optical signal. Diamond can serve
as a prototypical bulk dielectric for which a full ab initio
treatment is feasible. On the microscopic scale, we employ
two complementary methods: an ab initio TDDFT simulation
and a multiband SBE approach with input parameters from
ab initio ground-state DFT calculations and a dense three-
dimensional Brillouin zone (BZ) sampling. Properties of the
extended solid target on the mesoscopic scale enter through
propagation effects on the light fields in dense matter and the

2469-9926/2018/97(1)/011401(5) 011401-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.011401&domain=pdf&date_stamp=2018-01-16
https://doi.org/10.1103/PhysRevA.97.011401


ISABELLA FLOSS et al. PHYSICAL REVIEW A 97, 011401(R) (2018)

inhomogeneous field distribution within the focal spot that is
typically smaller than the extended target. These mesoscopic
effects turn out to have a surprisingly strong influence on the
resulting HHG spectra.

We use TDDFT in a real-space, real-time implementation
[36,37] to simulate the electronic dynamics driven by the
strong IR field �F (t) employing the adiabatic local-density
approximation (LDA). Alternatively, we implement the SBEs
by propagating the elements of the density matrix ρ

�k
mn,

∂tρ
�k
mn =−iω

�k+ �A/c
mn ρ

�k
mn − (1 − δmn)

ρ
�k
mn

T2

+ i �F (t) ·
[∑

l

(
�d �k+ �A/c

ml ρ
�k
ln − �d �k+ �A/c

ln ρ
�k
ml

)]
(1)

with the transition energy ω
�k
mn = ε

�k
m − ε

�k
n and the transition

dipole elements �d �k
mn between Houston orbitals of the valence

(VB) and/or conduction bands (CB), |n,�k + �A/c〉 [38,39]
at wave vectors �k displaced by the time-dependent vector
potential �A/c. Both ω

�k
mn and �d �k

mn are taken from ground state
(GS) ab initio DFT serving also as initial state of the TDDFT
calculation. The second term on the right-hand side describes
the decoherence characterized by a dephasing time T2 (a
corresponding term accounting for the population relaxation
with relaxation time T1 is omitted because T1 � T2).

The crystal is irradiated by pulses polarized along the � − X
direction having a total duration of 32 fs (corresponding to
τp ≈ 6.8 fs full-width at half maximum of the peak intensity),
a carrier wavelength of 800 nm (photon energyωIR = 1.55 eV),
peak intensities I0 of up to 2 × 1013 W/cm2, and a sin6

envelope for the field. From the time-dependent induced cur-
rent densities �J (t) derived from either methods, the resulting
high-order-harmonic spectrum is calculated using Larmor’s
formula [40]

Sn̂(ω) ∝
∣∣∣∣Ft

{
d

dt
�J (t) · n̂

}∣∣∣∣
2

= ω2| �J (ω) · n̂|2, (2)

where n̂ is the unit vector in polarization direction.
We account for the propagation through the extended

system by combining the microscopic SBE solution for the
current density �J (t) of individual cells with the solution of
Maxwell’s equations [36]

1

c2
∂2
t

�A(�r,t) − ∇2 �A(�r,t) = 4π

c
�J (�r,t), (3)

where the cells are placed on a mesoscopic grid along the
propagation direction [ �A(�r,t) → �A(X,t)] with grid spacing
�X = 8 nm and a crystal thickness of up to 1 μm. We
use a five-point stencil for the approximation of the second
derivative in space and a standard fourth-order Runge-Kutta
propagator to solve the differential equations in time. The
microscopic response to the impinging pulse at different grid
points i, �J (Xi,t), is thus coupled via Eq. (3). In particular,
high-order-harmonic radiation emitted from the source term
�J (Xi,t) propagates through the crystal via Eq. (3), driving the

response at the other microscopic sites, thereby accounting
for reabsorption of HHG within the crystal. From the electric
field �F (ω) of the transmitted pulse, we retrieve the harmonic
spectrum via Sn̂(ω) ∝ ω2| �F (ω) · n̂|2.

FIG. 1. Current densities induced in diamond by a 6.8-fs laser
pulse with intensity I0 = 2 × 1013 W/cm2 simulated using differ-
ent methods: TDDFT (green solid line) and semiconductor Bloch
equations (SBE) with two valence bands (VB) and four conduction
bands (CB) (dash-dotted red line) and with four VBs and four CBs
(dashed blue line), each sampled on a dense grid over the whole
three-dimensional Brillouin zone (BZ). For comparison, the result for
a single line in the BZ (� − X; dotted black line; scaled) is shown.
All results represent microscopic single-cell calculations neglecting
mesoscopic propagation effects.

Within a microscopic calculation employing a single cell
of the periodic structure and neglecting propagation, we have
first verified that for moderate intensities of the driving pulse
(I0 ∼ 1012 W/cm2) the SBE results for the time-dependent
current density rapidly converge to that of the TDDFT
prediction when consistent input for the band structure is
used and dephasing is neglected (T2 → ∞). Enforcing a
continuous phase evolution of the dipole matrix elements
along any trajectory through the BZ, in particular near narrow
avoided crossings (see Fig. S1 in the Supplemental Material
[41]) and a fine k grid (�k � 0.01 a.u.) have been found to be
crucial prerequisites for convergence to the ab initio TDDFT
simulation. Another important convergence parameter is
the number of VBs and CBs [27,28]. The present results
(Fig. 1) show, however, that approximations including only
a one-dimensional cut through the BZ and, thus, without
properly sampling the full BZ as have been frequently
employed [17,27,33,34] fail in the nonlinear regime.

The HHG resulting from microscopic single-cell calcula-
tions using either TDDFT or SBEs (Fig. 2) displays a noisy
spectrum with strong spectral contributions at all energies
above the band-gap energy (εLDA

gap ≈ 5.5 eV ≈ 3.55 ωIR). The
lack of clear signatures of discrete harmonics in single-cell
HHG spectra of an extended periodic system can be easily
understood within a semiclassical picture [25]. Within the
reduced real-space zone scheme of a single cell, the electron
and hole wave packets driven by the pulse traverse the cell
many times, meeting each other at a multitude of different re-
combination times and with different recombination energies.
Only for high frequencies near the cutoff do harmonic peaks
become more clearly visible as the number of contributing
recombination times is strongly reduced.

The broad quasicontinuous spectrum in the plateau region
(black lines in Fig. 2) is at variance with a large number of
solid-state HHG experiments finding a clean harmonic spec-
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FIG. 2. Microscopic single-cell calculations of harmonic radia-
tion emitted from diamond for I0 = 2 × 1013 W/cm2, λ = 800 nm,
and τp = 6.8 fs (FWHM) of the driving pulse [white solid inset in
panel (b)]: (a) and (c) TDDFT; (b) and (d) SBEs. Upper panels (a)
and (b) show time-frequency analyses (Gabor transform with width
σ = 2 fs; on a logarithmic color scale). Lower panels (c) and (d)
show resulting high-order-harmonic spectra. In panel (d), also the
spectrum including dephasing with T2 = 10 fs (orange line) is shown.
The dashed vertical lines indicate the odd multiples of the carrier
frequency ωIR = 1.55 eV of the exciting laser pulse.

trum [12,15,17,18]. Recently employed phenomenological
approaches to “purify” the spectrum have invoked very short
dephasing times of the order of a fraction of an optical cycle
(T2 ≈ T0/4 [32]) or of about 1 fs [17,33] to the microscopic
description. Such short T2 raise, however, conceptual questions
as to the origin of such ultrafast relaxation channels for
electronic excitations.

Starting point of our quantitative estimate for T2 are ex-
perimental data for the optical conductivity of dielectrics. We
determine the frequency-dependent conductivity σ (ω) from
the experimental complex refractive index

√
ε(ω) = n(ω) +

iκ(ω) [42] via

σ (ω) = ω

4πi
[ε(ω) − 1] . (4)

For an impulsive broad-band excitation spectrum F (t) ∝ δ(t),
the time-dependent induced current density follows as

J (t) = 1

2π

∫
dω e−iωtσ (ω)F (ω) (5)

according to Ohm’s law. From Eq. (5), we deduce the
frequency-dependent decay constant T2(ω) from fitting expo-
nentials ∝e−t/T2(ωi ) to the Gabor transform of Eq. (5) at various
photon energies ωi (Fig. 3). For frequencies above the band gap
(between 8 and 17 eV) we find T2(ωi) � 10 fs considerably
longer than previously assumed. It should be noted that this
estimate is strictly valid only in the linear response regime.
However, the present ab initio multiscale simulation allows us
to extend this estimate into the nonlinear regime. The nonlinear
extinction coefficient at the IR driving frequency κ(ωIR,I0)
can be directly determined from the attenuation of the driving
field self-consistently propagated through the crystal. The
resulting κ is found to be strongly dependent on T2 used in

FIG. 3. Time-dependent linear response of current density to
δ-like (broadband) excitation at t = 0 given by experimental optical
conductivity data (Ref. [42], see text) evaluated at various photon
energies ωi by a Gabor transform (σ = 2 fs). The time-dependent
current components J (ωi,t) exemplarily shown for ωi = 8 eV (yel-
low), 11 eV (red), 14 eV (purple), and 17 eV (black) are fitted to
exponentials ∝e−t/T2(ωi ) (dashed lines), yielding T2(ωi) ≈ 10 fs for
all photon energies ωi .

the simulation. Only for large T2 (> 10 fs) corresponding
to small spectral broadening do we find agreement with first
experimental data [43] on the nonlinear extinction κ(ωIR,I0)
for diamond in the 1012 to 1013 W/cm2 regime. Using T2 = 10
fs as lower bound in the SBEs (Fig. 2(d) and Supplemental
Material [41]) shows that within a microscopic single-cell
calculation, the lack of pronounced high-order harmonics in
the plateau regime persists. Therefore, inclusion of mesoscopic
effects of the extended system within a multiscale treatment is
crucial to describe the buildup of a clean HHG spectrum.

The simulation including propagation [Eq. (3)] displays
clearly visible harmonic peaks and a strongly reduced back-
ground even when dephasing is completely switched off [T2 →
∞ in Figs. 4(a) and 4(c), layer thickness 1 μm]. Obviously,
destructive interference between a multitude of electron-hole
recombination events along the propagation path at different
recombination times is key to the formation of a clean harmonic
spectrum with peaks at odd harmonics. It is important to note
that the peak positions agree with odd multiples of the slightly
blue-shifted transmitted driving frequency ωt rather than the
incident frequency ωIR [see Fig. 4(c)]. This predicted nonlinear
blue shift δω = ωt − ωIR in diamond is another signature of
the strong nonlinear response of the solid and has been, indeed,
experimentally observed for other materials [12,44]. For the
1-μm-thick crystal, the directly transmitted pulse is followed
by a second less intensive pulse from double internal reflection
at the back and front boundaries of the slab. Because of its re-
duced intensity, the reflected pulse only weakly affects the total
transmitted spectrum. The time delay between direct and re-
flected pulses (∼17 fs) allows for a direct and independent test
of the effective index of refraction of neff ≈ 2.4 [the real part of√

ε(ω)] in agreement with the experimental value at the carrier
wavelength λ = 800 nm in the linear response regime [42].

Mesoscopic-scale effects include not only the propagation
along the propagation direction but also the inhomogeneous
field distribution within the focal spot in the transverse di-
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FIG. 4. Time-frequency analysis (Gabor transform with width
σ = 2 fs; upper panels with a logarithmic color scale) and harmonic
spectrum (lower panels) induced by a pulse with λ = 800 nm,
τp = 6.8 fs (FWHM) and incident (vacuum) peak intensity Ivac =
2 × 1013 W/cm2 from self-consistently solving the Maxwell-Bloch
equations for diamond for a layer thickness of 1 μm. [(a), (c)]
Harmonic response in absence of dephasing (T2 → ∞); [(b), (d)] with
T2 = 10 fs and average over the inhomogeneous intensity distribution
of the driving field. The dashed vertical lines indicate the odd multiples
of the frequency ωt of the blue-shifted transmitted pulse (see text). For
comparison, the odd multiples of the frequency ωIR of the incident
pulse are shown as solid gray lines in panel (c). In panel (c) [panel (d)],
also the corresponding HHG spectrum with (without) dephasing is
shown in blue (orange).

rection. The spot size is, typically, much smaller than the
sample. Consequently, the intensity distribution of the laser
pulse in the material has to be modeled adequately. The latter
effect is included in this work by an average of the harmonic
emission over a Gaussian profile I (ρ) = Imax exp(−ρ2/2R2)
of the driving laser pulse. To assess this effect independently,
we calculate the resulting averaged current

〈 �J (t)〉 = 1

R2

∫ ∞

0
dρ ρ �J [t,I (ρ)] (6)

by a weighted sampling of the beam cross section for an
ensemble of 20 different intensities. Similar to the destructive
interference due to propagation effects, also intensity aver-
aging leads to spectra displaying more pronounced harmonic
peaks with maxima at odd multiples of the driving frequency
(Fig. S2 in the Supplemental Material [41]).

Combining now the effects of destructive interference and,
thus, dephasing due to propagation and transverse intensity
averaging with dephasing due to microscopic decoherence
processes with dephasing time T2 = 10 fs [Figs. 4(b) and 4(d)]
yields a well-defined harmonic spectrum in accord with
experimental data. From the Gabor transform, it is obvious
that the effect of the finite microscopic dephasing time T2 is
primarily the damping of the (induced) post-pulse current �J (t)
on the time scale of a few tens of femtoseconds. It is, however,
of minor importance for the formation of a well-defined
harmonic spectrum.

In conclusion, we have presented an ab initio mul-
tiscale simulation for solid-state high-order harmonics

self-consistently combining the microscopic nonlinear re-
sponse in three dimensions within the framework of TDDFT
or multiband Bloch equations with mesoscopic propagation
and source distribution effects. Irrespective of the level of
the underlying description, the microscopic simulation of the
nonlinear response of a single cell of the periodic system of
diamond alone fails to yield a well-defined harmonic spectrum.
It is the spatiotemporal distribution of the emission events
on the mesoscopic scale that leads to the formation of a
clean high-order-harmonic spectrum with pronounced peaks
at odd harmonics of the blue-shifted driving frequency in
the medium. This process can be viewed as the solid-state
analog to the shaping of harmonics by propagation in extended
gaseous targets due to phase matching and suppression of
the contributions from long trajectories [45]. Propagation
and field inhomogeneity effects play, however, a much more
prominent role at solid-state densities as in their absence
the well-defined harmonic spectrum is replaced by a noisy
quasicontinuum. Ultrafast microscopic dephasing rates of the
order of T2 ≈ 1 fs previously invoked are neither necessary
nor justified for forming a well-defined harmonic spectrum.
Instead, the present multiscale simulation strongly suggests
that the dephasing time is at least one order of magnitude larger
to yield the experimental optical conductivity at low intensities
and the extinction coefficient in the nonlinear regime of higher
intensities.

The present work addressing diamond as a prototypical
bulk dielectric has also wider important implications for
other materials. The strong influence of propagation and field
inhomogeneity effects in the dense medium on the nonlinear
optical response observed here is expected to be present
irrespective of the details of lattice or electronic structure of
the material. The blue shift of the harmonic spectrum found
in the present multiscale simulation for diamond has already
been observed experimentally for other materials. The present
findings may also contribute to disentangling of the relative
importance of intraband and interband contributions to the
harmonic generation. Since interband polarization is much
more effectively suppressed than coherent intraband dynamics
by previously proposed ultrashort dephasing times, the con-
tribution of interband polarization may be significantly higher
than expected when realistic dephasing times are employed.
The present findings have also important implications for
other ultrafast processes, for example, probing of biomaterials
by transmission of a broadband pulse [46]. Extraction of
information on the presence of specific molecules will require
the disentangling of the nonlinear molecular response from
mesoscopic light transport effects.
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