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S1 Experimental methods 

S1.1 Experimental Setup  
The setup used for this experiment is shown in Fig. S1. A detailed description can be 

found in Ref. 19. We use a near-infrared (IR) beam from a commercial Ti-sapphire laser 

system with a repetition rate of 1 kHz and pulse duration of around 25 fs. The pulses are 

further compressed with a filament compressor to 5 to 6 fs. The center wavelength is 

around 780 nm and the average power 280 mW. The laser beam is divided with a beam 

splitter into two parts. 80% of the power propagates through a polarization gating (PG) 

setup31 and is focused into a gas cell filled with argon for high harmonic generation 

(HHG). By adjusting the orientation of the birefringent crystals in the PG setup, either 

attosecond pulse trains (APTs) or single attosecond pulses (SAPs) are generated. An 

aluminum filter placed after the gas nozzle blocks the residual IR radiation used for 

HHG. The generated attosecond pulse with a spectrum in the extreme-ultraviolet energy 
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range (XUV) acts as the probe in the current pump-probe experiment. The IR beam 

reflected by the beam splitter (20%) follows a piezo-controlled delay path. This beam 

provides the IR pump pulse in our experiment. Both the pump and probe beams are p 

polarized. They are collinearly recombined with a center-hole mirror. The smaller XUV 

beam propagates through the hole while the IR is reflected on the outer part of the mirror. 

The two beams are then focused with a toroidal mirror into the double-target 

configuration consisting of a neon gas jet followed by a 100-nm thick single-crystalline 

GaAs membrane. This double-target enables both a streaking measurement in the Ne-

target and an attosecond transient absorption spectroscopy (ATAS) measurement in the 

GaAs membrane. From the streaking trace, the temporal shape of the vector potential and 

electric field of the IR pump pulse can be reconstructed20,21. The spacing between the gas 

nozzle and GaAs membrane is 1.35 mm, which we took into account for the calibration 

of the pump-probe delay (see below in Section S1.6 for more details). This is necessary 

to study the sub-femtosecond timing of the electron dynamics in the sample.  

 
Fig. S1. Experimental setup. Sketch of pump-probe setup with the double-target configuration consisting of a gas 

nozzle (neon) followed by a 100-nm thick freestanding crystalline GaAs membrane. Both pulses are polarized along 

the (011) crystal orientation of GaAs. A positive delay means that the IR pulse arrives first and the XUV second. 

Photoelectrons generated in the gas jet are measured with a time-of-flight spectrometer, 

while an XUV spectrometer with a resolution of  ! 70 meV records the spectra of the 

probe pulses after transmission through the GaAs membrane. With the help of a fast 
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electronic shutter placed in the pump path (operation frequency up to 150 Hz), ATAS 

spectra without (reference) and with (signal) the presence of the pump pulse can be 

recorded in fast sequence. 

S1.2 IR-induced modification of the XUV absorption  
The 2D-color plots with the measured data discussed in the main manuscript show the 

pump-induced change of the XUV absorption,   ΔAbs(E,τ ) , which can be expressed as 
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 α IR  and  α0  describe the absorption per length L with the pump pulse on (signal) and off 

(reference), respectively. E denotes the photon energy. τ  is the delay between pump and 

probe pulses.  Iinitial  is the initial XUV spectral intensity, while  Itrans
sig  and  Itrans

ref  are the 

transmitted XUV spectral intensities with and without the pump pulse. By recording 

signal and reference spectra in fast sequence, we can efficiently suppress slowly varying 

noise contributions and resolve changes in the XUV absorption of less than 1%.  

S1.3 Sample properties and preparation 

The sample measured here is a freestanding single-crystalline GaAs membrane with a 

thickness of 100 nm. The illuminated top surface is the (100) plane. The linear pump and 

probe polarizations point both along the (011) crystal orientation, which means that we 

probe along the Σ -symmetry line in the reciprocal space. 

The fabrication process of the nanomembrane involves a combination of mechanical 

polishing and chemical wet etching of a semiconductor heterostructure grown by 

molecular beam epitaxy (MBE)32,33. Both, growth and etching, were done in the clean 

room facility FIRST at ETH Zurich. The clear aperture of the membrane is around 

0.4 x 0.6 mm. Due to the growth by MBE, we assume a uniform thickness and quality 

over the whole membrane. Nevertheless, the measurements have been repeated on 

different spots on two different samples to test the reproducibility of the experiment. 
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S1.4 Infrared pulse parameters  
Table S1 summarizes the parameters of the IR-pump pulse used for the measurement. A 

spectrum of the pulse is shown in Fig. 1 of the main manuscript. One can see that the 

pump is clearly in resonance with the bandgap of GaAs, which is at room temperature 

approximately 1.42 eV29. The IR peak intensity and electric field strength have been 

estimated from the spatial and temporal profiles. These profiles have been obtained with 

a beam profiler camera and streaking measurements, respectively. Breakdown (laser 

induced damage) of the GaAs membrane was observed at a pulse energy of around 

2.25 µJ (corresponding to a peak intensity of approximately 2.6 x 1012 W/cm2). The IR 

intensity inside the sample has been computed taking into account the dielectric function 

of GaAs34 and the stationary solution of Maxwell’s equations. The result gives a 

maximum intensity that changes along the beam propagation direction inside the sample 

and peaks at approximately 60% of the incident intensity. Therefore, the peak intensity of 

the pump inside the membrane is up to ≈1.39 x 1012 W/cm2 and the peak electric field 

strength up to ≈0.32 V/Å. Figure S2 shows the laser intensity dependence of the number 

of injected carriers from the VB into the CB computed by the first-principles calculation 

(see section S2). While the carrier population is proportional to the laser intensity in the 

weak intensity region, it shows a nonlinear response in the high intensity region. This 

result indicates that the injection mechanism in the current experiment is in the non-linear 

regime. 

 

Energy  ≈ 2 µJ 
Pulse duration (FWHM)  5.45 ± 0.71 fs 
Beam waist  ≈ 74.4 µm 
Peak intensity  (2.31 ± 0.17) x 1012 W/cm2 
Peak electric field strength 0.42 ± 0.02 V/Å 

Tab. S1. Laser parameters of the infrared pulse in vacuum. The intensity inside the membrane is up to 60% 

compared to the vacuum.  
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Fig. S2. Injected carrier population vs. laser intensity. For low pump intensities, a first-principles calculation 

predicts a linear relation between the number of carrier excited from the VB into the CB and the pump intensity. For 

intensities exceeding 1010 W/cm2, the number of carriers deviates from the linear relation (black dashed line). Hence, in 

the current experiment with a pump intensity of ~1012 W/cm2, the carrier injection mechanism is in the non-linear 

regime.  

S1.5 Single attosecond pulse (SAP) vs. attosecond pulse train (APT) 

The ATAS measurements shown in Fig. 2 of the main manuscript are measured with 

single attosecond pulses (SAPs). The temporal characterization of the SAP is obtained 

with the FROG-CRAB technique using the extended ptychographic iterative engine 

(ePIE)35. In Fig. S3, a typical energy spectrum of a SAP together with its temporal 

reconstruction is shown. The pulse duration is approximately 200 as.  

 
Fig. S3. Single attosecond pulse (SAP) reconstruction. (a) XUV spectrum. (b) Measured streaking trace. 

(c) Reconstructed streaking trace. (d) Reconstructed SAP. 
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Fig. S4. Attosecond transient absorption spectroscopy (ATAS) measurement performed with an attosecond 

pulse train (APT). (a) ATAS trace with the corresponding XUV spectrum. (b) Energy averaged signal in the valence 

band (VB) (40.4 eV, red) and conduction band (CB) region (43.6 eV, blue). The integration intervals are shown in (a) 

with the black solid lines. The absorption change at 40.4 eV confirms the presence of   2ω IR -oscillations also in the VB 

signal below 42 eV. 

One advantage of using a SAP in the current experiment is the broad continuous 

spectrum, which makes it possible to study electron dynamics in the valence (VB) and 

conduction band (CB) at the same time. Compared to an APT however, SAPs are 

characterized by a lower photon flux and thus higher spectral noise. Due to the use of the 

PG technique, the SAPs used in our experiment are characterized by a strong dependence 

of the spectral amplitude around 40 eV on the carrier-envelope offset phase (CEP) of the 

driving pulses. Even if the CEP was actively stabilized to a rms value of < 0.15 rad 

during the measurements, we were unable to resolve the characteristic oscillations in the 

transient absorption signal from the VB (in contrast to those at the higher photon energies 

probing the CB). Figure S4 shows a measurement with an APT, whose spectral amplitude 

does not depend on the IR CEP value. Here,   2ω IR -oscillations are clearly visible both in 

the VB and in the CB (40.4 eV and 43.6 eV, respectively). This confirms the theoretical 

predictions reported in Fig. 2(c) of the main manuscript.  
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S1.6 Pump-probe delay calibration 
A precise pump-probe delay calibration is crucial for a comparison of the absolute phases 

of the absorption oscillations as discussed in Fig. 3(f) of the main manuscript. 

Figure S5(a) shows a typical streaking trace measured simultaneously with an ATAS 

trace. The negative vector potential -A(t) of the IR pulse follows approximately the center 

of mass (CM) of the streaking signal. In Fig. S5(b), A(t)2 is plotted together with the 

following fit function: 

 
  
F(t) = ((a ⋅cos(b ⋅(t − c)+ d) ⋅exp(− (t − c)2

2e2 ))+ f )2 ,   (S2) 

where a, b, c, d, e and f are fitting parameters. We define delay zero as the local 

maximum closest to the maximum of the envelope.  

 
Fig. S5. Delay calibration. (a) Typical streaking trace measured simultaneously with the ATAS trace. The temporal 

shape of the vector potential A(t) follows the center of mass (black solid curve), but with opposite sign. (b) The black 

circles show the square of the extracted vector potential, A(t)2, as extracted from (a). The amplitude mismatch between 

the experimental data and fit can be explained by the asymmetry in the streaking trace. Delay zero is defined as the 

local maximum of the fit (red line) being closest to the maximum of the envelope (red dashed line).  

For the calibration of the timing between the pump and probe pulse, we take into account 

the following two issues:  

(1) Spatial separation between the streaking and ATAS target 

In a recent publication, we demonstrated that the Gouy phase shift of the IR beam has a 

non-negligible influence onto attosecond pump-probe measurements with spatially 

separated targets22. In particular, for our focusing condition we found that the Gouy phase 

results in a phase shift for the IR beam of around minus 25 as/mm around the focus. In 

the experiment here, the spacing between the gas nozzle and GaAs membrane is 
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1.35 mm. Consequently, the IR electric field experiences a phase shift of minus ≈34 as 

while it propagates from the neon target to the GaAs membrane target. 

(2) Effect of the cross-section and atomic delay in the streaking reconstruction 

Above, we extracted the IR vector potential directly from the center of mass (CM) of the 

streaking without any reconstruction algorithm. Hence, the cross-section and atomic 

delay of the target gas are not taken into account. To estimate the error induced by this, 

we performed a simulation of a streaking trace and compared the input IR field   Ein(t)  

with the reconstructed field defined as   Erec(t) ∝−∂CM ∂t . Including both the cross-

section and atomic delay in the simulation results in a temporal offset between   Ein(t)  and 

  Erec(t)  of ≈30 as. Hence, the reconstructed field defined as   Erec(t) ∝−∂CM ∂t  has to be 

shifted by 30 as to positive delays to get the proper input field   Ein(t) . 

Both time shifts discussed above give a comparable but opposite shift to the IR pump 

field and therefore they practically cancel out. Therefore, in our analysis we took directly 

the CM extracted from the streaking trace without applying any further correction to 

reconstruct the IR vector potential (  A(t) ∝−CM ). 

S1.7 Phase and delay extraction 
As discussed in the main manuscript, the phase of the absorption oscillations in the 

measured and simulated ATAS traces depends strongly on the photon energy E of the 

XUV pump pulse, which results in the tilted features in the signal. We extract the phase 

and delay between the squared vector potential of the IR pulse (  S1(t) = A(t)2 ) and the 

ATAS oscillation (  S2(E,t) = ATAS(E,t) ) for each XUV photon energy by looking at the 

following product, as in Ref. 22: 

    C(E,ω ) = !S1 (ω ) ⋅ !S2 (E,ω )*,   (S3) 

where    
!S1(ω )  is the Fourier transform of   S1(t)  and    

!S2(E,ω )*  is the complex conjugate of 

the Fourier transform of   S2(E,t) .   C(E,ω )  has a peak at the shared oscillation frequency 

of the two signals, which is equal to twice the IR frequency (Fig. S6). The phase of C, 

instead, gives the phase difference between S1 and S2,   ΔΦ(E,ω ) . Hence, the relative 

phase offset between local maxima of the squared vector potential and the maxima of the 
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induced absorption modulation is extracted without any time-zero calibration. This 

avoids introducing an uncertainty in the phase difference through an uncertainty in the 

delay calibration. Finally, the energy dependence of the delay between the squared IR 

vector potential and the ATAS oscillations can be calculated as: 

 
  
τ (E) =

I(E,ω ) ⋅ ΔΦ(E,ω )
ω∫ dω

I(E,ω )∫ dω
,   (S4) 

 
  
σ τ

2 (E) =
I(E,ω ) ⋅ ΔΦ(E,ω )

ω
− τ (E)⎡

⎣⎢
⎤
⎦⎥

2

∫ dω

I(E,ω )∫ dω
.   (S5) 

Here,   I(E,ω )  is a weighting function, equal to a Gaussian fit of   C(E,ω )  within its full-

width-at-half-maximum around the peak (Fig. S6). Equations (S4) and (S5) represent the 

delay and second momentum extracted from a single measurement/simulation.  

The experimental delay in Fig. 3 of the main manuscript shows the statistical average of 

nine measurements recorded on four different days. The average experimental delay is 

calculated as follows: 
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σ τ i

−2 (E) ⋅ τ i(E)
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∑
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where   τ i(E)  and 
  
σ τ i

(E) represents the delay and uncertainty of the individual 

measurements and N the number of measurements. The error bar of the presented 

experimental delay is:  
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The first term in the square root is the weighted variance of the nine individual delays 

  τ i(E)  with respect to   
τ average(E) . The second term is the weighted mean of the 

individual uncertainties 
  
σ τ i

(E) . 
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Fig. S6. Phase and delay extraction. The blue curve illustrates   

C(E,ω )  extracted from a simultaneously recorded 

streaking and ATAS trace (E = 46.6 eV).   
C(E,ω )  has a peak at the common oscillation frequency of the squared IR 

field and ATAS trace (
  
ω peak ≈ 2ω IR  ). The red curve is a Gaussian fit of   

C(E,ω ) . The weighting function   I (E,ω )  

used in Eqs. (S4) and (S5) is equal to the Gaussian fit within its full-width-at-half-maximum (FWHM) window (yellow 

curve). 
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S2 Theoretical methods 
In order to gain insights into the underlying physical dynamics for the observed features 

in the experiment, we employ two different theoretical models: (1) An ab-initio model 

based on first-principles density functional calculations and (2) a simplified three-band 

model. In this section, we briefly introduce both models and explain the simulation 

results. 

S2.1 First-principles electron dynamics simulation in the time-domain 
To simulate the optical response of GaAs from first-principles, we solve the following 

one-body Schrödinger equation in the time-domain, 

 
    
i! ∂
∂t

ubk (r,t) = 1
2m

p + !k + e
c

A(t)
⎧
⎨
⎩

⎫
⎬
⎭

2

+υ(r)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ubk (r,t),   (S8) 

where    ubk (r,t)  describes the Bloch orbital with the band index  b  and crystal momentum 

  !k . The one-body potential   υ(r)  is approximated by the Kohn-Sham potential in the 

static density functional theory (DFT). Thus, equation (S8) is nothing but the time-

dependent Kohn-Sham equation of the time-dependent density functional theory 

(TDDFT)36 with frozen Hartree and exchange-correlation potentials.  

In more detail, we perform a DFT calculation with a pseudopotential-based real-space 

TDDFT code (Ab-initio Real-Time Electron Dynamics simulator; ARTED37) to construct 

the one-body potential   υ(r) . We treat 3d, 4s, and 4p electrons of the Ga and As atoms as 

valence electrons. The exchange-correlation potential in the DFT calculation is given by 

a mega-GGA potential38 with an optimized mixing-parameter, c, to reproduce the band-

gap of GaAs at zero Kelvin39. In the experiment, the GaAs membrane is at room 

temperature and has therefore a reduced bandgap due to phononic effects. In the 

simulations however, we completely freeze the ions. Thus, to keep the treatment for 

electrons and phonons consistent, we consider the zero-temperature properties in the 

simulations for both. 

Based on the above ab-initio modeling, we perform pump-probe simulations24 and 

compute the transient modification of the imaginary part of the dielectric function, 
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 Im(Δε ) , which is directly related to a change in the absorption10. We use a pump pulse 

with a peak electric field strength of 2.75 x 109 V/m, a mean frequency of 1.55 eV/ℏ and 

a pulse width of about 5 fs. For the probe pulse, we set the peak field strength to 

2.75 x 108 V/m, the mean frequency to 40 eV/ℏ and the pulse duration to 250 as.  

For the simulations in this paper, we employ a primitive unit cell of GaAs, which consists 

of a single Ga and As pair. We discretize the Brillouin zone into 123 k-points. As in the 

experimental setup, the polarization of the pump and probe pulses are along the (011) 

crystal orientation. To numerically solve equation (S8) in the time-domain, we employ a 

basis expansion method with eigenstates of the static Kohn-Sham Hamiltonian using the 

momentum-shift technique40. 

As mentioned in the main manuscript, we applied an energy shift of 4.23 eV to the first-

principles results. The reason for this shift is due to the fact that the TDDFT calculation 

underestimates the energy gap between the core level and the top of the valence band. In 

our specific case, the simulated transition energy is 36.5 eV instead of 40.73 eV30. We 

corrected for this underestimation by shifting the absorption signal by 4.23 eV. 

S2.2 Role of the propagation effect 
The frequency dependence of the refractive index of GaAs results in a different 

propagation speed of the IR-pump and XUV-probe pulse. The phase velocity of the IR 

pulse is about   vIR = c nIR ≈ c 3.7 34, where c describes the speed of light in vacuum. For a 

100-nm thick GaAs membrane, the resulting propagation time for the pump pulse is 

about 1.233 fs. By assuming that the group velocity of the XUV pulse inside the bulk 

does not change much compared to the vacuum, the travel time of the probe is about 

0.333 fs. Two pulses with an initial delay of zero femtosecond are therefore temporally 

separated by 900 as after the GaAs membrane. Consequently, the ATAS signal measured 

for a certain delay τ  is actually a signal averaged over pump-probe delays between  t = τ  

and  t = τ − 900 as . The minus sign results from the delay definition used.  

In the simulations, this propagation effect is not directly included. In order to take it into 

account, the theoretical signal has to be averaged by 
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Δ !ε(E,τ ) = 1

ΔT
Δε(E,t)dt

τ −ΔT

τ

∫ ,   (S9) 

with  ΔT  equal to 900 as.   Δε(E,t)  is the change of the dielectric function simulated with 

the ab-initio and three-band models, respectively. As illustrated in Fig. S7, the averaging 

has an important effect onto the signal. With neglected propagation, the offset between 

the experimental and the simulated trace is approximately 600 as. Taking the propagation 

into account results in a reduced phase offset of below 250 as. The residual offset 

between the experiment and simulation might result from the longitudinal dependence of 

the non-uniform IR field distribution in the bulk material. As described above, we include 

the macroscopic propagation in a simplified way by averaging the signal (Eq. 9). It is 

however important to note that taking propagation into account results mainly in a shift of 

the energy dispersion shown in Fig. 3(f) of the main manuscript along the delay axis 

without any significant change to its shape. All simulations shown in the main manuscript 

take the propagation effects according to equation (S9) into account.  

 
Fig. S7. Propagation effect. (a) Comparison of the experimental signal (upper) with the first-principles simulation 

without (middle) and with (lower) propagation included. (b) Energy averaged signal around 43.5 eV for the three traces 

in (a) (integration width of 0.2 eV). The vertical lines compare the individual peak positions. As we can see, taking the 

propagation into account results in a significant reduction of the phase offset between the experiment and simulation.   

S2.3 Pump intensity dependence 

Studying the dependence of the ATAS signal on varying IR pump intensity 

experimentally is challenging. Reducing the pump intensity results in a significantly 

weaker signal and is limited by the achievable signal-to-noise ratio. Increasing it leads to 

irreversible damage of the membrane. The experimental traces presented in the main 

manuscript are recorded with an IR pump intensity close to the damage threshold of the 

GaAs target.  
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Nevertheless, to study the intensity-scaling of the signal, we performed first-principles 

simulations with varying IR-pump intensity. First, we computed the number of carriers 

injected by the pump (see section S1.4). Figure S2 shows the carrier population as a 

function of the laser intensity. One can clearly see the nonlinearity of the carrier injection 

mechanism. Second, we performed simulations of the transient absorption with different 

pump intensities. Figure S8 shows two example traces for 5x1011 W/cm2 and 

1x1012 W/cm2. Reducing the pump intensity results in a smaller absorption change. 

However, the shape is preserved. This fact indicates that the modification of the optical 

properties has a linear dependence on the laser intensity, while the carrier injection 

mechanism has a nonlinear dependence. This is consistent with our finding that the 

transient modification of the optical property is dominated by the virtual carrier effect of 

the intra-band transition, which scales linearly, while the carrier-injection is enhanced by 

the coupling of the intra- and inter-band transition, which scales nonlinearly. 

 
Fig. S8. First-principles simulation of absorption modulation for two IR pump intensities. (a) 5x1011 W/cm2. 
(b) 1x1012 W/cm2.  

S2.4 Probe-decomposition based on Houston states 
The first-principles calculations with the propagation effects reproduce the experimental 

result very well. In order to clarify the microscopic origin of the signal, it is helpful to 

apply a probe-decomposition based on Houston states10.  

For the decomposition, we first consider a decomposition of the full Hamiltonian into the 

pump and the probe part: 
  
Ĥ pump− probe = Ĥ pump + Ĥ probe . 

  
Ĥ pump− probe  is the one-body 

Hamiltonian in equation (S8), while 
  
Ĥ pump  is the Hamiltonian only including the pump 

pulse. The probe part, 
  
Ĥ probe , is defined by the difference of 

  
Ĥ pump− probe  and 

  
Ĥ pump .  
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Next, we consider the matrix representation of the probe Hamiltonian based on the 

instantaneous eigenstates    ubk
P (r,t)  of the pump Hamiltonian, also known as Houston 

states25,41, 

 
    

1
2m

p + !k + e
c

Apump (t)
⎧
⎨
⎩

⎫
⎬
⎭

2

+υ(r)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ubk

P (r,t) = ε
bk+ e
!c

Apump (t )
ubk

P (r,t).   (S10) 

Finally, by partially including/omitting the matrix elements of the probe Hamiltonian in 

the simulation, we can investigate dynamics induced by a specific probe transition. It is 

important to note that the pump mechanism is not influenced by the probe decomposition 

discussed here. Only the probe transitions between different energy levels are modified. 

Figure S9 illustrates the probe decomposition of the first-principles simulation. As we 

can see, the full signal (Fig. S9(a)) is almost perfectly reproduced by the decomposed 

signal when including only the probe transition from the As-3d core level to the VB and 

CB (Fig. S9(b)). The transient signal in this energy regime is therefore dominated by 

probe transitions involving the As-3d core level as expected. 

For a more detailed understanding, we further decompose the first-principles signal into 

the CB (Fig. S9(c)) and the VB response (Fig. S9(d)). In these cases, only probe 

transitions from the core level to either the CB or VB are allowed. One can see that the 

transient features in the absorption around 43 eV come mainly from probe transition 

between the As-3d level and the CB. Based on this, we focus on the CB response in the 

following analysis using the three-band model. 

 
Fig. S9. Decomposition of the first-principles signal. (a) Full signal without any decomposition. (b) Decomposed 

signal with probe transitions from As-3d bands to valence and conduction bands, (c) from As-3d to only conduction 

bands (CB response), and (d) from As-3d to only valence bands (VB response). 
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S2.5 Simplified 3-band model 
To investigate the role of intra- and inter-band transitions in the transient response of 

GaAs, we employ a simple model consisting of only three bands: A flat band, which 

mimics the As-3d core level, and two parabolic bands representing the VB and CB. We 

set the energy level of the As-3d band to -40.73 eV with respect to the VB edge30. The 

band gap is   
ε gap = 1.52  eV, which is equal to the band gap of GaAs at zero Kelvin29. The 

shape of the parabolic bands is given by the corresponding effective electron masses 

(mCB = 0.067 me
29, mlh,VB = 0.08 me

42). For the VB, we choose the light-hole mass rather 

than the heavy-hole mass, as the simulation with this choice reproduces the experiment 

better (see Section S2.5.2). 

Based on the above assumptions, one can consider the following Houston expansion41 

with three instantaneous eigenstates of the time-dependent Hamiltonian for each crystal 

momentum, 

    uk (r,t) = cdk (t)udk
H (r,t)+ cvk (t)uvk

H (r,t)+ cck (t)uck
H (r,t),   (S11) 

where    udk
H (r,t) ,    uvk

H (r,t)  and    uck
H (r,t)  are the instantaneous eigenstates of the As-3d level, 

VB and CB, respectively. The dynamics of the three-band model is described by the 

following Schrödinger equation for the time-dependent coefficients: 

 

    

i! ∂
∂t

cdk (t)

cvk (t)

cck (t)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

εd hdv ,K (t ) hdc,K (t )

hdv ,K (t )
* εv ,K (t ) hvc,K (t )

hdc,K (t )
* hvc,K (t )

* εc,K (t )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⋅

cdk (t)

cvk (t)

cck (t)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,   (S12) 

where the crystal momentum     !K(t)  is shifted by the vector field,     !K(t) = !k + A(t) / c . 

The matrix elements are defined as: 

 
  
εv,K ( t ) = − K(t)2

2mlh,VB

, εc,K ( t ) = εgap +
K(t)2

2mCB

, εd = −40.73eV,   (S13) 

 
   
hij ,K (t ) = −ipij ⋅

E(t)
(ε i,K (t ) − ε j ,K (t ) )

.   (S14) 

The diagonal elements of the 3x3 matrix describe the electronic structure of the three-

band model with the energy levels and effective masses introduced above. The off-
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diagonal elements are defined by the corresponding momentum matrix elements,   pij . To 

investigate the probe-induced transition from the semi-core to the CB in the main 

manuscript (CB response), we set  pdv  to zero. Here, we note that the momentum matrix 

element between the As-3d band and the CB,  pdc , does not have any effect on the 

structure of the induced signal since there is no nonlinear effect from the semi-core 

transition at the present laser intensity. It only affects the absolute value of the signal.  

In order to further construct the model, we need to define the momentum matrix element 

between the VB and CB,  pvc . For this purpose, we compute the signal with the three-

band model for different values of the matrix element. Figure S10 compares the 

corresponding energy-averaged signals (integration interval: 42.5 to 43.0 eV) with the 

ab-initio simulation. The black-solid line follows the signal extracted from the first-

principles calculation. The other lines show the signals of the three-band model for 

different values of the matrix element. As seen from the figure, a squared matrix element 

  pvc
2

 of 0.02 a.u. reproduces the first-principles simulation best, especially the ratio of the 

transient and long-lasting signal. Therefore, we chose this value for the three-band model 

simulations shown in the main manuscript. 

 
Fig. S10. Extraction of matrix element pvc. Here, the energy-averaged signals (integration interval: 42.5 to 43 eV) 

extracted from the first-principles calculation and three-band model simulations for different matrix elements are 

compared. A value of pvc
2=0.02 a.u. reproduces the first-principles simulation best. 
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S2.5.1 Intra- and inter-band limit 

The advantage of this three-band model is that intra-band and inter-band transitions are 

described by different matrix elements of the Hamiltonian in equation (S12). On one 

hand, intra-band motion is described by the modification of the single-particle energy 

levels, which are given by the diagonal elements. The change of the energies is due to the 

crystal momentum shift,     !K(t) = !k + A(t) / c . On the other hand, inter-band transitions 

are described via off-diagonal elements. In the main text, we investigate the intra-band 

transition limit by neglecting the off-diagonal elements in the Hamiltonian (Fig. 3(c) of 

the main manuscript) and the inter-band transition limit by neglecting the modification of 

the single-particle energies (Fig. 3(d) of the main manuscript). 

S2.5.2 Heavy-hole valence band 

As mentioned above, we assume the light-hole mass for the VB in the three-band model 

calculations. To justify our choice, we compare here the response of the model with the 

(a) light-hole VB and (b) heavy-hole VB. To investigate the VB response, we set the 

matrix element between core level and CB,  pdc , to zero. 

As was done for the light-hole band, we find the momentum matrix element  pvc  for the 

heavy-hole band, which reproduces the first-principles result best. We find that a   pvc
2  of 

0.01 a.u. yields the best match. Figure S11 shows the VB response computed for both, 

light-hole and heavy-hole, cases. By comparison with the corresponding decomposition 

of the first-principles signal (Fig. S9(d)), one finds that the signal with the light-hole band 

yields a better agreement; i.e., it reproduces correctly the wider distribution in the long-

lasting component, and the V-shaped structure in the transient signal.  

Based on this analysis, we chose the light-hole band instead of the heavy-hole band in the 

three-band simulations.  
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Fig. S11. Comparison of the valence band responses from a three-band model including (a) a light-hole and (b) a 

heavy-hole valence band, respectively.  

S2.5.3 Conduction band population 

The population of the CB discussed in the main manuscript is defined by the projection 

of the time-dependent wave function    uk (r,t)  onto the instantaneous eigenstate of the CB, 

   uck
H (r,t) : 

 

   
nCB(t) = 2

2π( )3 dk uck
H (t) | uk (t)

2

∫ = 2

2π( )3 dk cck (t)
2

∫ ,   (S15) 

where    cck (t)  is the CB coefficient derived from equation (S12). To investigate only the 

population dynamics between VB and CB in Fig. 4 of the main manuscript, we set both 

 pdv  and  pdc  to zero. 

S2.6 Spin-orbit splitting 
The As-3d core level is divided into the 3d5/2 and 3d3/2 states due to the spin-orbit 

splitting. The level separation is 0.68 eV43. As the probe pulse can excite electrons from 

both core levels to the bandgap region, the measured signal can actually be seen as a 

superposition of two ATAS traces. In our simulations, no splitting is taken into account. 

Only one core level lying 40.73 eV below the valence band maximum is included30. To 

estimate the influence of the splitting on the calculated signal, we can look at  

 
  
ΔεSO (E,τ ) = 6 ⋅ Im(Δε(E +

ΔESO

2
,τ ))+ 4 ⋅ Im(Δε(E −

ΔESO

2
,τ )),   (S16) 

where   Δε(E,τ )  is the simulated change of the dielectric function without splitting. E and 
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τ  describe the energy and delay dependence.  ΔESO  is the energy splitting of the core 

levels. The pre-factors 6 and 4 represent the degeneracy of the two core levels. By 

comparing the first-principles calculations without (Fig. S12(a)) and with (Fig. S12(b)) 

the splitting included, one finds that the core level splitting does not have a significant 

influence on the main features of the transient and long-lasting signal. It mainly results in 

an energy averaging. Therefore, we neglected the spin-orbit splitting in all calculations 

shown in this manuscript.  

 
Fig. S12. Influence of core-level splitting. First-principles simulation (a) without and (b) with included spin-orbit 

splitting of the As-3d core level. As one can see, the splitting results only in an energy averaging of the signal without 

any significant influence on the main features. 

S2.7 Multi-photon resonant pump regime 
Using our simplified 3-band model, we calculated the number of carriers excited into the 

conduction band of GaAs (Egap = 1.52 eV) for the case of a multi-photon resonant pump 

pulse. The pump photon energy used in the following is 1.52/3 eV. The pump intensity 

has been set to 1010 W/cm2. The corresponding Keldysh parameter is ~1.55, which 

suggests that multi-photon excitation is more likely to occur than tunneling excitation.  

In Fig. S13, we show the corresponding conduction band population for the full model, 

including both transition types, and for the inter-band-only case on a linear (a) and 

logarithmic (b) axis. As in the resonant pump regime, we can clearly see that including 

intra-band motion results in an enhanced injection rate. 
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Fig. S13. Number of carriers excited into the conduction band of GaAs by a 3-photon resonant pump pulse. The 

black solid line in (a) illustrates the temporal shape of the pump intensity. Including intra-band motion into the 

simulations results in an enhancement of the number of excited carriers as in the single-photon resonant pump regime. 

In (b), the CB population is plotted on a logarithmic scale. 
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