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We introduce a simple ansatz for the wave function of a many-body system based on coupled forward and
backward propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating
nonequilibrium dynamics in electron-phonon systems. The time evolution of the system is obtained from the Euler-
Lagrange variational principle, and we show that this ansatz yields Ehrenfest mean-field theory in the limit that the
forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and
performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model.
Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over
mean-field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations.
This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory
method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an
attractive route forward to the ab initio description of relaxation processes, such as thermalization, in condensed

phase systems.
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I. INTRODUCTION

The nonequilibrium dynamics of an interacting system of
nuclei and electrons is one of the most fundamental subjects
in condensed-matter physics, and it plays a central role in
many applications of current interest such as photosynthesis
[1,2], photovoltaics [3,4], proton transfer [5], light-induced
phase transitions [6,7], laser processing [8,9], and many more.
Developing an accurate and numerically efficient description
of the nonequilibrium dynamics of coupled electron-nuclear
systems is essential to understand the microscopic mechanisms
underlying such phenomena. However, despite the signifi-
cance of the potential applications, theoretical descriptions are
severely limited due to the computational expense associated
with the simulation of realistic systems.

One possible route forward is to adopt a mixed quantum-
classical approach where the electronic dynamics is treated
quantum mechanically while the nuclear dynamics is treated
on a semiclassical level. These approaches can be rigorously
justified on the basis of the large disparity between nuclear
and electronic masses, for example. Indeed, the Ehrenfest
mean-field (MF) dynamics method [10], which is one of the
simplest of the mixed quantum-classical approaches, has been
combined with ab initio electron dynamics simulations based
on the time-dependent density functional theory (TDDFT) and
applied to investigate quite large systems thus far [11-13].
The ab-initio nonadiabatic molecular dynamics is another
successful ab-initio approach based on TDDFT and a surface
hopping algorithm [14,15] and has been applied to various
phenomena [16,17].

2469-9950/2018/97(13)/134308(11)

134308-1

However, the MF approach does not retain predictive
power in many cases of interest [18-20], primarily due to
the neglect of correlations in the dynamics. As a result, a
hierarchy of trajectory-based dynamics approaches have been
developed over the past decades which attempt to improve on
the accuracy of mean-field theory. These approaches include
methods based on propagating the density matrix, such as
the quantum-classical Liouville equation [21] and associated
approximations such as the Poisson bracket mapping equation
[22] and the forward-backward trajectory solution [23,24],
as well as the closely related linearized and partially lin-
earized path integral approaches [25-29]. In addition, methods
based on wave-function propagation, such as the coupled
coherent-states method and the multiconfigurational Ehren-
fest approaches [30,31] of Shalashilin and co-workers, the
multi-Davydov ansatz methods [32,33], and coupled trajec-
tory quantum-classical approaches [34] based on an exact
factorization of the electron-nuclear wave function have also
been developed. Although these sophisticated methods have
succeeded in surpassing the accuracy of mean-field theory in
model systems, applications to realistic systems based on ab
initio treatments have been severely limited by computational
cost. In order to achieve a comprehensive ab initio descrip-
tion of nonequilibrium electron-nuclear dynamics in realistic
systems, accuracy, efficiency, and simplicity must be balanced.

In this work, we propose a simple ansatz for the many-body
wave function of an electron-nuclear system, in order to capture
the quantum nature of the dynamics beyond the mean-field
level. Our prescription is based on the variational principle, and
it involves pairs of coupled semiclassical trajectories, one of
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which is propagating forward in time, and the other backward.
The proposed method is one of the simplest possible extensions
of the Ehrenfest mean-field dynamics method, which utilizes
only individual trajectories to construct ensemble averages.

We examine the performance of our approach by treating
nonequilibrium electronic relaxation processes in two paradig-
matic model systems: the single-mode spin-boson model
[35-38], and the Holstein model [39,40]. The single-mode
spin-boson model is one of the simplest nontrivial models for a
coupled quantum system, and is also known as the Rabi model,
or the Jaynes-Cummings model. Despite its apparent simplic-
ity, it captures a range of rich phenomena [41] and has been
intensively investigated in various contexts such as in quantum
optics [41,42], and superconductivity [43,44]. The Holstein
model is the modern workhorse model for the description of
electron phonon coupling effects in solids, such as polaron
formation and transport [45,46], and photocarrier relaxation
[39]. Despite the apparent simplicity of our proposed method,
we find that it substantially improves upon the performance of
the Ehrenfest dynamics method, and that it accurately captures
the quantum nature of the nuclear dynamics in many of the
cases studied. Thus, the concept of coupling forward and
backward propagating semiclassical trajectories could be a
key tool in developing an accurate and efficient theoretical
treatment for use in applications to realistic systems and hence
this method could be used as a base to extend the accuracy of
ab initio Ehrenfest dynamics simulations for future practical
applications.

The construction of remainder of this paper is as follows:
In Sec. II, we introduce our wave-function ansatz and develop
the associated evolution equations from the Euler-Lagrange
variational principle. In Sec. III we examine nonequilib-
rium electronic relaxation dynamics within the single-mode
spin-boson model and the Holstein model. We compare our
proposed method with the multitrajectory Ehrenfest dynam-
ics method, the forward-backward trajectory solution to the
quantum-classical Liouville equation, as well as numerically
exact quantum-mechanical results. Finally, our findings are
summarized in Sec. IV.

II. THEORY

In this section, we introduce an ansatz for the wave func-
tion that is based on the multitrajectory Ehrenfest dynam-
ics method. We then derive equations of motion using the
Euler-Lagrange variational principle. We call this approach
the coupled forward-backward trajectory (CFBT) method for
reasons that will become clear below.

First, we consider a general quantum subsystem coupled to
an external environment (bath). The total system is described
by the following Hamiltonian:

H = H,+ A, + Hy, (1

where I-AIS and FI;, describe the Hamiltonian of the subsystem
and the bath, respectively. The coupling between the subsystem
and the bath is described by I:ISb.

For notational convenience, let us assume that the bath
Hamiltonian can be decomposed into a harmonic part and a

residual part AW as follows:

A L hw, ot 1 R
A, = Z ala, + = ) + Awb. )

2 2

n=1
Using the annihilation operator &,, a coherent state can be
defined as a,|z,) = z.|z.). For convenience, we introduce the
following notation for direct products of coherent states: |z) =
|z1) ® - -+ ® |zw,), Where z is a generalized coordinate; z :=
{z1,... ,ZNb}.
Now, consider the time evolution of an arbitrary observable,
B():
(B(1)) = Tr[B(1)p], 3)

where p is the density matrix of the entire system. Inserting
the closure relations for the subsystem space and the coherent
states, the observable can be described by

A d? d*z
oy =Y [ 5 [ Stsie @iste e )
of

x {{a] @ (}BMIB) @ 12)}. “

Here, we focus on the integrand of Eq. (4),

{{a] ® Z}BO{IB) ® 17)}
= {(a| ® (zNUT0.0BUO,0{IB) ® 1)},  (5)

where the forward propagator, U(0,1), and the backward prop-
agator, U T(O, t) = U (t,0), are involved. In order to construct an
approximation for Eq. (5), we introduce a linear combination
of the forward and backward propagated wave functions with
a phase factor,

[¥(t,0)) = UO,0)|a) ® |z) + €U 0,0)8) @ |2).
(©6)

One can prove that the phase average of the expectation
value for | (z,0)) is reduced to Eq. (5):

2

1 . o
= doe™ " (Y (1,0)| B|y (t,0))
7T Jo

= {(a| ® Z}BO{IB) ® |2))}. (7

Therefore, the observable of Eq. (4) can be rewritten in the
following phase-averaging form:

A d? d*z
oy =Y [ 5 [ Srtelie @pn e )
of

1 2w ) .
X 2—/ doe™" (yr(1,0)| Bl (1,0)). 3
T Jo

Since no approximations have employed up to this point,
Eq. (8) is a formally exact expression. For practical appli-
cations, however, one needs to approximate the propagator
U (0,1). For this purpose, we approximate the time propagation
of the wave function | (¢,6)) by assuming the following simple
ansatz:

19 (1) = la(®) ® |z(1) +1B(1) @ |2'(1)), (€))

where the total wave function |1/(¢)) is expressed by a sum of
two factorized wave functions. Note that the phase factor ¢’
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in Eq. (6) is absorbed in the degree of freedom of |5(¢)) of
the ansatz, and the phase contribution is taken into account via
initial conditions of |3(¢)).

The equation of motion for the ansatz wave function can be
derived from the following Lagrangian:

=i PORO) =~ GOVD, G gy, o)

One can derive the equation of motion for the subsystem
state |« (7)) by the Euler-Lagrange equation,
d JL oL 0
dra(anl  aam|

The derived equation of motion is

iRla(t)) + iR|B0)) ()] (1))
+ ih|B")(z(DIZ' (1)) — hla()Im[{z(1)|2(1))]

= Heir(z,2)la (1)) + Heir(2,2)B(0)), (12)
where the effective Hamiltonian is Heg(z,2") = (z| H|Z). De-
tailed derivation of Eq. (12) is described in Appendix A.
Similar equations can be derived for |B(7)), and one can
construct a matrix form for the equations of motion,

ih&%('““”) — [Her — th]<'°‘“”>, (13)

L

an

|8(1)) 18())
where Sp, Dy, and H.g are the following 2 x 2 matrices:
1 (z|z))
= ((z’|z> 1 ) 1
Reli(z]z)] i(z|Z")
D, = 1
’ < i(12)  Reli <z’|z”>1)’ (1
and
. <Ijeff(zl,z) Igeff(z,,z/))' 16
Hett(z',2)  Hewr(7',7))

Note that the norm conservation in Eq. (8) is guaranteed by
Eq. (13).

One can also derive the equation of motion for the coherent
states from

d aL  dL
didz: 0z

n

=0, (17)

and hence
K]

dz*

n

(IH) = iz, (ela) + ihz,Re[{a|d)]

— hz,Reli(a|f)(zlZ) +ilalB)(z]Z)]
+ iz, (a|p)(zl)
+ihZ, {(alB)(zlZ)) + (@IB)(zlZ)). (18)

The detailed derivation is described in Appendix A.

Here, we note the close relationship between the CFBT
method and Ehrenfest dynamics. In the limit that the co-
herent states are orthogonal, (z(¢)|z'(t)) = 0, the equations
of motion of the CFBT method reduce to the equations
of motion for Ehrenfest dynamics. On the other hand, in
the perfect overlap limit where (z(¢)|z'(¢t)) = 1, the forward

and backward trajectories coalesce, and Eqgs. (11) and (17)
again yield Ehrenfest mean-field dynamics. Indeed, one can
derive the evolution equations for Ehrenfest mean-field theory
from Eq. (4), by assuming (i) the initial density matrix is
not entangled, (ii) the orthogonal relation for the coherent
states, |(z]2/)|> ~ 7¢8(z — '), and (iii) the single-trajectory
wave function ansatz, |/(¢) = |a(t)) ® |z(¢)), where the wave
function is described by the direct product of a subsystem state
|a(t)) and the bath coherent state |z(7)). A detailed derivation
of these two results is provided in Appendix B. As the CFBT
method does not assume any orthogonality condition for the
coherent states, and instead employs a generalized ansatz, it
can be seen as a generalization of Ehrenfest dynamics where
the coupling between trajectories allows for deviations from
mean-field behavior.

For harmonic baths, Aw = 0, furthermore, in the case
of bilinear system-bath coupling (as in the electron-phonon
problems studied here), the coupling part of the Hamiltonian
has a sum-of-products structure,

I-AIS;, =—y>, (&; +a,) ® [, where [, are linear operators
that act only on the subsystem. In this case, the left-hand side
of Eq. (18) can be rewritten as

0 TLT1.T ’ /
Py (VIH|Y) = hoyza(ala) + hoyz, (@] B)(zlz)
— ziRel[(@,2|H1B,2)] + 2, (.2l H|B.2)
- V(Fn,ota + Fn,(xﬂ (Z|Z/))~ (19)
The detailed derivation of Eq. (19) is described in
Appendix A.

Combining Eqgs. (18) and (19), and similar expressions for
z,, one can obtain the following matrix expression for the
equation of motion in the case of a harmonic bath with bilinear

coupling;

ihS% <Z”(”> = [hwnS + E — hD] <Z”(t)>

7, (1) z,(t)
Cooa + Thaplzl?)
B (Fn,ﬂﬁ + Fn.ﬂa(z/k))’
(20)
where S, E, and D are the following 2 x 2 matrices:
§— ( (a|a) (alﬂHZIZ/))’ 21
(Bla)(z']2) (B1B)
B (—Re[<a,z|ﬁ|ﬂ,z'>] (.2l HIB.Z) >
-\ (BZHlez)  —Rel(B,|Hla,2)])
(22)

and

b <iRe[(a|d)] 0 )
N 0 iRe[(BIB)]
. (—Re[i (2] £18.2)]

(8,25 .2)

izl L18.2') )
—Re[i (B,7/|4a,2)]
(23)

where £ |a,z) denotes £ |o,z) = |&) ® |2) + |o) ® [2).
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By self-consistently solving Eqgs. (12) and (18), or equiv-
alently Eqgs. (13) and (20) for bilinear-harmonic problems,
one can propagate the ansatz wave function of Eq. (9). The
construction of time-dependent observables, Eq. (8), can then
be easily carried out.

In order to evaluate the integrals of Eq. (8) for the phase
6 and the phase spaces {z,7'}, we employ a basic Monte
Carlo sampling procedure. For the sampling of the phase 6 we
generate a pair of phases, 8 = ¢ and ¢ + 7, where ¢ is drawn
from a uniform random distribution between 0 and 27 . For the
{z,7'} phase space sampling, we sample from the following
correlated Gaussian distribution:

2N,
G(z.2) = V3 bex PPl = 2
ABT)=\on P 2 ’

(24)

where |z|? denotes Y, |z,]*.

This correlated Gaussian distribution (24) is related to the
integrand of Eq. (4) for a pure subsystem operator, which
contains the inner product of two coherent states: (z|z') =
expl—|z — 2/|*/2 — iIm[zz'*]], where zz"* denotes Y, z,z.¥.
However, as this overlap integral also contains a complex phase
factor, the Monte Carlo sampling procedure based on sampling
directly from Eq. (24) requires a larger number of trajectories to
converge than the multitrajectory Ehrenfest dynamics (MTEF)
method. In order to overcome this inefficiency in sampling
for further applications, more sophisticated sampling methods
need to be developed.

III. RESULTS

In this section we examine the performance of the CFBT
method, derived above in Sec. I1, in treating the nonequilibrium
electronic dynamics of the spin-boson model and the Holstein
model. We will compare the results of the CFBT method
with those of the multitrajectory Ehrenfest dynamics (MTEF)
method, the forward-backward trajectory solution (FBTS)
[23,24], as well as the exact solution. In the MTEF method,
which is one of the simplest mixed quantum-classical ap-
proaches, dynamics of an observable is evaluated by ensemble
average of Ehrenfest trajectories. In each trajectory, a subsys-
tem is treated quantum mechanically with the Schrodinger
equation, while a bath is treated fully classically with the
Newton equation, as described in Appendix B. In the FBTS
method, dynamics of an observable is also evaluated by
ensemble average of semiclassical trajectories. However, these
trajectories are different from Ehrenfest trajectories, but their
dynamics is based on an approximation to the formal solution
to the quantum classical Liouville equation. Theoretical and
numerical details of the FBTS method are described elsewhere
[23,24,47]. In both the MTEF and the FBTS methods, the
ensemble average of trajectories can be performed by Monte
Carlo sampling for the initial condition of each trajectory.
Because we will only consider harmonic baths in this paper,
the Monte Carlo sampling in both methods will be simply
performed by the Gaussian distribution. For the exact solution
of the spin-boson model, we directly solve the time-dependent
Schrodinger equation. For the Holstein model, benchmark data
generated with the limited functional space method is taken

2 T T T T T

; (@) YA=0.1]
Noo
© L
Vo
- CFBT —— FBTS ——- |
-2 | MTEF ---- Exact ----- 1
15 20 25 30

0 5 10

<0,>

<0,>

tA

FIG. 1. Population dynamics of the single-mode spin-boson
model in the resonant regime, wy/A = 1, with varying coupling
strength y /A from weak (a) to strong (c). CFBT (red line), MTEF
(green dashedline), FBTS (blue dash-dotted line), and the numerically
exact solution (black dotted line).

from Ref. [39]. For simplicity, & will be taken as being equal
to 1 hereafter.

A. Single-mode spin-boson model

The Hamiltonian of the single-mode spin-boson model can
be written as

. A .
A=26+ wodla +y6, ® @'+ a), (25)

where 6, and &, are Pauli spin matrices. In the single-mode
spin-boson model, a two-level quantum subsystem with energy
gap of A is coupled to a single harmonic oscillator with
frequency wy, via a bilinear coupling with strength y. Here,
we set the initial state of the subsystem to be the direct
product of the up-spin diabatic state and the ground state
of the harmonic oscillator. In this work, we consider the
nonequilibrium electronic dynamics in a resonant regime,
wo / A=1.

Figure 1 shows the population dynamics (6. (¢)) for different
coupling strength ¢ /A. Panel (a) shows the result for y /A =
0.1, which corresponds to a weakly coupling regime. One
can see that all the three approximated methods reproduce
the oscillation and damping behavior in the exact result up to
t A = 15 fairly well. After t A = 15, one can see the recurrence
of the population dynamics in the exact result. While the MTEF
and FBTS methods fail to describe the recurrent dynamics,
the CFBT method reproduces this behavior exactly. This fact
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indicates that the CFBT method correctly captures the quantum
coherence of bath dynamics.

In Figs. 1(b) and 1(c), the results for stronger coupling
are shown. Although the CFBT method shows deviation from
the exact solution, still it provides the most accurate results
among the three approximated methods. Especially for the
strong-coupling regime y /A = 1.0 in Fig. 1(c), one can see
that the CFBT method reproduces the exactresultuptotA = 5
extremely well, while the MTEF and FBTS failed to accurately
capture the qualitative structure. Furthermore, the population
dynamics of the CFBT method follows the mean value of the
oscillating exact population quite well for the long-time region.
These facts indicate that the CFBT method substantially cap-
tures subsystem-bath correlation and significantly improves
the dynamics even in the strong-coupling regime.

B. One-dimensional Holstein model

We further examine the performance of the CFBT method
in the context of the one-dimensional Holstein model. The
Hamiltonian of the Holstein model is

I:I = I:Ikin + I:]ph + I:Icoup’ (26)
where Flkin is the electronic kinetic energy, H ph 1s the phonon

energy, and ﬁcoup is the electron-phonon coupling. These terms
are explicitly given by

Biin = —10 Y _(chejpr + by ), @7)
J
A=Y dla;, (28)
J
Hewp = =y )_(a; +aDiy, (29)

J

where 71 ; is the electron number operator at the jth site; 7i; =

cj.c ;. In this model, the electron-phonon coupling strength is

usually characterized by the following dimensionless parame-
ter [39]:

2
PR —
2towy

(30)

We examine the relaxation dynamics of a 12-site chain with
periodic boundary conditions. We first focus on an intermediate
parameter regime, with A = 0.2. This is a nonperturbative
electron-phonon coupling regime, and hence rather difficult
to capture accurately using approximated methods [39]. We
set the initial condition to be an uncorrelated product of the
highest excited state of the electronic Hamiltonian, Hyj,, with
the ground state of the phononic Hamiltonian, H ph» At ZEero
temperature.

Figure 2 shows the electronic kinetic-energy dynamics,
Ein(t) = (Flkin(t)), for different nonadiabaticity ratios wg/?.
Panel (a) shows the result for wy/#y = 10, which is a strongly
nonadiabatic regime with wg/f) > 1. One can see that the
CFBT method nicely reproduces the exact solution in this case,
while the other methods fail to capture the correct behavior.
As the quantum nature of bath is expected to play a significant
role in the nonadiabatic regime, the performance of the CFBT
method in Fig. 2(a) is surprisingly accurate, which indicates
the importance of the coupling between the forward-backward

2 _ S—_ == _T_—=
[=) \/—\\ — =
<E 1+F (a) (.00/1:0:10\ - ee—
ur” CFBT —— FBTS — —-
0 MITEF ---- Exact----- .
2 T T T T T
|\ (b) wp/ty=5 |
£ 1L N\ ceza OO B
i S S
0 | '\-;/‘/ —— =
1 1 1 1 [—
2 T T T T T
I\~ (C)(Do/t():z
S 1Tr\o-o
i Of Se o
4k TN T T T e
1 1 1 1 1
2 T T T T T
AN (d) g/ty =
S TN
£ L N - .
T T
R LI
1 1 ==-- I 1 - -

FIG. 2. Electronic kinetic-energy dynamics in the Holstein
model, for systems with varying nonadiabaticity (wy/fy) from strong
(a) to weak (d). The numerically exact solution (exact) is taken from
Ref. [39]. Line styles are as given in Fig. 1.

trajectory pairs in capturing the quantum nature of the phonon
dynamics.

In Figs. 2(b)-2(d), the results for smaller nonadiabaticity
ratios are shown. One sees that the CFBT method shows
deviations from the exact solution for these cases, that can be
particularly pronounced at long times. This onset of inaccuracy
can be explained by the accumulation of the electron-phonon
correlation during the relaxation process. In the adiabatic
regime, where wy < 4ty, numerous electron-phonon collisions
must occur during the nonequilibrium dynamics in order for
the small energy quanta of the phonon bath to accommodate the
relaxing electronic system. However, as each electron-phonon
collision induces some correlation between these degrees of
freedom, a large degree of correlation can manifest. Therefore,
such electronic relaxation processes in the adiabatic regime
are challenging to describe with techniques that treat electron-
phonon correlations approximately.

Figure 3 shows the short-time electronic relaxation dynam-
ics in the Holstein model in the adiabatic regime, wy/f = 1,
enlarged from Fig. 2(d). Although the CFBT method fails to
describe the long-time dynamics in this regime due to the
correlations that manifest, it does show the best short-time
behavior among the three approximate methods we studied.
While the FBTS and MTEF methods start to deviate from the
exact result around fwy = 1.5 and 0.5 respectively, the CFBT
follows the exact result up to around fwy = 2.5. This indicates
that the CFBT method captures some important nonadiabatic
aspects of the electron-phonon correlation stemming from
low-order scattering processes.
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FIG. 3. Short-time kinetic-energy dynamics of the Holstein model.

The generalized quantum master equation (GQME) opens
an alternate path to achieve an accurate description of highly
correlated nonequilibrium dynamics, by casting the effect of
the bath in terms the memory kernel [48,49]. Both approximate
and exact quantum dynamics methods have been employed to
construct the memory kernel subsequently obtain the system
dynamics from the GQME [50-57]. In many condensed phase
problems, the memory kernel has been shown to decay rapidly
compared with the time scale of the associated relaxation
dynamics. Hence, in practice one only needs the short-time
component of the memory kernel in order to compute the
full nonequilibrium dynamics. Indeed, Kelly et al. have shown
the memory kernel can be orders of magnitude shorter lived
than the electronic population relaxation dynamics in the spin-
boson model across the adiabatic and nonadiabatic regimes
[20,52]. This indicates that the highly accurate short-time
CFBT data shown here could potentially be used to construct
the memory kernel and generate the long-time dynamics via
the GQME approach.

As indicated from Fig. 2(a), the CFBT method can be
highly accurate in a strongly nonadiabatic limit #y/wy < 1.
To elucidate this fact, we investigate the electron dynamics in
a strongly coupled strongly nonadiabatic regime with #y/wo =
0.001 and y /wp = 1, corresponding to A = 500. In the highly
nonadiabatic limit, Dorfner et al., derived an analytical ex-
pression for the electronic kinetic energy as a function of time
based on a perturbation theory [39]. In the present case, the
kinetic energy is expressed as

Eyin(t) = 2293 0511, 31)

where g denotes y /wy. Furthermore, they have demonstrated
that the analytical expression of Eq. (31) is quantitatively
accurate for the present parameter set (fo/wo = 0.001 and
y/wo = 1).

Figure 4 shows the electronic kinetic-energy dynamics
Exin(t) with different methods. As expected, one can confirm
that the CFBT method accurately reproduces the exact result.
Furthermore, the MTEF method also accurately reproduces the
exact result, while the FBTS method fails to reproduce it even
qualitatively. The accurate description of the CFBT and MTEF
methods can be explained by less electron-phonon collision
processes and hence less electron-phonon correlation in the
highly nonadiabatic regime. The large discrepancy between the
energy quanta of the electronic and phononic systems strongly
suppresses energy exchange via scattering processes. Thus,

T T

2 " CFBT —— :
MTEF ------
FBTS ===
1.5 | Pert. theory -------
_‘_'O
T 1y
L
05 |
PN S S S
° 2 4 6 8 10

t oy

FIG. 4. The electronic kinetic-energy dynamics of the Holstein
model in the strong-coupling highly nonadiabatic regime with
to/wo = 0.001 and y /wy = 1, corresponding to A = 500.

the electronic subsystem and the phonon bath remain largely
uncorrelated, and the total system can be well described by a
direct product state. As explained above, and in Appendix B,
the classical trajectories of the MTEF method rely on the direct
product wave-function ansatz |¢) ® |z). Therefore, quantum
direct product states may be well described in the MTEF as
well as the CFBT method by construction.

On the other hand, the failure of the FBTS method in this
case is more likely due to the significant quantum nature of
bath at zero temperature in this highly nonadiabatic regime.
Although the FBTS method is also based on a rigorously deriv-
able semiclassical propagator that generates similar equations
of motion to the MTEF method, one of the approximations to
the full quantum propagator which leads to FBTS trajectories
does not correctly capture the zero-point motion (ground state)
of the bath degrees of freedom. Kelly er al. have observed a
similar breakdown of the FBTS method in the zero-temperature
spin-boson model with an Ohmic environment, while the
MTEF method again retains a much higher degree of accuracy
[20]. This is also consistent with the performance of the FBTS
method in Fig. 2, as the discrepancies between the FBTS results
and the exact results increase with increasing nonadiabaticity.

Finally, we examine dynamics of the phonon degrees of
freedom in the Holstein model. As discussed above, the CFBT
and the MTEF methods can be exact in the nonadiabatic
limit, #y/wo < 1. On the other hand, most methods that are
accurate in the nonadiabatic limit, including CFBT and MTEF,
generally fail to accurately describe dynamics in the adiabatic
regime. This is due to the accumulation of electron-phonon cor-
relation during the relaxation process, as seen from Fig. 2(d).
Hence, as a stringent test of the capabilities of the CFBT
method, we investigate the phonon dynamics in the adiabatic
regime.

Figure 5 shows the phonon energy dynamics, E,;(t) =
(ﬁph(t)), in the adiabatic regime wy = y with intermediate
(A = 0.5) and strong (A = 2) coupling. Here, we employed an
eight-site chain instead of the 12-site chain used previously.
As a proper expression of pure bath operators in the FBTS
method is not trivial, we omit comparisons with the FBTS
method for this property here. As seen from Fig. 5, the CFBT
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CFBT —— (@Q)A=05 |

t g

FIG. 5. Phononic energy dynamics of the eight-site Holstein
chain in the adiabatic regime wy = y with (a) intermediate coupling
A = 0.5 and (b) strong coupling A = 2. The numerically exact solution
(exact) is taken from Ref. [39]. Line styles are as given in Fig. 1.

method accurately reproduces the short-time dynamics of
the exact solution in both intermediate- (a) and strong- (b)
coupling regimes. On the other hand, the MTEF method fails
to reproduce the short-time behavior of the exact solution. This
fact indicates that the extension of the single-product ansatz in
the CFBT method enables one to capture correlations from
the low-order scattering process, as only a small number of
scatterings can occur in the short-time regime. This finding is
consistent with the finding from the short-time behavior of the
electron relaxation dynamics in Fig. 3.

As expected, both the CFBT and the MTEF methods fail
to reproduce the long-time dynamics of the exact solution in
Fig. 5 due to the accumulation of significant electron-phonon
correlation. Furthermore, formation of the Holstein polaron is
indicated in this regime [39]. Since the CFBT method is based
on a wave-function ansatz, one may straightforwardly extend
the ansatz by including the Holstein polaron ground state with
a variational coefficient in order to more accurately capture
the correlation present in the problem. The extension of the
ansatz based on some prior knowledge of a given system is an
interesting and important direction to consider towards realistic
applications. However, it is beyond the scope of this paper.

IV. SUMMARY AND OUTLOOK

In this work, we have introduced a simple ansatz for the
wave function of a many-body system called the coupled
forward-backward trajectory (CBFT) method. We arrived at
this ansatz by considering the phase-averaged expression
for a time-dependent observable [in Eq. (8)], for a wave
function contains a pair of forward and backward propagating
trajectories. We then derived the coupled equations of motion

for these forward-backward trajectories through the variational
principle.

We examined the properties of the CBFT method in the
single-mode spin-boson model and the Holstein model. For
the single-mode spin-boson model, the CFBT method shows
substantial improvement in accuracy compared with the other
available semiclassical trajectory based methods. The CFBT
method accurately reproduces the recurrence in the popula-
tion dynamics particularly well in the weak-coupling regime,
whereas all other approximate methods investigated fail. This
indicates that the CFBT method correctly captures the quantum
coherence of the bath dynamics. For the Holstein model, the
CFBT method provides highly accurate electronic dynamics
in the nonadiabatic regime, wy/fy > 1. This is a somewhat
surprising result since the CFBT method is based on the
semiclassical trajectories. We conclude that the coupling be-
tween the forward and backward propagating semiclassical
trajectories are significant to capture the quantum coherence
of the nuclear wave-packet dynamics.

On the other hand, the CFBT encounters some difficulty in
the adiabatic regime, where numerous electron-phonon colli-
sions occur, and substantial electron-phonon correlation can
develop as the system approaches equilibrium. However, this
is a generally challenging aspect of the theoretical description
of relaxation dynamics in the adiabatic regime that any method
must face. Quite encouragingly, we found that the CFBT
method still provides very accurate short-time dynamics in the
adiabatic regime. This improvement over mean-field theory for
the short-time dynamics indicates that the combination of the
CFBT method and the generalized quantum master equation
approach may open a pathway to the highly efficient and
accurate description relaxation dynamics in realistic correlated
electron-phonon systems.

Looking toward a more complete ab initio simulation
approach using the CFBT ansatz, the computational efficiency
of the method has to be minimized in order to gain access
to realistic condensed phase systems. One of our main goals
in this regard is to combine the CFBT method with density
functional theory. As the CFBT ansatz is perhaps the simplest
possible extension of mean-field theory, we expect that it can
be combined with a density functional approach in a similar
fashion to the development of the ab initio molecular dynamics
approach [15,58-60]. To further improve the numerical effi-
ciency of the CFBT calculations, two central issues need to be
addressed. First, efficient time-propagation algorithms for the
CFBT equations of motion need to be developed. The challenge
in this respect lies in the fact that the equations of motion for
the electronic and ionic systems are nontrivially coupled; the
structure of the electronic propagator is not Schrodinger-like,
nor do the ions evolve classically. Nevertheless, we expect
that adaptive integration schemes (not explored in the present
work) may be well suited to this task. Second, and likely more
importantly, the Monte Carlo sampling procedure for the bath
phase space needs to be optimized. As discussed in Sec. II, the
CFBT simulations using the correlated Gaussian distribution
of Eq. (24) require more sampling effort compared to MTEF.
This is due to the complex phase factor that comes from inner
products of different coherent states, (z|z’), in the integrand of
the expression for an observable. As the computational cost is
proportional to the number of trajectories, the reduction of the
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trajectory number is critical to reduce the total computational
cost. Work along these lines, as well as the combination of
the CFBT method with the GQME approach, is already under
way.
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APPENDIX A: DETAILED DERIVATION OF EQUATIONS OF MOTION FOR THE COUPLED
FORWARD-BACKWARD TRAJECTORY METHOD

Here, we describe the detailed derivation of the equations of motion for the coupled forward-backward trajectory method

[Egs. (12) and (18)].

First, we rewrite the Lagrangian of Eq. (10) with the ansatz wave function of Eq. (9) as

L= %[(ald) + {alor)(zl2) + (] B)(zl2) + (] B)(zlZ) + (Bla) (2 |z) + (Bla)(2|2) + (BIB) + (BIB)(Z'IZ)

— (@la) — (la)(zlz) — (@]B)(zlz') — (@IB)(zl2)) — (Bla) (') — (Bla)(Z|z) — (BIB) — (BIBYZ'1Z)] — (FIHIP)
(AD)
In order to evaluate the Euler-Lagrange equation of Eq. (11), we calculate derivatives of the Lagrangian as follows:
oL i1 . N N
ol %[IO'O + la)(zl2) + |B)(zl2) + 1B)(zlZ) — le)(zlz) — IB)(212)] — (z|H|2)|e) — (2| H|Z')|B), (A2)
oL ih , A3
m—?[—bﬁ—w)(ﬂﬂ], (A3)
and hence,
d oL ih_. ; , C y Ad
ST =~ o) +18)zlz) +1B)(2lz) + 1B (zl)]. (A4)

By inserting these expressions into the Euler-Lagrange equation of Eq. (11), the equation of motion for the subsystem [Eq. (12)]

can be obtained.

Then, we describe the detailed derivation of the equation of motion of baths [Eq. (18)]. For this purpose, we start from this

explicit expression of coherent states:

2) = e 26 |0),

(A5)

where |0) is the ground state of the harmonic oscillator, and za' denotes > zn&Z. Using the explicit expression, the following

expressions are obtained:

(Z|z) = ex —E—ﬁ
e R

and

. 44 S AV AN 2+ ..,
(Z)z) = (Z/||:—— +zaT]|z) = |:—— + 2z }(z |Z).

2

% _ 1 712 . %
+ 77z | =exp —§|2—2| + ilm[zz™] |,

(A6)

5 (AT)

Inserting these expressions (and the associated complex conjugates) into Eq. (A1), the Lagrangian can be explicitly described by
Z, Z, (and their complex conjugates). Therefore, one can easily evaluate the Euler-Lagrange equation for the bath system, Eq. (17).
In order to derive the equation of motion from the Euler-Lagrange equation, here we evaluate derivatives of the Lagrangian

separately as follows:

L
iz,

P

i Z Zn / / ./ / Zn ’
_ ?[zn«m) + Z(@IBNI) = (Bl (@ |2) + 2y @lB) ) + (— 5 +2,)

2

d N d R . d B - d i|_ 0 B
X (0572|E|/3,Z> (aaZ|E|,3’Z> > (,3’Z|E|017Z> (ﬂsZ|E|aaZ) (UIHY),

0z}

(A8)
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where ((x,z|dii is defined as (&| ® (z| + (@] ® (z|. One may also have

JL ih , , Zn ’ ’
o = —[—znlola) — z,{@|B){zlz") + —(alB){(z|z') — (Ble)(Z'|z))], (A9)
b 2 2
and hence
d OL  ih . d ., , Zn / /
Y ?[ — Zp{ala) — z%«xm =z, {a|B)zlz)) + 3((a|ﬂ)(2|z ) — (Bla)(z']z))
Zn , 3
+5 (o, ZI I,BZ) (o, ZI IﬁZ) (ﬂZI IOI z) + (/izlalot,Z)
-z, ((Ot 7| |/31> (o, z] == IﬁZ))} (A10)

Inserting these expressions into the Euler-Lagrange equation, the equation of motion for the bath [Eq. (18)] can be obtained.
For harmonic baths in the case of bilinear system-bath coupling, the right-hand side of Eq. (18) can be simply described as
Eq. (19). Here, we describe its detailed derivation. The Hamiltonian of such systems can be written as

1
H=H—y Z(af +a) e, + Zha) (anan + 5), (A11)

where I, is a pure subsystem operator. Then the expectation value of the Hamiltonian with the ansatz wave function of Eq. (9)
can be expressed as

- ~ N N 1
(WIHIY) = (| Hsla) + (BIHIB) + (ale|ﬂ><Z|Z')+(/3|Hs|a)<z/|2)+Z[ﬁwn(ZZZn+2><a|a)+flwn(Z'*Z'+ )(ﬂlﬂ)

+ hay, (ZZ,‘Z,’1 + %)(alﬂ)(ZIZ’) + haw, <Z,,1*Zn + %)(ﬂIW)(Z’IZ) — y(z; + z){ellle)

— @+ ) BITAB) — vz + 2Dl (2l2)) — v (2 + zn)<ﬁ|ﬁn|a><z/|z>]. (A12)
Using the expression of Eq. (A6), one can explicitly evaluate the derivative of (1/}|I:I |¥) by Z; and obtain Eq. (19).

APPENDIX B: REDUCTION TO EHRENFEST DYNAMICS

Here, we derive the multitrajectory Ehrenfest dynamics (MTEF) method based on the coherent-state expansion of Eq. (4), and
clarify a relation between MTEF and the coupled forward-backward trajectory (CFBT) method. First, we assume that the initial
density matrix p is not entangled, and thus, can be described as [61]

p= Wibsn ® Py (B1)
n
with probability w,, where g, , and p; , are density matrices of subsystem and bath, respectively. Furthermore, the subsystem
density matrix g, , can be decomposed as

ﬁs.n = Z)\n,i|an.i)(an,i|a (Bz)

where |, ;) and A, ; are eigenstate and eigenvalue of j; ,, respectively. Therefore, unentangled density matrices can be described
by a linear combination of direct products |o) (x| & Jp.

Hereafter, for simplicity, we assume that the total unentangled density matrix g can be factorized as p = |o) (| ® pp. However,
as discussed above, this assumption does not lose generality of the discussion. Under this assumption, the observable in Eq. (4)
can be rewritten as

2./ A ,
By = / e / d*z (Z1pvl2) (@] ® (z|}B{|a) ® |z )}. ®3)

ﬂNh ('|z) (zlz))

From Eq. (A6), it is expected that the overlap of two coherent states decays rapidly in the phase space. On
top of this fact, we assume that the overlap (z|z’) decays sufficiently rapidly so that the rest of the integrand,
(2/1hp12) (] ® (2} B(){ler) ® |2)}/1(z]2') %, can be evaluated by imposing z = 2.

This assumption can be realized by treating the overlap of the coherent states as a delta function;

lzIZ))? = 7V 8(z — ). (B4)
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Based on this assumption, one can approximate the observable as

s~ [ L2 [ L s E1512) el ® I BO{e) ® 1))
<B(t)>_/n'Nh n’ijT de—2) (z'|z) {zlz)

d’z | N
= / W(lebIZ){(al ® (z[}B(D)flar) @ |2)}. (B5)

Then, we approximate the time propagation of the wave function; |¢) = U(0,1){la) ® |z)}. For this purpose, we introduce
the following ansatz:

[Ver@) = |a@) ® |2(1)), (B6)

where the total wave function is the direct product of the subsystem state and the bath coherent state at all the times.
To derive the equation of motion for the ansatz wave function, |{gr(¢)), we consider the following Lagrangian:

(WerOWer®)) — (Wer®)WEF®))

L=i 3 — (YerOIHYEr@). B7)
Under the orthogonal approximation for the coherent states one has the following relation:
dZZ/ , d2z/ " , d2z/ " i
(zlaiajlz) = (zla; / —, 1) laflz) = / — 42 @I 1) = / —§ ag e =) =5, (B8)

Similar approximations can be constructed for higher-order combinations of & and af.
Using these approximations, all the creation and annihilation operators, a and af, in the Lagrangian (B7) can be approximated
by ¢ numbers z and z*. Then, the Lagrangian can be approximated as

YerOWer®)) — (Fer®)|Yer®))
2

where the effective Hamiltonian A (z,z*) is defined by replacing a and af by ¢ numbers, z and z*, respectively.
Inserting the ansatz of Eq. (B6) into Eq. (B9) and using Eq. (A7), the Lagrangian can be rewritten as

L:i<

— ()| Her(z,2)a()), (B9)

ala) — (a|a A . CAala) — {a|a
U0~ ) _ e + Relines) = 190 = 60
In the last line, the canonical transformation, z = /57 (q + m’—w p), is applied. Then, one may derive the equations of motion for
q(t), p(t) and |a(z)) based on the Euler-Lagrange equation. These equations of motion are nothing but those of the Ehrenfest
dynamics:

. 1
L=ih — (a|Hgr(q,p)la) + 5(1%'1 —qp). (B10)

9 .
ihgla(t)) = Hgr(g(t),p(p)la(?)), (B11)
d 9 . )
d—q,/(t) = —(«(D)|Hgr (g, p)la(t)) = p’—(t), (B12)
! ap;j m
d, 1) = 9 A 1) = 0Via)
EP/( ) = —%W( NHEer(q,p)la(t)) = — aqj .
(B13)

For the right-hand sides of Eq. (B12) and Eq. (B13), we assumed the conventional form of the Hamiltonian, (a|Heppla) =
p*/2m + V(q).

By using the solutions of these equations, Eq. (B5) can be easily evaluated. Since contributions from multitrajectories are
simply summed in Eq. (B13) with the weight from the bath density matrix, the derived method here is nothing but the MTEF
method. Therefore, we proved that the MTEF method can be derived upon the three approximations: (i) the initial density matrix
is not entangled, (ii) the delta overlap for the coherent states, Eq. (B4), and (iii) the independent trajectory ansatz, Eq. (B6).
Furthermore, since the CFBT method does not relay on Eq. (B1) or Eq. (B4), and it employs a more general ansatz, Eq. (9), we
can conclude that the CFBT method is an extension of the MTEF method.
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