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Accelerated charges emit electromagnetic radiation. According to classical electrodynamics if the
charges move along sufficiently close trajectories they emit coherently, i.e., their emitted energy
scales quadratically with their number rather than linearly. By investigating the emission by a two-
electron wave packet in the presence of an electromagnetic plane wave within strong-field QED, we
show that quantum effects deteriorate the coherence predicted by classical electrodynamics even if
the typical quantum nonlinearity parameter of the system is much smaller than unity, and classical
and quantum predictions are expected to agree. We explain this result by observing that coherence
effects are also controlled by a new quantum parameter which relates the recoil undergone by the
electron with the width of its wave packet in momentum space.

PACS numbers: 12.20.Ds, 41.60.-m

The discovery of techniques such as Chirped Pulse
Amplification [1] and Optical Parametric Chirped Pulse
Amplification [2] allowed for the development of lasers
of increasingly high intensity. Optical pulses with in-
tensities of the order of 1022 W/cm

2
have been already

achieved [3] and intensities of the order of 1024 W/cm
2

are envisaged [4, 5]. At such high intensities the in-
teraction between the laser field and an electron (mass
m and charge e < 0) is highly-nonlinear and electro-
dynamical processes involving electrons/positrons occur
with the exchange of several photons between laser field
and electrons/positrons [6, 7]. This has also primed a
surge of interest in testing QED in the so-called “strong-
field” regime where the background field intensity is ef-
fectively of the order of Icr = 4.6 × 1029 W/cm

2
, corre-

sponding to the electric field Ecr = m2c3/h̄|e| = 1.3 ×
1016 V/cm [7]. Due to the Lorentz invariance of the the-
ory, in fact, strong-field QED can be effectively probed
at laser intensities I � Icr by employing ultrarelativis-
tic electron beams with correspondingly high energies
ε ∼ m

√
Icr/I � m [7]. Indeed, electron beams with

energies beyond 1 GeV have been already produced both
via conventional [8] and laser-based accelerators [9]. One
of the fundamental processes which can be exploited to
test strong-field QED is Nonlinear Single Compton Scat-
tering (NSCS), where an electron traveling inside a laser
field exchanges multiple photons with the laser field itself
while also emitting a single, non-laser photon. NSCS has
been studied in the presence of a monochromatic plane
wave [6, 10–17], of a pulsed plane wave [18–28], and of a
space-time-focused laser beam [29] (see also [30–33]). In
[6, 11–15, 17–27] an incoming electron in a plane wave
with a definite momentum was investigated, whereas in
[16, 28] NSCS by a localized electron wave packet was
studied. In all these works, the radiation emitted by a
single electron has been considered, such that coherence
effects in the nonlinear emission by several electrons have
never been investigated within strong-field QED.

In this Letter we explore the novel features in the

quantum radiation spectrum brought about by consider-
ing two electron wave packets properly anti-symmetrized
as initial state. The generalization to several elec-
trons is straightforward and all new qualitative features
are encoded in the two-electron setup. In the single-
particle case the spectra calculated quantum mechani-
cally with an incoming electron of definite asymptotic
four-momentum pµ tend to the classical spectra when
the quantum nonlinearity parameter χ = (kp)E/mωEcr
is much smaller than unity [6, 7]. Here, E , kµ, and ω are
the laser field’s amplitude, its central four-wave-vector,
and its central angular frequency, respectively (units with
h̄ = c = 1 are employed throughout). Now, according to
classical physics, if N charges move inside a field along ar-
bitrarily close trajectories, the radiated energy can scale
as N2 (rather than N) up to arbitrarily high frequencies.
Below, we consider the paradigmatic case where the two
electrons are characterized by the same initial distribu-
tion of momenta and, in particular, by the same average
quantum parameter χ′. We show that quantum effects
limit or completely suppress the coherence of the emis-
sion even for χ′ � 1, i.e., when classical and quantum
predictions are expected to agree. We explain this unex-
pected result by observing that the condition χ′ � 1 en-
sures that the typical emitted photon energies are much
smaller than the common average energy of electron wave
packets. However, coherence effects are also controlled by
a new quantum parameter which relates the recoil under-
gone by the electron not with the average energy but with
the width of its wave packet in momentum space.

The laser field is assumed to be linearly polarized and,
within the plane-wave approximation, can be described
by the classical four-potential AµL(φ) = (0,Aµ

L(φ)) =
AµψL(φ), where ψL(φ) is a smooth function with com-
pact support and φ = (nx), with nµ = kµ/ω. We assume
that the plane wave propagates along the positive z di-
rection [nµ = (1, 0, 0, 1)] and that it is polarized along the
x direction [Aµ = (0,−E/ω, 0, 0)]. For the sake of defi-
niteness, we set φ = 0 as the initial light-cone “time” and
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thus assume that ψL(φ) = 0 for φ ≤ 0. We also choose
the initial two-electron state as being characterized by
two definite spin quantum numbers sj (j ∈ {1, 2}) and
having the form

|Ψ〉 =
1√
N

2∏

j=1

[ ∫
d3pj

(2π)3
√

2εj
ρj(pj)a

†
sj (pj)

]
|0〉. (1)

Here, N is a normalization factor such that 〈Ψ|Ψ〉 = 1,
the operator a†sj (pj) creates an electron with momen-

tum pj (energy εj =
√
m2 + p2

j ) and spin quantum num-

ber sj , ρj(pj) is an arbitrary square-integrable complex-
valued function whose modulus square describes the ini-
tial momentum distribution of the corresponding elec-
tron wave packet, and |0〉 is the free vacuum state.

From the anti-commutation relations {as(p), a†s′(p
′)} =

(2π)3δ(3)(p − p′) δss′ [34], the normalization factor N
turns out to have the form N = Nd − δs1s2Ne, with

Nd =

∫
d3p1

(2π)32ε1

d3p2

(2π)32ε2
|ρ1(p1)|2|ρ2(p2)|2, (2)

Ne =

∫
d3p1

(2π)32ε1

d3p2

(2π)32ε2
ρ∗1(p1)ρ2(p1)ρ∗2(p2)ρ1(p2).

(3)

If c†l′(k
′) is the operator which creates a photon with

momentum k′ (energy ω′ =
√
k′2) and polarization l′,

the final state in NSCS has the form

|Ψ′〉 =
√

8ω′ε′1ε
′
2 c
†
l′(k
′)a†s′2

(p′2)a†s′1
(p′1)|0〉, (4)

with ε′j =
√
m2 + p′ 2j . In order to take into account

exactly the effects of the plane wave on the electrons’
dynamics, we work in the Furry picture [35, 36], where
the Dirac field Ψ(x) is expanded with respect to fermion
states “dressed” by the classical background plane wave,
which are known as Volkov states (see [6, 35, 36] and the
Supplemental Material [37]). The leading-order S-matrix
element S of NSCS reads

S = −ie
∫
d4x〈Ψ′|Ψ̄(x)γµΨ(x)Aµ(x)|Ψ〉, (5)

where Ψ̄(x) = Ψ†(x)γ0, where γµ are the Dirac matrices,
and where Aµ(x) is the quantized part of the electromag-
netic field. Here, we neglect the interaction between the
electrons as their dynamics is predominantly determined
by the intense plane wave.

The calculation of S is straightforward because the
corresponding Feynman diagrams are composed of two
disconnected pieces (see Fig. 1). At this order of per-
turbation theory, in fact, only one of the two elec-
trons emits a photon. Now, the orthogonality of Volkov
states [6, 20] yields a three-dimensional Dirac (Kro-
necker) delta-function between the initial and the final

Figure 1. Leading-order Feynman diagrams of NSCS by two
electrons. The double lines indicate Volkov states and the
symbol {p′1 ↔ p′2, s

′
1 ↔ s′2} indicates the exchange diagrams.

momentum (spin) of non-emitting electrons. Instead,
since the plane wave depends on the spacetime coordi-
nates only via φ = t − z, the amplitudes involving the
photon emission include a three-dimensional Dirac delta-
function, which enforces the conservation of the trans-
verse (⊥) components (x- and y-components) and of the
minus (−) component (time- minus z-component) of the
four-momenta of the involved particles (see also the Sup-
plemental Material). We exploit the altogether six Dirac
delta-functions to carry out the six integrals in the initial
wave-packet |Ψ〉 [see Eq. (1)]. Thus, it is convenient to
introduce the two on-shell four-momenta qµj (q2

j = m2)
such that qj,⊥ = p′j,⊥ + k′⊥ and qj,− = p′j,− + k′−, i.e.,

qµj = p′µj + k′µ −
(k′p′j)

p′j,− + k′−
nµ. (6)

The amplitude S can be written in the form S = S12 −
S21, where

S12 =− ie
√

4π

N

[
ρ1(q1)ρ2(p′2)δs′2s2

Ms′1l
′,s1(p′1, k

′; q1)

2q1,−

+ρ1(p′1)ρ2(q2)δs′1s1
Ms′2l

′,s2(p′2, k
′; q2)

2q2,−

]

(7)

and where S21 = S12(p′1 ↔ p′2, q1 ↔ q2, s
′
1 ↔

s′2). Here, we have introduced the reduced amplitude
Ms′l′,s(p

′, k′; p) characteristic of NSCS by a single elec-
tron with definite initial (final) four-momentum pµ (p′µ)
and spin quantum number s (s′), which emits a photon
with four-momentum k′ and polarization l′ (see, e.g., [21]
and the Supplemental Material).

Now, we are interested in the emitted photon energy
spectrum dEQ/dω

′ averaged (summed) with respect to
all initial (final) discrete quantum numbers. Since we
also integrate over the final electrons momenta, in order
to avoid double-counting, we divide the final result by
two:

dEQ
dω′

=
ω′ 2

8

∑

{sjs′j l′}

∫
dΩ′

(2π)32

d3p′1
(2π)32ε′1

d3p′2
(2π)32ε′2

|S|2,

(8)
where Ω′ denotes the solid angle corresponding to n′ =
k′/ω′. Note that if the electrons were distinguishable, the
energy emission spectrum would have the same form as
in Eq. (8), with the replacement |S|2 → 2(N/Nd)|S12|2.
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In order to investigate the coherence properties of the
emitted radiation, we consider the paradigmatic case in
which the two electron wave packets in position space
differ only by a translation by a vector r′, i.e., ρ2(p2) =
ρ1(p2) exp(−ip2 ·r′), such that |ρ1(p)|2 = |ρ2(p)|2. Also,
without loss of generality we choose the function ρ1(p1)
to be real and we denote it as ρ(p1).

Let us first study the classical energy spectrum
dEC/dω

′ emitted by two electrons in a plane wave [38, 39]

dEC
dω′

=
e2ω′ 2

4π2

∫
dΩ′
∣∣∣∣∣

2∑

j=1

∫
dφ
p′µj (φ)

p′j,−
eiω

′Φj(φ)

∣∣∣∣∣

2

. (9)

Here, for the sake of notational convenience in relation
with the quantum case, we have indicated as p′µj (φ) =
(ε′j(φ),p′j(φ)) the electrons’ four-momenta in the plane
wave [36] (see also the Supplemental Material)

p′µj (φ) = p′µj − eAµL(φ) + e
(p′jAL(φ))

p′j,−
nµ − e2

2

A2
L(φ)

p′j,−
nµ,

(10)
with initial (at t = 0) four-momenta p′µj = (ε′j ,p

′
j). Also,

by labeling as “1” the electron which first enters the plane
wave and by setting the origin of the coordinates system
at the corresponding entering point, the initial positions
of the electrons are r′1 = 0 and r′2 = r′, with z′ > 0. The
quantity Φj(φ) thus reads

Φj(φ) =

∫ φ

0

dφ′
(n′p′j(φ

′))

p′j,−
+

[
(n′p′j)

p′j,−
n− n′

]
· r′j , (11)

with n′µ = k′µ/ω′ = (1,n′) or Φj(φ) = Φj(0) +

n′−
∫ φ

0
dφ′[m2 +P ′ 2j,⊥(φ′)]/2p′ 2j,−, where P ′j,⊥(φ) = P ′j,⊥−

eAL,⊥(φ), with P ′j,⊥ = p′j,⊥ − p′j,−n′⊥/n′−. Now, by in-
dicating as ϕT a measure of the total laser phase ωφT
where the electrons experience the strong field, an order-
of-magnitude condition for the emitted radiation to be
coherent is obtained by requiring that ω′∆Φ(φT ) <∼ π/5
[40], with ∆Φ(φT ) = |Φ2(φT ) − Φ1(φT )| (the absolute
value of the variation of an arbitrary quantity f is in-
dicated here and below as ∆f). Now, we assume that
the electrons have initial momenta (energies) of the same
order of magnitude p′ (ε′), and that are ultrarelativistic
and initially counterpropagating with respect to the laser
field (p′−/2 ≈ ε′ � m). By summing the moduli of all
contributions to ∆Φ(φT ), the above condition provides
an upper limit ω′C on the frequencies which are emitted
coherently given by

ω′C =
2πω

5n′−ϕT

[
∆P ′ 2⊥
4ε′ 2

+
∆ε′

ε′
m2 + P ′ 2⊥

2ε′ 2
+

2ω∆Φ(0)

n′−ϕT

]−1

,

(12)

where P ′ 2⊥ is the average value of P ′ 2⊥ (φ) over φT . It
is physically clear that the larger the interaction time

is and the larger the differences in the electrons’ initial
positions/momenta/energies are, the lower will be the
highest frequency that can be emitted coherently.

Having in mind the quantum case where the electrons’
momenta distributions are given by ρ2(p′1) and ρ2(p′2),
we consider now a classical ensemble of pairs of electrons,
each pair being characterized by the electrons’ initial po-
sitions r′1 = 0 and r′2 = r′ and initial (and final) mo-
menta p′j distributed as ρ2(p′1) and ρ2(p′2). The corre-
sponding average classical energy spectrum 〈dEC/dω′〉 is
given by

〈
dEC
dω′

〉
=

∫
d3p′1

(2π)32ε′1

d3p′2
(2π)32ε′2

ρ2(p′1)ρ2(p′2)

Nd
dEC
dω′

.

(13)
It is important to observe that this expression can also be
obtained from the quantum spectrum dEQ/dω

′ in Eq. (8)
by neglecting the photon recoil in ρ(qj), i.e., by approx-
imating ρ(qj) ≈ ρ(p′j), but by keeping linear corrections
due to the recoil in the phase of ρ2(q2). This, in fact,
allows to reproduce the term Φ2(0) from the difference
q2−p′2 according to Eq. (6) after neglecting higher-than-
linear recoil terms in it. On the one hand, this obser-
vation indicates that when the photon recoil is negligi-
ble, the classical constraint in Eq. (12) also applies quan-
tum mechanically. On the other hand, however, we will
show below that the differences in the coherence prop-
erties of classical and quantum radiation precisely arise
from the fact that the classical theory ignores the recoil
in ρ(qj). In fact, turning now to the quantum case, it
is intuitively clear, as we have also ascertained in the
numerical example below, that the electrons’ indistin-
guishability does not play a significant role here. In-
deed, the exchange terms become important only when
the two electrons have very similar final momenta (and
the same final spin), which corresponds to a negligibly
small region of the available final phase space. Thus, in
order to study coherence effects, we focus on the interfer-
ence term in |S12|2, which is proportional to the product
ρ(q1)ρ(p′1)ρ(p′2)ρ(q2) [see Eq. (7)]. In analogy with the
classical case, we indicate as p′ the average momentum
of both electron distributions, corresponding to the on-
shell four-momentum p′µ = (ε′,p′) = (

√
m2 + p′ 2,p′),

and as σp′ the three-dimensional width. As it is clear
from Eq. (6), the difference between the momenta p′j
and qj is due to the photon recoil. Thus, if the latter is
so large that |p′j,i − qj,i| � σpi for any i ∈ {x, y, z},
the interference term will be suppressed because the
functions ρ(qj) = ρ(qj(p

′
j)) [see Eq. (6)] and ρ(p′j)

cannot be both significantly different from zero for the
same p′j . Notice that the fact that two functions ρ(p)
and ρ(p + δp) overlap or not does not depend on the
frame of reference. As a result, the interference term
in |S12|2 will be suppressed and the radiation with fre-
quency ω′ >∼ ω′Q = mini{σp′i/| cos θ′i|}, with θ′i being the
angle between k′ and the ith axis, will be incoherent [the
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last term in Eq. (6) has been neglected, which is a good
approximation in most situations of interest]. The ad-
ditional quantum restriction to the coherent emission of
radiation is qualitatively different from the classical one
and it can be related to the particles’ “kinematic” indis-
tinguishability. In fact, depending on the width of the
electron wave packets, even a perfect knowledge of the
final momenta of the two electrons and of the emitted
photon combined with the momentum conservation laws
does not allow to know with certainty which electron has
emitted the photon. In this respect, different momen-
tum components of the two-electron wave packet |Ψ〉 con-
structively interfere enhancing the radiation probability.
This is in striking contrast with the case of an incoming
single electron, where, indeed, the conservation laws al-
low to determine the initial momentum of the electron
once the final electron and photon momenta are known,
implying that the emission spectrum is given by the in-
coherent sum of the emissions spectra corresponding to
each momentum component of the wave packet [16, 28].

Below, we show by means of a numerical example that
the quantum restriction to the coherence of the emis-
sion can be essentially more restrictive than the classical
one even in the striking case where the average quantum
parameter χ′ = (kp′)E/mωEcr of the two wave packets
is much smaller than unity. To do this we compare in
Fig. 2 the full quantum spectrum dEQ/dω

′ from Eq. (8)
(solid black line) with the classical spectrum 〈dEC/dω′〉
from Eq. (13) (dash-dotted red line). Since the distribu-
tions of the momenta of the two electrons are the same,
the two single-particle spectra are identical [28]. Thus,
as references to discuss coherence effects, we also show
these single-electron spectra multiplied by two (dashed
green line) and by four (dotted blue line). Concerning
the electrons, we have set the function ρ2(p′j)/2ε

′
j to be

a normalized Gaussian function, with average momen-
tum p′ = (0, 0,−100 MeV), transverse standard devia-
tion σp′⊥ = σp′x = σp′y = 1 keV, and longitudinal stan-
dard deviation σp′‖ = σp′z indicated in each panel of the

figure. In order to have a non-negligible interference
term, we have chosen the components of the vector r′

to be smaller than the corresponding wave packet “size”
1/σp′i : r

′ = (0, 10−4 eV−1, 10−7 eV−1). We have ensured
that the spectra in Fig. 2 do not change significantly
with r′ as long as |r′ · σp′ | � 1, with the exception of
the classical spectra, where oscillations due to classical
interference may appear. Concerning the plane wave,
we have set ω = 1.55 eV, I = 1.2 × 1021 W/cm2, and
ψL(φ) = sin4(ωφ/4) sin(ωφ) for 0 ≤ ωφ ≤ 4π and zero
elsewhere. With these parameters it is χ′ ≈ 0.02, thus the
classical and the quantum single-particle spectra emitted
by each electron wave packet are very similar and do not
depend strongly on σp′‖ [28].

Fig. 2 shows that the classical spectra (dash-dotted
red lines) are coherent up to a given frequency, which

Figure 2. (Color online) Emitted energy spectra for the nu-
merical parameters given in the text. The solid black line
shows the quantum spectrum dEQ/dω

′ and the dash-dotted
red line shows the classical spectrum 〈dEC/dω

′〉. As refer-
ence, the corresponding single-electron spectrum multiplied
by two (dashed green line) and by four (dotted blue line) are
also shown.

depends on σp′‖ . In order to predict the value of this fre-

quency from Eq. (12), we choose n′ ∼ (mξ/2ε′, 0,−1),
with ξ = |e|E/mω ≈ 17 � ε′/m ≈ 200, as a typical
observation direction where the average radiated energy
is large [21] and we estimate the variations ∆p′⊥ and
∆ε′ ≈ ∆p′‖ entering Eq. (12) as the standard deviations√

2σp′⊥ and
√

2σp′‖ , respectively, of the differences be-

tween the components of the two random variables p′1
and p′2. By also estimating ∆Φ(0) ≈ |n′ · r′| ∼ z′, and
ϕT ∼ 2π as the effective phase where the laser field is
strong, we find from Eq. (12) that ω′C is 4.6× 105 eV for
σp′‖ = 300 eV, 1.6× 105 eV for σp′‖ = 30 keV, 2.4× 104 eV

for σp′‖ = 300 keV, and 2.5 × 103 eV for σp′‖ = 3 MeV,

in good agreement with the numerical results in Fig. 2,
accounting for the simplicity of the analytical model. In-
stead, the quantum spectra (solid black lines) show that
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the emission is coherent on a significantly smaller fre-
quency region. In fact, by estimating |k′⊥| ∼ ω′mξ/ε′,
we obtain that ω′Q ∼ min{σp′⊥ε

′/mξ, σp′‖}, which corre-

sponds to σp′‖ = 3 × 102 eV in the case of panel a), and

to σp′⊥ε
′/mξ = 1.2 × 104 eV in the other cases. This

prediction is also confirmed by the numerical results. In
particular, it is interesting to observe the interplay be-
tween the classical and the quantum upper limits, with
the latter dominating in panels a)-c) where ω′C > ω′Q and
the former taking over in panel d) where ω′C < ω′Q.

The properties of single-electron pulses with energies
of the order of 100 keV are already exploited experi-
mentally in order to perform high-precision spectroscopy
(see [41] and references therein). Moreover, recent theo-
retical studies indicate the feasibility of generating single-
electron wave packets with GeV energies [42]. The ex-
tension to few-electron beams seems already feasible and
our results suggest that the development of similar tech-
niques at higher energies would have important applica-
tions also in fundamental strong-field physics. By revert-
ing the argument, we can also say that the NSCS spectra
as calculated here can be exploited, provided a detailed
knowledge of the laser pulse, as a diagnostic tool for two-
or few-electron high-energy pulses.

In conclusion, we have shown that in the process of
emission of radiation by a system of two electrons, classi-
cal predictions can significantly differ from the quantum
ones even when the typical quantum nonlinearity param-
eter of the system is much smaller than unity. In fact,
a qualitative new limit arises quantum mechanically on
the frequencies which can be emitted coherently as com-
pared to classical electrodynamics. We have shown that
this limit depends on the ratio between the photon recoil
and the width of the electron wave packets in momentum
space.
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is also thankful to S. Bragin, S. Castrignano, S. M. Cav-
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this paper.
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In the present Supplemental Material we provide some
results that we did not include in the main text because
they are widely known in the literature (see e.g. [1–3]).
For the sake of clarity the numbers of the equations here
contain “SM” in addition, such that the usual numbering
(without SM) refers to the equations in the main text.

VOLKOV STATES

As we mentioned in the main text, our work is car-
ried out in the Furry picture [1]. Thus, the fermion field
Ψ(x) in Eq. (5) needs to be expanded by employing
“dressed” electron states, i.e., the solutions of the Dirac
equation in the background field. In our case the back-
ground field is a linearly-polarized plane wave described
by the four-vector potential AµL(φ) = AµψL(φ), where
ψL(φ) is a smooth function with compact support, with
φ = (nx) = t− z, i.e., nµ = (1, 0, 0, 1) [see also the main
text above Eq. (1) for additional details], and the result-
ing solutions of the Dirac are the so-called Volkov states
[1]. By setting φ = 0 as the initial light-cone “time” and
by correspondingly assuming that ψL(φ) = 0 for φ ≤ 0,
the positive-energy Volkov state of an electron with four-
momentum pµ and a spin quantum number s at φ = 0
reads

ψps(x) =

[
1 +

e

2p−
/n /AL(φ)

]
upse

iSp(x). (SM.1)

Here, we have introduced the minus-component p− =
(np), the “slash” notation /v = γµvµ for an arbitrary
four-vector vµ, with γµ being the Dirac gamma-matrices,
the constant bispinor ups fulfilling (/p − m)ups = 0 and
normalized as ūpsups = 2m [1], and the classical action
Sp(x) of the electron in the plane wave

Sp(x) = −(px)−
∫ φ

0

dφ′
[
e(pAL(φ′))

p−
− e2A2

L(φ′)
2p−

]
.

(SM.2)

It is possible to associate the average four-current

jµp (φ) =
ψ̄ps(x)γµψps(x)

ψ̄ps(x)ψps(x)
(SM.3)

to the Volkov state ψps(x) and it turns out that jµp (φ) =
pµ(φ)/m, where pµ(φ) = (ε(φ),p(φ)) is the solution of

the Lorentz equation in the plane wave with initial four-
momentum pµ:

pµ(φ) = pµ − eAµL(φ) + nµ
[
e

(pAL(φ))

p−
− e2A2

L(φ)

2p−

]
.

(SM.4)

NONLINEAR SINGLE COMPTON SCATTERING

The leading order S-matrix element Sfi of nonlinear
single Compton scattering by an electron with initial (fi-
nal) four-momentum pµ (p′µ) and spin quantum number
s (s′) is given within the Furry picture by

Sfi = −ie
√

4π

∫
d4x ψ̄p′s′(x)/ε

′∗
l′ e

i(k′x)ψps(x), (SM.5)

where k′µ is the four-momentum of the emitted pho-
ton and ε′µl′ its polarization four-vector, with l′ ∈ {1, 2}.
Since the integrand in Eq. (SM.5) depends non-trivially
only on φ = t−z, the remaining three spacetime integrals
provide corresponding momenta delta-functions and Sfi
can be written in the form

Sfi = −ie
√

4π(2π)3δ(x,y,−)(p− k′ − p′)Ms′l′,s(p
′, k′; p).
(SM.6)

By recalling the matrix structure of Volkov states [see Eq.
(SM.1)], the reduced amplitude Ms′l′,s(p

′, k′; p) can be

written as Ms′l′,s(p
′, k′; p) = ūp′s′M̃l′(p

′, k′; p)ups, with
[3]

M̃l′(p
′, k′; p) =/ε

′∗
l′ f0 + e

(
/A/n/ε′∗l′
2p′−

+
/ε
′∗
l′ /n/A
2p−

)
f1

−
e2A2ε′∗l′,−/n

2p−p′−
f2,

(SM.7)

where

fb =

∫
dφψbL(φ)ei

∫ φ
0
dφ′[a0+a1ψL(φ′)+a2ψ

2
L(φ

′)], (SM.8)

with b ∈ {0, 1, 2} and

a0 =
(k′p)
p′−

, (SM.9)

a1 =
e(p′A)

p′−
− e(pA)

p−
, (SM.10)

a2 = −e
2A2

2

k′−
p−p′−

. (SM.11)
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Note that, by either enforcing gauge invariance or by
integrating it by parts, the formally divergent integral
f0 can be regularized according to the identity f0 =
−(a1f1 + a2f2)/a0 [3].

CLASSICAL LIMIT

In order to make the classical limit mentioned below
Eq. (13) more transparent, we notice that in the single-
electron case considered here:

1. by neglecting the recoil in Eq. (SM.7), i.e., by ap-
proximating p′− ≈ p− there and up′s′ ≈ ups′ , the
pre-exponential of the matrix Ms′l′,s(p

′, k′; p) re-
duces to 2(p(φ)ε′l′)δss′ ;

2. by neglecting terms higher than linear in the pho-

ton recoil in the coefficients a0, a1 and a2, i.e., by
approximating a0 ≈ (k′p)/p−, a1 ≈ e[p−(k′A) −
k′−(pA)]/p2−, and a2 ≈ −e2A2k′−/2p

2
−, the phase

of the integrands in the functions fb coincides with
the corresponding classical phase in Eq. (9) (for an
electron in the origin at t = 0).
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