Free Energy & Bounded Rationality

Pedro A. Ortega Daniel A. Braun

Max Planck Institute for Intelligent Systems Max Planck Institute for Biological Cybernetics

13th September 2012

Introduction

The mathematical foundation of

- economics,
- artificial intelligence,
- and control

is the theory of (subjective) expected utility, leading to the maximum expected utility (MEU) principle.

Introduction

The mathematical foundation of

- economics,
- artificial intelligence,
- and control

is the theory of (subjective) expected utility, leading to the maximum expected utility (MEU) principle.

However:

- ► Exact application of the MEU principle is intractable even for extremely simple systems.
- ⇒ We need a theory of **bounded rationality** that considers the cost of choice.

Most straightforward solution: penalize choice costs

desired behavior: U

• reasoning about costs: U' := U - C

Most straightforward solution: penalize choice costs

- desired behavior: U
- reasoning about costs: U' := U C
- reasoning about costs of costs: U'' := U' C'

Most straightforward solution: penalize choice costs

- desired behavior: U
- reasoning about costs: U' := U C
- reasoning about costs of costs: U'' := U' C'
- **.** . . .

Most straightforward solution: penalize choice costs

- desired behavior: U
- reasoning about costs: U' := U C
- reasoning about costs of costs: U'' := U' C'
- **•** . . .

Problem of metareasoning:

- ▶ Unbounded meta-levels + growing solution spaces.
- ▶ Metareasoning is not allowed → "interrupted" decision!

Bounded Rationality

Question: How do we **characterize** behavior when the decision maker is **bounded rational**, i.e. when his **processing resources are limited**?

Bounded Rationality

Question: How do we **characterize** behavior when the decision maker is **bounded rational**, i.e. when his **processing resources are limited**?

Our Answer: A **bounded rational** decision maker **can be thought of** as maximizing the negative free energy difference/KL control cost

► (one-step)

$$\sum_{x} p(x) \left\{ U(x) - \frac{1}{\alpha} \log \frac{p(x)}{q(x)} \right\}$$

► (multi-step)

$$\sum_{x_{$$

Bounded Rationality

Question: How do we **characterize** behavior when the decision maker is **bounded rational**, i.e. when his **processing resources are limited**?

Our Answer: A **bounded rational** decision maker **can be thought of** as maximizing the negative free energy difference/KL control cost

► (one-step)

$$\sum_{x} p(x) \left\{ U(x) - \frac{1}{\alpha} \log \frac{p(x)}{q(x)} \right\}$$

► (multi-step)

$$\sum_{x < T} p(x \le T) \sum_{t=1}^{T} \left\{ R(x_t | x < t) - \frac{1}{\beta(x < t)} \log \frac{p(x_t | x < t)}{q(x_t | x < t)} \right\}$$

Why? Result is based on an information-theoretic assumption about transformation costs, i.e. the cost of "changing".

The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an event determines its probability ("probabilities encode costs").

The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an event determines its probability ("probabilities encode costs").

Examples:

- Biologists infer behavior from anatomy. Energy-efficient behavior is more frequent than energy-inefficient behavior.
- Conversely, engineers design systems such that desirable behavior is cheaper than undesirable behavior.
- Every action/observation/interaction of a system necessarily transforms its information state, simply because "before" and "after" are distinguishable!

The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an event determines its probability ("probabilities encode costs").

Examples:

- Biologists infer behavior from anatomy. Energy-efficient behavior is more frequent than energy-inefficient behavior.
- Conversely, engineers design systems such that desirable behavior is cheaper than undesirable behavior.
- Every action/observation/interaction of a system necessarily transforms its information state, simply because "before" and "after" are distinguishable!

What is a Transformation? Chemical reaction, memory update, consulting a random number generator, changing location, advancing in time, . . .

The Model of Information State

- Each interaction transforms the information state.
- ▶ Interactions are encoded (lossless) on a binary "history tape".
- ▶ No "jumps back in time" allowed.
- ► Tape consists of identical binary storage devices.
- Setting a bit costs the same in each cell.
- ⇒ Codeword lengths are proxies for transformation costs.
- ⇒ Codeword lengths have associated probabilities.

Measure-Theoretic Formalization of Transformations

- Sequential realizations are modeled as filtrations.
- ▶ An **information state** is a measurable set.
- ▶ A transformation is a **condition** on the information state:

State:
$$A$$
 Measure: $P(S|A) \longrightarrow "B \text{ is true"} \longrightarrow P(S|A \cap B)$

Axioms of Transformation Costs

Given:

- \blacktriangleright (Ω, Σ) measurable space
- ▶ $P(\cdot|\cdot): (\Omega \times \Omega) \rightarrow [0,1]$ conditional probability measure.

Then, $\rho(\cdot|\cdot): (\Sigma \times \Sigma) \to \mathbb{R}^+$ is transformation cost function iff

- A1. real-valued: $\exists f, \quad \rho(A|B) = f(P(A|B)) \in \mathbb{R}$
- A2. additive: $\rho(A \cap B | C) = \rho(B | C) + \rho(A | B \cap C)$
- A3. monotonic: $\rho(A|B) > \rho(C|D) \iff P(A|B) \leq P(C|D)$

Axioms of Transformation Costs

Given:

- \blacktriangleright (Ω, Σ) measurable space
- ▶ $P(\cdot|\cdot): (\Omega \times \Omega) \to [0,1]$ conditional probability measure.

Then, $\rho(\cdot|\cdot):(\Sigma\times\Sigma)\to\mathbb{R}^+$ is transformation cost function iff

- A1. real-valued: $\exists f, \quad \rho(A|B) = f(P(A|B)) \in \mathbb{R}$
- A2. additive: $\rho(A \cap B | C) = \rho(B | C) + \rho(A | B \cap C)$
- A3. monotonic: $\rho(A|B) > \rho(C|D) \iff P(A|B) \leq P(C|D)$

Theorem: If f fulfills axioms A1–A3 for any (Ω, Σ, P) , then f is of the form

$$\rho(A|B) = -\frac{1}{\alpha}\log(P(A|B)), \qquad \alpha \in \mathbb{R}.$$

Measure-Theoretic Formalization of Decisions

Decisions

Problem:

▶ Given \mathcal{X} , and U(x), find p(x) maximizing

$$\sum_{x \in \mathcal{X}} p(x)U(x).$$

Constraints:

▶ However, there are many candidate $p \in \mathcal{P}$, having probabilities & costs

$$P(p|q)$$
 and $\rho(p|q)$

from some **reference information state** q.

We define utility as cost that is "saved" (analogous to external work)

$$u(A|B) = -\rho(A|B)$$

Decisions (cont.)

Identifying:

$$q(x) = P(x|q)$$
 (Prior)
 $p(x) = P(x|q \cap p)$ (Posterior)
 $U(x) = u(p|x \cap q) - u(p|q)$
 $= u(x|q \cap p) - u(x|q)$ (Utility)

we obtain (theorem)

$$u(p|q) = \sum_{x} p(x)U(x) - \frac{1}{\alpha} \sum_{x} p(x) \log \frac{p(x)}{q(x)}.$$

This is the negative free energy difference (NFED).

Free Energy Principle

Let q be a probability distribution and U be a real-valued utility over \mathcal{X} . Given $\alpha \in \mathbb{R}$, the **negative free energy difference** (NFED) is given by

$$-\Delta F_{\alpha}[p] := \sum_{x} p(x)U(x) - \frac{1}{\alpha} \sum_{x} P(x) \log \frac{p(x)}{q(x)}.$$

Interpretation

- NFED = expected utility transformation costs
- models net utility gain obtained in transforming q into p
- relative entropy models information content of transformation
- ightharpoonup inverse temperature lpha models (transformation-) bits per utile
- lacktriangle higher inverse temperature \longrightarrow higher net utility gain

Equilibrium Distribution

The solution to the NFED is the equilibrium distribution

$$p(x) = \frac{1}{Z(\alpha)}q(x)\exp\{\alpha U(x)\},\,$$

where $Z(\alpha)$ is the **partition function**

$$Z(\alpha) = \sum_{x} q(x) \exp\{\alpha U(x)\}.$$

The **NFED extremum** is

$$\frac{1}{\alpha}\log Z(\alpha) = \frac{1}{\alpha}\log \left(\sum_{x} q(x) \exp\left\{\alpha U(x)\right\}\right).$$

NFED Extremum

The inverse temperature α parameterizes the **degree of control**:

Operational Interpretation of Inverse Temperature

Problem

- ▶ Let M be pmf over finite \mathcal{X} .
- ▶ Draw α i.i.d. samples x_1, \ldots, x_α from M.
- Pick the maximum $\max\{U(x_0),\ldots,U(x_\alpha)\}.$

Theorem

- Let Q be pmf with same support as M.
- Let M_{α} be the pmf over the maximizing x after α draws.
- ▶ Then, there are δ > 0 and ξ > 0 depending only on M such that for all α,

$$\left|\frac{Q(x)e^{\alpha U(x)}}{\sum_{x'}Q(x')e^{\alpha U(x')}}-M_{\alpha}(x)\right|\leq e^{-(\alpha-\xi)\delta}.$$

Intuition

 $M_{\alpha} = \{\alpha \text{ iterations of "search algorithm"}\}.$

Decision Trees

- Sequential decision problems are stated as decision trees and solved using backward induction.
- Decision rules depend on system: stochastic, cooperative, competitive, hybrid, . . .
- This intuitive distinction between "types of systems" is formally unsatisfactory.
- Decision rules can be reexpressed in a unified way using the free energy functional.

Goal: Generalized Decision Trees

- Different operators express different degrees of control (DoCs):
 - ▶ max ⇔ full control
 - ► **E** ⇔ no control
 - ► min ⇔ full anti-control
- ▶ Goal: Find a generalized operator □ that expresses
 - the 3 classical DoCs,
 - + all the other DoCs in between.

Change of Temperature

Problem

Can we change the inverse temperature with constant reference and equilibrium distribution?

Theorem

Let p be the equilibrium distribution given α , U and q. If α changes to β with fixed p and q, then U changes to V:

$$V(x) = U(x) - \left(\frac{1}{\alpha} - \frac{1}{\beta}\right) \log \frac{p(x)}{q(x)}.$$

Intuition

Fix information costs:

$$C(x) = \alpha U(x) = \beta V(x)$$

Construction of Generalized Decision Trees

a) $q(x), U(x), \alpha$

$$\sum_{x} p(x)U(x) + \frac{1}{\alpha} \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

b) $q(x_t|x_{1:t-1}), S(x_t|x_{1:t}), \alpha$

$$\sum_{x < T} p(x \le T) \sum_{t=1}^{T} \left\{ S(x_t | x < t) + \frac{1}{\alpha} \log \frac{p(x_t | x < t)}{q(x_t | x < t)} \right\}$$

c) $q(x_t|x_{< t}), R(x_t|x_{< t}), \beta(x_{< t})$

$$\sum_{x < \tau} p(x_{\leq T}) \sum_{t=1}^{T} \left\{ R(x_{t}|x_{< t}) + \frac{1}{\beta(x_{< t})} \log \frac{p(x_{t}|x_{< t})}{q(x_{t}|x_{< t})} \right\}$$

Generalized Optimality Equations

Given

Generalized decision problem $q(x_t|x_{< t})$, $R(x_t|x_{< t})$ and $\beta(x_{< t})$.

Generalized Value/Utility

$$V(x_{< t}) = \frac{1}{\beta(x_{< t})} \log \left\{ \sum_{x_t} q(x_t | x_{< t}) \exp \left\{ \beta(x_{< t}) \left[R(x_t | x_{< t}) + V(x_t) \right] \right\} \right\}$$

Conclusions

- 1. The free energy principle serves as an **axiomatic foundation** for bounded rational decision-making.
- 2. It formalizes a **trade-off** between the gains of maximizing the utility and the losses of transformation costs.
- It establishes clear links to information theory and thermodynamics.
- 4. Inverse temperature **parameterizes** the resource limitations/degree of control.
- 5. It allows generalizing decision trees.

Open Questions

- 1. What are the **exact** relations to:
 - game theory,
 - search theory,
 - and computational complexity?
- 2. What are the implications for search algorithms?
- 3. What are the causal implications?

References

- 1. Ortega, P.A. and Braun, D.A. *Thermodynamics as a Theory of Decision Making with Information Processing Costs.* ArXiv:1204.6481, 2012.
- Ortega, P.A. Free Energy and the Generalized Optimality Equations. European Workshop on Reinforcement Learning, 2012.
- 3. Braun, D.A., Ortega, P.A., Theodorou, E. and Schaal, S. *Path Integral Control and Bounded Rationality*, IEEE Symposium on adaptive dynamic programming and reinforcement learning, pp. 202–209, 2011.
- 4. Ortega, P.A. A Unified Framework for Resource-Bounded Agents Interacting with Unknown Environments, PhD Thesis, Department of Engineering, University of Cambridge, 2011.

The free energy principle in human sensorimotor control

Daniel Braun, Pedro Ortega

Risk in Decision-Making

Decision Rule: Pick lottery with higher expected value

Motor Control and Maximum Expected Gain

Implicit probabilities through motor variability

-Motor Control and Maximum Expected Gain

Optimal Feedback Control

Dynamic System

dx = f(x, u)dt + dw

x(t): state u(t): control

Cost Function

 $J = E \left[\int c(x, u) dt + \phi(x_T) \right]$

Variational Principle

$$-\Delta \mathsf{F} = \sum_{x \in \mathcal{X}} \mathbf{P}_f(x) \mathbf{U}_*(x) - \alpha \sum_{x \in \mathcal{X}} \mathbf{P}_f(x) \log \frac{\mathbf{P}_f(x)}{\mathbf{P}_i(x)}$$

Negative free energy is maximized in equilibrium

- Estimation: Maximum Entropy principle given constraints on mean utility
- Control: Maximum Utility principle given constraints on relative entropy

Certainty-equivalent

Value of the Lottery

$$-\Delta F = \frac{1}{\lambda} \log \left(\sum_{j} p_{j}^{0} \exp(\lambda U_{j}) \right)$$

$$\lambda \rightarrow \infty$$
 $-\Delta F = \max_{j} U_{j}$

$$\lambda \rightarrow -\infty$$
 $-\Delta F = \min_j U_j$

$$\lambda \to 0 \qquad -\Delta F = \sum_{j} p_{j}^{0} U_{j}$$

Equilibrium distribution

$$p_{i} = \frac{p_{i}^{0} \exp\left(\frac{1}{\alpha}U_{i}\right)}{\sum_{j} p_{j}^{0} \exp\left(\frac{1}{\alpha}U_{j}\right)}$$

Probabilities of the Lottery

Utilities of the Lottery

Equilibrium distribution

Action Lotteries

- □ p0 is default policy
- α measures
 bounded rationality

Observation Lotteries

- □ p0 is default model
- α anticipates rationality of environment (model uncertainty, ambiguity)

Risk-sensitivity and model uncertainty

$$f = \max_{x} \sum_{x} p(x)U(x) - \frac{\theta}{2} \sum_{x} p(x) \log \frac{p(x)}{p_0(x)}$$

$$= \frac{2}{\theta} \log \mathbb{E}[e^{\frac{1}{2}\theta U}]$$

$$\approx \mathbb{E}[U] - \theta \mathbb{VAR}[U]$$

Bias towards best-case outcome: $\theta < 0$

Bias towards worst-case outcome: $\theta > 0$

Experimental Studies

Study 1: Mean-variance trade-off

Study 2: Biasing of control gains

Study 3: Biasing of Bayesian learning

Study 1

The mean-variance trade-off

Experimental Setup

Model fit

Sure bet

$$U_1^{\rm s} = -E(10) = -10$$

Risky bet $U_1^{\mathrm{r}}(x) = -\mathbb{E}(x) + \theta_1 Var(x)$

Curve of indifference points

$$\mathbb{E}(x) = \theta_1 Var(x) + 10$$

Results

Study 2

Biasing of control gains

Experimental Setup

Model Prediction

Results

Study 3

Biasing of sensorimotor estimation

Experimental Setup

Bayesian Sensorimotor Integration

Model Prediction

Risk-neutral estimator

$$u^{opt} = \underset{u}{\operatorname{arg\,min}} \int_{-\infty}^{+\infty} dx \, p(x|y) \left[Q(x-u)^2 + c(u) \right]$$
$$= \frac{\sigma_p^2}{\sigma_p^2 + \sigma_i^2} \, y - \frac{a_j}{2Q}.$$

Risk-sensitive estimator

$$u^{opt} = \underset{u}{\operatorname{arg\,min}} -\frac{2}{\theta} \int_{-\infty}^{+\infty} dx \, p(x|y) e^{-\frac{\theta}{2} \left[Q(x-u)^2 + c(u)\right]}$$
$$= \frac{\sigma_p^2}{\sigma_i^2 + \sigma_p^2} y - \frac{a_j}{2Q} - \frac{\sigma_i^2 \sigma_p^2}{\sigma_i^2 + \sigma_p^2} \theta \, a_j.$$

with cost function $c(h) = a_j h + b_j$

Results

Results

Conclusion

- Humans show deviations from risk-neutral behavior in motor control
- Risk-sensitivity implies a mean-variance trade-off
- Risk-sensitivity implies changes in control gains for different levels of uncertainty
- Sensorimotor learning can be described by risk-sensitive Bayesian models

Acknowledgments

Arne Nagengast

Jordi Grau Moya

Daniel Wolpert

Frontiers in Human Neuroscience (2011) 5:1-10
Proceedings of the Royal Society B (2011) 278(1716):2325-32.
PLoS Computational Biology (2010) 6(7): e1000857
PLoS Computational Biology (2012) in press