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Introduction

The mathematical foundation of

◮ economics,

◮ artificial intelligence,

◮ and control

is the theory of (subjective) expected utility, leading to the
maximum expected utility (MEU) principle.
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Introduction

The mathematical foundation of

◮ economics,

◮ artificial intelligence,

◮ and control

is the theory of (subjective) expected utility, leading to the
maximum expected utility (MEU) principle.

However:

◮ Exact application of the MEU principle is intractable even
for extremely simple systems.

⇒ We need a theory of bounded rationality that considers the
cost of choice.
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Caveat: Metareasoning does not work!

Most straightforward solution: penalize choice costs

◮ desired behavior: U

◮ reasoning about costs: U ′ := U − C
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Caveat: Metareasoning does not work!

Most straightforward solution: penalize choice costs

◮ desired behavior: U

◮ reasoning about costs: U ′ := U − C

◮ reasoning about costs of costs: U ′′ := U ′ − C ′

◮ . . .

Problem of metareasoning:

◮ Unbounded meta-levels + growing solution spaces.

◮ Metareasoning is not allowed −→ “interrupted” decision!
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Bounded Rationality

Question: How do we characterize behavior when the decision maker is
bounded rational, i.e. when his processing resources are limited?
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Bounded Rationality

Question: How do we characterize behavior when the decision maker is
bounded rational, i.e. when his processing resources are limited?

Our Answer: A bounded rational decision maker can be thought of as
maximizing the negative free energy difference/KL control cost

◮ (one-step)
∑

x

p(x)

{

U(x)−
1

α
log

p(x)

q(x)

}

◮ (multi-step)

∑

x≤T

p(x≤T )
T
∑

t=1

{

R(xt |x<t)−
1

β(x<t)
log

p(xt |x<t)

q(xt |x<t)

}
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Bounded Rationality

Question: How do we characterize behavior when the decision maker is
bounded rational, i.e. when his processing resources are limited?

Our Answer: A bounded rational decision maker can be thought of as
maximizing the negative free energy difference/KL control cost

◮ (one-step)
∑

x

p(x)

{

U(x)−
1

α
log

p(x)

q(x)

}

◮ (multi-step)

∑

x≤T

p(x≤T )
T
∑

t=1

{

R(xt |x<t)−
1

β(x<t)
log

p(xt |x<t)

q(xt |x<t)

}

Why? Result is based on an information-theoretic assumption about

transformation costs, i.e. the cost of “changing”.
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The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an
event determines its probability (“probabilities encode costs”).
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The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an
event determines its probability (“probabilities encode costs”).

Examples:

◮ Biologists infer behavior from anatomy. Energy-efficient
behavior is more frequent than energy-inefficient behavior.

◮ Conversely, engineers design systems such that desirable
behavior is cheaper than undesirable behavior.

◮ Every action/observation/interaction of a system necessarily
transforms its information state, simply because “before”
and “after” are distinguishable!
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The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an
event determines its probability (“probabilities encode costs”).

Examples:

◮ Biologists infer behavior from anatomy. Energy-efficient
behavior is more frequent than energy-inefficient behavior.

◮ Conversely, engineers design systems such that desirable
behavior is cheaper than undesirable behavior.

◮ Every action/observation/interaction of a system necessarily
transforms its information state, simply because “before”
and “after” are distinguishable!

What is a Transformation? Chemical reaction, memory update,
consulting a random number generator, changing location,
advancing in time, . . .
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The Model of Information State
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Interaction Tape History Tape

◮ Each interaction transforms the information state.

◮ Interactions are encoded (lossless) on a binary “history tape”.

◮ No “jumps back in time” allowed.

◮ Tape consists of identical binary storage devices.

◮ Setting a bit costs the same in each cell.

⇒ Codeword lengths are proxies for transformation costs.

⇒ Codeword lengths have associated probabilities.
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Measure-Theoretic Formalization of Transformations

Ω

◮ Sequential realizations are modeled as filtrations.

◮ An information state is a measurable set.

◮ A transformation is a condition on the information state:

State:
Measure:

A

P(S |A)
−→ “B is true” −→

(A ∩ B)
P(S |A ∩ B)
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Axioms of Transformation Costs

Given:

◮ (Ω,Σ) measurable space

◮ P(·|·) : (Ω× Ω) → [0, 1] conditional probability measure.

Then, ρ(·|·) : (Σ× Σ) → R
+ is transformation cost function iff

A1. real-valued: ∃f , ρ(A|B) = f (P(A|B)) ∈ R

A2. additive: ρ(A ∩ B|C ) = ρ(B|C ) + ρ(A|B ∩ C )

A3. monotonic: ρ(A|B) > ρ(C |D) ⇐⇒ P(A|B) ≶ P(C |D)
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Axioms of Transformation Costs

Given:

◮ (Ω,Σ) measurable space

◮ P(·|·) : (Ω× Ω) → [0, 1] conditional probability measure.

Then, ρ(·|·) : (Σ× Σ) → R
+ is transformation cost function iff

A1. real-valued: ∃f , ρ(A|B) = f (P(A|B)) ∈ R

A2. additive: ρ(A ∩ B|C ) = ρ(B|C ) + ρ(A|B ∩ C )

A3. monotonic: ρ(A|B) > ρ(C |D) ⇐⇒ P(A|B) ≶ P(C |D)

Theorem: If f fulfills axioms A1–A3 for any (Ω,Σ,P), then f is of the
form

ρ(A|B) = −
1

α
log(P(A|B)), α ∈ R.
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Measure-Theoretic Formalization of Decisions
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Decisions

Problem:

◮ Given X , and U(x), find p(x) maximizing

∑

x∈X

p(x)U(x).

Constraints:

◮ However, there are many candidate p ∈ P, having
probabilities & costs

P(p|q) and ρ(p|q)

from some reference information state q.

◮ We define utility as cost that is “saved” (analogous to
external work)

u(A|B) = −ρ(A|B)
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Decisions (cont.)

◮ Identifying:

q(x) = P(x |q) (Prior)

p(x) = P(x |q ∩ p) (Posterior)

U(x) = u(p|x ∩ q)− u(p|q)

= u(x |q ∩ p)− u(x |q) (Utility)

we obtain (theorem)

u(p|q) =
∑

x

p(x)U(x)−
1

α

∑

x

p(x) log
p(x)

q(x)
.

◮ This is the negative free energy difference (NFED).
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Free Energy Principle

Let q be a probability distribution and U be a real-valued utility
over X . Given α ∈ R, the negative free energy difference
(NFED) is given by

−∆Fα[p] :=
∑

x

p(x)U(x) −
1

α

∑

x

P(x) log
p(x)

q(x)
.

Interpretation

◮ NFED = expected utility - transformation costs

◮ models net utility gain obtained in transforming q into p

◮ relative entropy models information content of transformation

◮ inverse temperature α models (transformation-) bits per utile

◮ higher inverse temperature −→ higher net utility gain
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Equilibrium Distribution

The solution to the NFED is the equilibrium distribution

p(x) =
1

Z (α)
q(x) exp

{

αU(x)
}

,

where Z (α) is the partition function

Z (α) =
∑

x

q(x) exp
{

αU(x)
}

.

The NFED extremum is

1

α
logZ (α) =

1

α
log

(

∑

x

q(x) exp
{

αU(x)
}

)

.
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NFED Extremum
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The inverse temperature α parameterizes the degree of control:

α → ∞ : 1
α
logZ −→ maxU(x) (maximum)

α → 0 : 1
α
logZ −→ Ex [U(x)] (expectation)

α → −∞ : 1
α
logZ −→ minU(x) (minimum)

Free Energy & Bounded Rationality



Operational Interpretation of Inverse Temperature

Problem
◮ Let M be pmf over finite X .

◮ Draw α i.i.d. samples x1, . . . , xα from M.

◮ Pick the maximum max{U(x0), . . . ,U(xα)}.

Theorem
◮ Let Q be pmf with same support as M.

◮ Let Mα be the pmf over the maximizing x after α draws.

◮ Then, there are δ > 0 and ξ > 0 depending only on M such that for all α,

∣

∣

∣

∣

∣

Q(x)eαU(x)

∑

x′ Q(x ′)eαU(x′)
−Mα(x)

∣

∣

∣

∣

∣

≤ e−(α−ξ)δ.

Intuition
Mα = {α iterations of “search algorithm”}.
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Decision Trees

Expectimax Minimax Expectiminimax

max

E

max

E

max

min

max

min

E

max

E

min

◮ Sequential decision problems are stated as decision trees and
solved using backward induction.

◮ Decision rules depend on system: stochastic, cooperative,
competitive, hybrid, . . .

◮ This intuitive distinction between “types of systems” is
formally unsatisfactory.

◮ Decision rules can be reexpressed in a unified way using the
free energy functional.
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Goal: Generalized Decision Trees

General

Emax minmax Eminmax

◮ Different operators express different
degrees of control (DoCs):

◮ max ⇔ full control
◮ E ⇔ no control
◮ min ⇔ full anti-control

◮ Goal: Find a generalized operator �
that expresses

◮ the 3 classical DoCs,
◮ + all the other DoCs in between.
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Change of Temperature

Problem
Can we change the inverse temperature with constant reference
and equilibrium distribution?

Theorem
Let p be the equilibrium distribution given α, U and q.

If α changes to β with fixed p and q, then U changes to V :

V (x) = U(x)−
(

1
α
− 1

β

)

log
p(x)

q(x)
.

Intuition
Fix information costs: C (x) = αU(x) = βV (x)
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Construction of Generalized Decision Trees

a) b) c)

a) q(x),U(x), α
∑

x

p(x)U(x) +
1

α

∑

x

p(x) log
p(x)

q(x)

b) q(xt |x1:t−1),S(xt |x1:t), α

∑

x≤T

p(x≤T )
T
∑

t=1

{

S(xt |x<t) +
1

α
log

p(xt |x<t)

q(xt |x<t)

}

c) q(xt |x<t),R(xt |x<t), β(x<t)

∑

x≤T

p(x≤T )
T
∑

t=1

{

R(xt |x<t) +
1

β(x<t)
log

p(xt |x<t)

q(xt |x<t)

}
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Generalized Optimality Equations

Given
Generalized decision problem q(xt |x<t), R(xt |x<t) and β(x<t).

...

V (x<t)

q(xt |x<t)
R(xt |x<t)

V (x≤t)

β(x<t)

Generalized Value/Utility

V (x<t ) =
1

β(x<t)
log

{

∑

xt

q(xt |x<t) exp
{

β(x<t )
[

R(xt |x<t) + V (xt )
]

}

}
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Conclusions

1. The free energy principle serves as an axiomatic foundation
for bounded rational decision-making.

2. It formalizes a trade-off between the gains of maximizing the
utility and the losses of transformation costs.

3. It establishes clear links to information theory and
thermodynamics.

4. Inverse temperature parameterizes the resource
limitations/degree of control.

5. It allows generalizing decision trees.
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Open Questions

1. What are the exact relations to:
◮ game theory,
◮ search theory,
◮ and computational complexity?

2. What are the implications for search algorithms?

3. What are the causal implications?

Free Energy & Bounded Rationality



References

1. Ortega, P.A. and Braun, D.A. Thermodynamics as a Theory

of Decision Making with Information Processing Costs.
ArXiv:1204.6481, 2012.

2. Ortega, P.A. Free Energy and the Generalized Optimality

Equations. European Workshop on Reinforcement Learning,
2012.

3. Braun, D.A., Ortega, P.A., Theodorou, E. and Schaal, S. Path
Integral Control and Bounded Rationality, IEEE Symposium
on adaptive dynamic programming and reinforcement learning,
pp. 202–209, 2011.

4. Ortega, P.A. A Unified Framework for Resource-Bounded

Agents Interacting with Unknown Environments, PhD Thesis,
Department of Engineering, University of Cambridge, 2011.

Free Energy & Bounded Rationality



The free energy principle 

in human sensorimotor control  
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Risk in Decision-Making 
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Decision Rule: Pick lottery 

with higher expected value 



Motor Control 

and Maximum Expected Gain 

Trommershauser et al. 2003 
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Motor Control 

and Maximum Expected Gain 

“explicit costs” 

Trommershauser et al. 2003 



Dynamic System 

Cost Function 

Todorov & Jordan, Nat. Neurosci. (2002) 

x(t): state 

u(t): control 

u(t) 

x(t) 

Optimal Feedback Control 
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Variational Principle 

Negative free energy is maximized in equilibrium 

 Estimation: Maximum Entropy principle given 

constraints on mean utility 

 Control: Maximum Utility principle given constraints on 

relative entropy 
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Equilibrium distribution 
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Equilibrium distribution 
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Observation Lotteries 

 p0 is default model 

•  anticipates rationality 

of environment (model 

uncertainty, ambiguity) 



Risk-sensitivity 

and model uncertainty 
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Experimental Studies 

 Study 1: Mean-variance trade-off 

 

 Study 2: Biasing of control gains 
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Study 1 

 The mean-variance trade-off 
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Study 2 

 Biasing of control gains 
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Model Prediction 
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Study 3 

 Biasing of sensorimotor estimation 
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Bayesian Sensorimotor 

Integration 

Körding & Wolpert, Nature, 2004 
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Model Prediction 

Risk-neutral estimator 
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with cost function 



Results 
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Conclusion 

 Humans show deviations from risk-neutral 

behavior in motor control 

 Risk-sensitivity implies a mean-variance 

trade-off 

 Risk-sensitivity implies changes in control 

gains for different levels of uncertainty 

 Sensorimotor learning can be described by 

risk-sensitive Bayesian models 
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