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Abstract

Most theoretical studies for correlated light-matter systems are performed within the long-

wavelength limit, i.e., the electromagnetic field is assumed to be spatially uniform. In this limit

the so-called length-gauge transformation for a fully quantized light-matter system gives rise to a

dipole self-energy term in the Hamiltonian, i.e., a harmonic potential of the total dipole matter

moment. In practice this term is often discarded as it is assumed to be subsumed in the kinetic

energy term. In this work we show the necessity of the dipole self-energy term. First and foremost,

without it the light-matter system in the long-wavelength limit does not have a ground-state, i.e.,

the combined light-matter system is unstable. Further, the mixing of matter and photon degrees

of freedom due to the length-gauge transformation, which also changes the representation of the

translation operator for matter, gives rise to the Maxwell equations in matter and the omittance

of the dipole self-energy leads to a violation of these equations. Specifically we show that with-

out the dipole self-energy the so-called “depolarization shift” is not properly described. Finally

we show that this term also arises if we perform the semi-classical limit after the length-gauge

transformation. In contrast to the standard approach where the semi-classical limit is performed

before the length-gauge transformation, the resulting Hamiltonian is bounded from below and thus

supports ground states. This is very important for practical calculations and for density-functional

variational implementations of the non-relativistic QED formalism. For example, the existence of

a combined light-matter ground state allows to calculate the Stark shift non-perturbatively.
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I. INTRODUCTION

Todays fundamental description of charged particles interacting with electromagnetic

fields is based on quantum-electrodynamics (QED) [1–3]. In the context of high-energy

physics, where the kinetic energy of the particles dominates, QED is usually formulated in

terms of a perturbative scattering theory and has been proven to be exceptionally accurate [2,

3]. If we are interested in the properties of molecular or solid-state systems, we are mainly

dealing with the low-energy limit of QED [4–6] and an approximate description of the

matter system in terms of the many-body Schrödinger equation is usually sufficient. In

this case the effect of the photons on the matter degrees of freedom is encoded in the

Coulomb interaction, which neglects the transversal photon degrees of freedom [4–6]. On

the other hand, in the context of quantum optics and photonics [7], the transversal degrees

of the electromagnetic field are the central object of interest and rather the matter degrees of

freedom are approximated. A common strategy is to only keep a few states that describe the

matter system and then to restrict the participating modes of the photon field, which leads

to a few-level-few-modes approximation, which in its simplest form is known as the Rabi

or Jaynes-Cummings model [7–9]. A different approach is to use the macroscopic Maxwell

equations [10] and to employ linear-response functions to fix the constitutive relations, i.e.,

the dependence of the polarization and magnetization on the external fields.

Recent experimental advances [11–17] at the interface between quantum chemistry, solid-

state physics and quantum optics have uncovered situations where the above usual theo-

retical simplifications of the full QED description become questionable [18–20]. In such

situations matter is strongly-coupled to photons which gives rise to novel phenomena such

as changes in chemical reaction rates [21, 22], appearance of attractive photons due to

correlated matter-photon states [23] or an increase in conductivity due to photon-matter

hybridization [24]. For such experiments to be described theoretically, light and matter

have to be treated on equal, quantized footing. Such a balanced description that reduces

in the different limits to the many-body Schrödinger equation on the one hand and to the

usual model Hamiltonians of quantum optics on the other is non-relativistic QED [5]. So

far non-relativistic QED has not been applied much in practice due to its inherent com-

putational complexity, but recent approaches such as the exact formal density-functional

reformulation of QED [6, 25, 26], generalized Green’s function methods [27] or extensions of
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quantum-chemical approximations [28], make non-relativistic QED computationally feasible

and already first calculations have been performed [18, 29].

To describe the above experimental situations, non-relativistic QED can be simplified

further. In situations such as those of cavity and circuit QED [30, 31] the long-wavelength

limit (dipole approximation) is implemented since in most cases the wave-length of the

relevant electromagnetic modes is much larger than the spatial extension of the molecular

system. The long-wavelength limit is the starting point in most investigations in quantum

optics and molecular physics. It has two equivalent formulations, which are called the

velocity and the length gauge, respectively [1, 32]. In the velocity gauge, which is just

the minimal-coupling prescription for a uniform vector potential, the square of the vector-

potential operator appears. This term can be absorbed by a change in the frequency and

the polarization direction of the electromagnetic field [32]. A different way to avoid the

square of the vector-potential operator is to make a unitary transformation and work in

the length-gauge picture (see equation (13)). This transformation leads to the appearance

of the so-called dipole self-energy term (see equation (18)), which is proportional to the

square of the total-dipole operator. The dipole self-energy, however, cannot be absorbed

by a change of frequency and polarization. Nevertheless, this term is often considered

unimportant and is neglected with arguments based on the thermodynamic limit in the

mean-field picture [32]. Moreover, in the case of the Rabi and Jaynes-Cummings model

this dipole self-energy term is just a constant energy offset and thus usually discarded and

often taken synonymously with the square of the vector potential of the electromagnetic

field [33, 34]. However, recent experimental and numerical results [35–38] highlight the

importance of the dipole self-energy for non-relativistic QED in the long-wavelength limit.

For instance, in Ref. [20] the polaritonic dispersion inside a cavity was measured and it was

found that the dipole self-energy had to be taken into account to fit with the experimental

data and in Ref. [18] some of us have shown numerically that without the dipole self-energy

the electron-nuclear-photon system becomes unstable for ultra strong-coupling situations.

In this work we show mathematically the necessity of the dipole self-energy term and its

physical significance for coupled matter-photon systems. More specifically, we show that no

ground-state exists without this term. We highlight how this term affects the translational

invariance and that it is necessary for the electric field to comply with the Maxwell equations

in matter. The dipole self-energy gives rise to the plasma frequency that subsequently leads
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to the so-called depolarization shift. We further show the appearance of the dipole self-

energy in the semi-classical limit which guarantees that a system subject to a static external

electric field is bounded from below. This makes it possible, e.g., to treat the Stark shift

non-perturbatively.

II. NON-RELATIVISTIC QUANTUM-ELECTRODYNAMICS IN THE LONG-

WAVELENGTH LIMIT

In the following we will consider the low-energy limit of QED, which is supposed to be

sufficient to capture most effects encountered in atomic, molecular and solid-state systems [1,

4, 5]. For simplicity we will employ the clamped-nuclei approximation, i.e., that we treat

the nuclei as fixed external attractive potentials, and consider electron-photon systems. The

extension to electron-nuclei-photon systems is straightforward and all results apply equally

to this more general case. Our starting point is the so-called Pauli-Fierz Hamiltonian [5]

that describes electrons minimally coupled with photons [1, 6, 32]

Ĥ =
1

2m

N∑
j=1

(
i~∇j +

e

c
Â(rj)

)2
+

1

4πε0

N∑
j<k

e2

|rj − rk|
+

N∑
j=1

vext(rj)

+
∑
n,λ

[
−~ωn

2

∂2

∂q2n,λ
+

~ωn
2
q2n,λ

]
. (1)

where we neglected the Pauli (Stern-Gerlach) term, i.e., σ̂ · B̂(r), where σ̂ is a vector of

the standard Pauli matrices and B̂(r) corresponds to the magnetic field, since it will not

contribute in the long-wavelength limit. Here m is the mass of the electron, ~ the reduced

Planck constant, e is the charge of the electron, c the velocity of light and Â(r) is the

quantized vector potential of the electromagnetic field in Coulomb gauge [3], given by the

expression

Â(r) =

(
~c2

ε0L3

) 1
2 ∑

n,λ

εn,λ√
2ωn

[
ân,λe

ikn·r + â†n,λe
−ikn·r

]
. (2)

Further, ωn = c|n|(2π/L) are the allowed frequencies in a quantization box of length L,

ε0 the vacuum permittivity, λ the two transversal polarization directions and εn,λ are the

transversal polarization vectors of each photon mode which are perpendicular to the direction

of propagation kn [3]. The operators ân,λ and â†n,λ are annihilation and creation operators,
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respectively, and obey the usual commutation relations

[ân,λ, â
†
m,κ] = δnmδλκ. (3)

The second term of equation (1) is the electron-electron interaction due to the longitudinal

part of the Coulomb-gauged photon field for L → ∞. The third term corresponds to an

external scalar potential that acts on the electrons, e.g., the attractive potential of the nuclei.

The last term of the Hamiltonian (1) corresponds to the energy of the photon field. This can

be deduced from the definition of the electromagnetic-energy density which is the electric

field squared plus the magnetic field squared. With the corresponding operators

Ê(r) =

(
~

ε0L3

) 1
2 ∑

n,λ

i

√
ωn
2
εn,λ

[
ân,λe

ikn·r − â†n,λe
−ikn·r

]
, (4)

B̂(r) =

(
~

ε0L3

) 1
2 ∑

n,λ

ikn × εn,λ√
2ωn

[
ân,λe

ikn·r − â†n,λe
−ikn·r

]
, (5)

the energy becomes

Ĥp =
ε0
2

∫
L3

d3r
[
Ê2(r) + c2B̂2(r)

]
=
∑
n,λ

~ωn
[
â†n,λân,λ +

1

2

]
. (6)

By introducing the displacement coordinates qn,λ and their conjugate momenta ∂/∂qn,λ we

can define the annihilation and creation operators as

ân,λ =
1√
2

(
qn,λ +

∂

∂qn,λ

)
and â†n,λ =

1√
2

(
qn,λ −

∂

∂qn,λ

)
. (7)

Substituting these expressions into equation (6) we obtain the equivalent form of the photon

Hamiltonian

Ĥp =
∑
n,λ

~ωn
[
â†n,λân,λ +

1

2

]
=
∑
n,λ

[
−~ωn

2

∂2

∂q2n,λ
+

~ωn
2
q2n,λ

]
. (8)

Assuming a form factor for the photon modes, i.e., a square integrable mask function that

suppresses infinitely high photon frequencies, and allowing external fields of Kato type the

Pauli-Fierz Hamiltonian is bounded from below and thus obeys a variational principle for

ground states [5] (see Sec. III for details). We note that if we replaced the non-relativistic

kinetic energy operator by the fully relativistic Dirac momentum, the resulting Hamiltonian

would no longer be bounded from below and thus have no ground state. This is the main

reason to work in the non-relativistic limit of QED. However, in practice a simplified form of
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the Pauli-Fierz Hamiltonian is used when describing, e.g., atoms or molecules in an optical

cavity or subject to an optical laser pulse (described still fully quantized). In this case

the wavelength of the relevant photon modes is much larger than the size of the electronic

system, and we can neglect the spatial variation of the electromagnetic field e±ikn·r ≈ 1 (see

Sec. III for a more precise statement). This approximation is known by different names: it is

either called the long-wavelength or optical limit as well as dipole approximation [1, 5, 32].

If we restrict ourselves to arbitrarily many but a finite number M of modes α ≡ (n, λ) , the

vector potential Â(r) in this limit is given by

Â =
M∑
α=1

Cεα√
ωα
qα where C =

(
~c2

ε0L3

) 1
2

. (9)

As a consequence the full matter-photon Hamiltonian of equation (1) in the long-wavelength

approximation takes the following form

ĤV =
1

2m

N∑
j=1

[
−~2∇2

j + 2i
e~
c
Â · ∇j +

e2

c2
Â2

]
+

1

4πε0

N∑
j<k

e2

|rj − rk|

+
N∑
j=1

vext(rj) +
M∑
α=1

[
−~ωα

2

∂2

∂q2α
+

~ωα
2
q2α

]
, (10)

In this dipole approximation the square of the vector potential can be eliminated by introduc-

ing new frequencies and polarizations for the photon modes [32]. We will not implement these

changes to eliminate Â2 since this term will disappear in the following. We proceed by per-

forming a unitary transformation, which is called the length-gauge transformation [1, 5, 32]

and it is defined as

Ĥ ′L = Û †ĤV Û , Û = exp[
i

~
e

c
Â ·R], (11)

where R =
N∑
i=1

ri is the total dipole operator. The individual terms in the Hamiltonian (10)

transform as

2i
~e
c
Â · ∇i −→ 2i

~e
c
Û †Â · ∇iÛ = 2i

~e
c
Â · ∇i −

2e2

c2
Â2,

−~2∇2
i −→ −~2Û †∇2

i Û = −~2∇2
i − 2i

~e
c
Â · ∇i +

e2

c2
Â2,

e2

c2
Â2 −→ e2

c2
Û †Â2Û =

e2

c2
Â2, (12)

− ∂2

∂q2α
−→ −Û † ∂

2

∂q2α
Û = − ∂2

∂q2α
− i2eCεα ·R

~c√ωα
∂

∂qα
+

(
eCεα ·R
~c√ωα

)2

.
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The other terms of the Hamiltonian (10) are invariant since they commute with the operator

Û . The Hamiltonian after the length gauge transformation looks as follows:

Ĥ
′

L = − ~2

2m

N∑
i=1

∇2
i +

1

4πε0

N∑
i<j

e2

|ri − rj|
+

N∑
i=1

vext(ri)

+
M∑
α=1

[
−~ωα

2

∂2

∂q2α
+

~ωα
2
q2α − i

√
ωαeCεα ·R

c

∂

∂qα
+

~ωα
2

(
eCεα ·R
~c
√
ωα

)2
]
. (13)

We thus see that the square of the vector potential has been exactly eliminated after the

length gauge transformation and a new term appears in the Hamiltonian, an electronic

harmonic potential (εα ·R)2 . This is the dipole self-energy term. But, as can be seen from

equations (12), this electron-electron interaction does not come from Â2 and can thus not

be removed by the same redefinitions of frequencies and polarizations that would absorb

Â2 in the velocity gauge. The dipole self-energy and the vector-potential-operator-squared

terms are clearly not equivalent.

We further perform a variable transform that effectively swaps between conjugate mo-

mentum and photon coordinate as [6]

i
∂

∂qα
→ pα and qα → −i

∂

∂pα
. (14)

The transformation above is merely a Fourier transformation of the mode α of the full

wave-function

Ψ′(..., qα, ...) −→ Ψ(..., pα, ...) =
1√
2π

∫ ∞
−∞

e−iqαpαΨ′(..., qα, ...)dqα. (15)

This variable transformation leaves the commutation relations unchanged. The Hamiltonian

in length gauge is

ĤL = − ~2

2m

N∑
i=1

∇2
i +

1

4πε0

N∑
i<j

e2

|ri − rj|
+

N∑
i=1

vext(ri)

+
M∑
α=1

[
−~ωα

2

∂2

∂p2α
+

~ωα
2

(
pα −

Ce

~c
εα ·R√
ωα

)2
]
. (16)

This Hamiltonian contains the explicit bilinear electron-photon interaction

V̂int = −
M∑
α=1

(λα ·R) pα where λα =

√
ωαeCεα
c

, (17)
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as well as the dipole self-energy [1, 5, 6]

ε̂dip =
M∑
α=1

~ωα
2

(
eC

c~
εα ·R√
ωα

)2

. (18)

As we have seen from equations (12), these terms arise because the length-gauge transforma-

tion (11) mixes matter and photon degrees. Indeed, the coordinate pα does not correspond

anymore to a purely photonic quantity but rather to the electromagnetic displacement

field that contains besides the electric field also the polarization of the matter system (see

Sec. IV A for details). A different way to see that the length-gauge Hamiltonian mixes mat-

ter and photon degrees is how the simple translational invariance of the electronic subsystem

is expressed in terms of the emerging polaritonic coordinates.

To do so we first take vext(r) = 0, and thus the original Hamiltonian (10) becomes

invariant under translations r→ r+ a, where a is an arbitrary vector. With the help of the

translation operator on the configuration space of the electrons

T̂ (a) = exp

(
i

~

N∑
j=1

a · p̂j

)
= exp

(
N∑
j=1

a · ∇j

)
, (19)

this can be expressed equivalently by

[ĤV , T̂ (a)] = 0. (20)

Clearly, applying the same naive translation to the corresponding length-gauge Hamilto-

nian (16) will not work and T̂ (a) will not commute with ĤL in general. However, since the

velocity gauge Hamiltonian is invariant under translations ĤV = T̂ (a)ĤV T̂
†(a) and by using

the length-gauge transformation (11) we find that the length gauge Hamiltonian is invariant

under

Ĥ ′L = Û †T̂ (a)ÛĤ ′LÛ
†T̂ †(a)Û . (21)

Thus in the length gauge the translation operator is transformed as well via T̂ ′L(a) =

Û †T̂ (a)Û , with the help of the Baker-Hausdorff-Campbell formula can be written as:

T̂ ′L(a) = Û †T̂ (a)Û = exp

[
i

~

N∑
j=1

a ·
(
p̂j +

e

c
Â
)]

. (22)
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Finally, after the Fourier transformation (14) we find

T̂L(a) = exp

[
i

~

N∑
j=1

a ·

(
p̂j +

e

c

M∑
α=1

Cεα√
ωα

(
−i ∂
∂pα

))]

= exp

[
i

~

N∑
j=1

a · p̂j +
i

~

M∑
α=1

aα

(
−i~ ∂

∂pα

)]
, (23)

where aα = Ceεα·Na/
√
~2c2ωα . Thus the original translation of only the electronic subspace

becomes a generalized translation in the full polaritonic configuration space of dimension

3N +M such that

(r1, ..., p1, ...) −→ (r1 + a, ..., p1 + Ceε1 ·Na/
√

~2c2ω1, ...). (24)

That this is true can be easily verified if we use this polaritonic translation where both

matter and photons are shifted and apply it to the length-gauge Hamiltonian (16). Indeed

we find that the crucial term (
pα −

Ce

~c
εα ·R√
ωα

)
(25)

is invariant, which implies that the naive picture that r corresponds to matter and p corre-

sponds to photon degrees is not valid. Both are mixtures of matter and photons and thus

polaritonic in nature. We have therefore reformulated the original velocity-gauge Hamilto-

nian in a dressed matter-photon/polaritonic basis [7, 18, 39].

Before we move on to investigate how neglecting the dipole self-energy term ε̂dip affects

non-relativistic QED in the long-wavelength limit, we point out a further important con-

sequence of the dipole approximation. Upon assuming a uniform field, i.e., e±ikn·r ≈ 1,

the energy expression (6) does no longer hold in general. This problem already appears for

a single photon mode, in which case the corresponding electric (4) and magnetic field (5)

operators reduce to

Ê = C
i

c

√
ω

2
ε
[
â− â†

]
, (26)

B̂ = C
i

c

k× ε√
2ω

[
â− â†

]
. (27)

Using equations (26) and (27) in equation (6) results in

Ĥp = ~ω
(
ââ† + â†â− â2 −

(
â†
)2)

. (28)

Consequently we see that applying the dipole approximation to the original energy expression

in terms of the electric and magnetic field operators will not lead to the usual form of the
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energy of the electromagnetic field. Hence it is crucial to only apply the dipole approximation

after we have made the photon energy expression independent of the mode functions, i.e.,

Eq. (8). In Sec. IV B we will see that also the semi-classical limit of light-matter systems

depends on whether one first performs the dipole approximation and then the semi-classical

limit or vice versa.

III. NO GROUND-STATE WITHOUT THE DIPOLE SELF-ENERGY

In the following we are interested in the spectral properties of the velocity and length

gauge Hamiltonians, specifically in the question whether they support a ground-state. This

question is paramount if we want to have a variational principle or employ an extension

of ground-state density-functional theory [40] to treat non-relativistic QED in the dipole

approximation.

But before we want to make more precise what we mean by a ground-state and the dipole

approximation. In most cases if the uncoupled, i.e., purely Coulombic, Hamiltonian has a

ground-state then so does the minimal-coupling Hamiltonian [5]. A ground-state means that

we cannot find any other state that has less energy, i.e., for all Ψ in the self-adjoint domain

of the Hamiltonian it holds that 〈Ψ|ĤΨ〉 ≥ E0, where E0 is the ground-state energy. Indeed,

for a broad class of potentials, e.g., vext(r) ∈ L2(R3) +L∞(R3) [5, 41, 42] it holds that both

Hamiltonians are bounded from below by some E0 (but for such a broad class a ground-state

does not necessarily exist, e.g., for vext(r) = 0 we have only scattering states and the lower

bound is E0 = 0). Thus in order to check for the existence of a ground-state we need to vary

over all possible wave-functions in the domains of the respective Hamiltonians and show that

they are bounded from below. This includes by construction also all functions that are non-

zero only within a ball of finite radius, which can be located anywhere in R3, and infinitely

many times differentiable (see as an example the function in equation (38)) [5, 41, 42].

Since a ground-state is exponentially localized, i.e., falls off exponentially (but never

becomes zero) away from the binding potential [5, 41], we can expect that if only modes

with a wavelength much larger than the extension of the matter system are important, e.g., in

the case of optical cavities, approximating the mode functions in equation (2) by a constant

will only slightly change the exponential tails of the ground-state wave-function. This is the

working assumption of the dipole approximation of equation (10). The resulting velocity-
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gauge Hamiltonian is bounded from below and thus has the basic requirement for such an

(exponentially localized) ground-state. Since the length-gauge Hamiltonian of equation (16)

is merely a unitary transform, the same holds for ĤL. If the approximate Hamiltonian would

be unbounded from below, then we cannot have an (exponentially localized) ground-state,

contradicting the basic dipole assumption.

However, often the dipole self-energy of the electron ε̂dip that arises in the length-gauge

picture is ignored based on the argument that it is a quantity which depends on the nor-

malization volume of the field and for interactions of photons with an individual electron or

atom one may take the limit L3 →∞ and in this case ε̂dip → 0 [32]. The dipole self-energy is

supposed to be important only in the thermodynamic limit where N →∞. Another reason

why the dipole self-energy is often ignored in practice in fields like multi-photon processes in

atomic and molecular physics [32] or cavity and circuit QED [7], is due to simplified models

of matter-photon interaction. For instance, assuming that only the ground-state |g〉 and

the first excited state |e〉 of the bare matter system contribute to the dynamics such that

Ĥe ∼ Eg|g〉〈g| + Ee|e〉〈e| and that one mode described by p = (â + â†)/
√

2 is in resonance

with this transition ~ω = Ee − Eg we can approximate the length-gauged matter-photon

Hamiltonian by [7]

Ĥ ′R =
~ω
2
σ̂z + ~ωâ†â− ~ΩR

2
σ̂x(â+ â†) +Gσ̂2

x, (29)

where we assumed that 〈g|(ε ·R)g〉 = 〈e|(ε ·R)e〉 = 〈g|(ε ·R)2e〉 = 0, ΩR =
√

2ωeC|〈g|ε ·

Re〉|/(c~) and G = 〈g|ε̂dipg〉+ 〈e|ε̂dipe〉. Here the last term σ̂2
x is just the identity operator in

the two-dimensional electronic subspace and consequently just gives a constant energy offset.

Thus, for this reduced model we can drop the last term of the Hamiltonian of equation (29),

which corresponds to the dipole self-energy, and we obtain the Rabi model Hamiltonian [7, 8]

ĤR =
~ω
2
σ̂z + ~ωâ†â− ~ΩR

2
σ̂x(â+ â†). (30)

In this Rabi Hamiltonian ĤR we can perform the rotating wave approximation (RWA) [7, 9]

in which σ̂x(â+ â†)→ σ̂+â+ σ̂−â
†, where σ̂x = σ̂++ σ̂−, and we obtain the Jaynes-Cummings

model Hamiltonian [7, 9]

ĤJC =
~ω
2
σ̂z + ~ωâ†â− ~ΩR

2

(
σ̂+â+ σ̂−â

†) . (31)

In the case that we consider N identical matter systems coupled via the RWA we obtain the
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FIG. 1. Schematic illustration of a matter system in a cavity coupled to a single-mode field,

λα is the coupling-strength polarization vector of the mode α as defined in equation (17). The

propagation is along the z-direction and the field is polarized perpendicularly. The extension of

the matter system (in red) is assumed to be much smaller such that we can effectively assume the

electron to be in R3.

Dicke model Hamiltonian [44]

ĤD = ~ωâ†â− ~ΩR

2

(
Ŝ+â+ Ŝ−â

†
)

+
~ω
2
Ŝz (32)

where Ŝ+ , Ŝ− and Ŝz are collective operators defined as

Ŝ± =
N∑
i=1

σ̂i± and Ŝz =
N∑
i=1

σ̂iz. (33)

Thus more advanced models that are based on the Rabi or Jaynes-Cummings Hamiltonian,

e.g., the Dicke model, do often not contain the dipole self-energy term.

Now, to investigate how the dipole self-energy term impacts the spectral properties of

the length-gauge Hamiltonian we will consider what happens upon ignoring this harmonic

self-interaction. For simplicity we will restrict to the one electron and one photon mode

case, i.e., N = M = 1. The general case of arbitrary many electrons and modes can be

treated in a similar manner and is presented for completeness in Appendix A. In the simple

case the Hamiltonian (16) takes the form

ĤL = − ~
2m
∇2 − ~ω

2

∂2

∂p2
+

~ω
2

(
p− Ce

~c
ε · r√
ω

)2

+ vext(r). (34)
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It describes a single-active electron system coupled to a single mode of a high-Q cavity, i.e.,

we do not consider dissipation of the photon mode. The inclusion of dissipation, however, will

not change the outcome of the following discussion. As is shown in Fig. 1, the propagation

direction of the photons can be assumed along the z-direction and the field is polarized

perpendicular to it. We further assume that the electron can leave the cavity also through

the mirrors and thus we consider the full space R3 in accordance to the minimal-coupling

and the uncoupled problem. We will comment on this assumption at the end of this section.

The Hamiltonian without the dipole self-energy Ĥ
′
= ĤL − ε̂dip reads as

Ĥ
′
= − ~

2m
∇2 − ~ω

2

∂2

∂p2
+

~ω
2
p2 − (λ · r) p+ vext(r), (35)

where the photon polarization is included in

λ =
Ce
√
ωε

c
. (36)

The Hamiltonian ĤL, as discussed above, is bounded from below. However, is Ĥ ′ bounded

from below as well, which is a necessary prerequisite for a ground-state to exist? To answer

this question, let us consider a trial wave-function and we calculate its energy with respect

to Ĥ
′
. The photonic part of the wave-function is described by the function

Φ(p) =
1√
2

[φ1(p) + φ2(p)] , (37)

where the functions φ1(p) and φ2(p) are the normalized ground and first excited eigen-states

of the harmonic oscillator [42, 45]. For the electronic part of the wave-function we consider

Fa(r) =


N exp[− 1

1−|r−a|2 ], if |r− a| < 1

0, if |r− a| ≥ 1

where a = aκ, a ∈ R

(38)

where κ is an arbitrary vector and a an arbitrary parameter. This function, shown in

Fig. 2, is non-zero only within the unit ball |r − a| < 1, is normalized, with N being its

normalization constant, and is infinitely many times differentiable. We could have chosen

any other well-behaved function but we fix this one for definiteness. Thus, the complete

wave-function will be the tensor product of Fa(r) and Φ(p),

Ψ = Fa(r)⊗ Φ(p). (39)
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FIG. 2. Schematic one-dimensional illustration of the mollifier Fa(r). The mollifier Fa(r) and also

all its derivatives are non-zero only within the unit ball |r− a| < 1.

The wave-function Ψ is part of the domain of ĤL since 〈ĤLΨ|ĤLΨ〉 < ∞ and also of Ĥ ′.

The energy with respect to Ĥ ′ consists of four different terms

〈Ψ|Ĥ ′Ψ〉 = − ~2

2m
〈Fa|∇2Fa〉+ 〈Φ|ĤpΦ〉+ 〈Fa|V̂extFa〉+ 〈Ψ|V̂intΨ〉. (40)

The first term is the kinetic energy of the electron, the second is the energy of the photons, the

third is the potential energy and the last term is the contribution of the bilinear interaction

to the energy. The kinetic energy of the electron reads

− ~2

2m
〈Fa|∇2Fa〉 = −~2|N |2

2m

∫
|r−a|<1

e
− 1

1−|r−a|2∇2
(
e
− 1

1−|r−a|2
)

d3r. (41)

Since the kinetic energy operator is translational invariant, we can perform the transforma-

tion r→ r + a without changing its value. Thus we have

− ~2

2m
〈Fa|∇2Fa〉 = − ~2

2m
〈F0|∇2F0〉 = (42)

= −~2|N |2

2m

∫
|r|<1

e
− 1

1−|r|2∇2
(
e
− 1

1−|r|2
)

d3r = T <∞. (43)

The second term becomes

〈Φ|ĤpΦ〉 =
1

2
(E1 + E2) where En = ~ω (n+

1

2
) ∀ n ∈ N . (44)
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Next we estimate the potential energy of the electron due to the external potential. Without

loss of generality (we comment on this at the end of this section) we choose the external

potential to be some negative, attractive potential and consequently the contribution of vext

will be negative as is the usual case for atomic and molecular systems, i.e.,

〈Fa|V̂extFa〉 = −Va where Va ≥ 0. (45)

Finally, the energy of the bilinear interaction

〈Ψ|V̂intΨ〉 = −〈Φ|pΦ〉〈Fa| (λ · r)Fa〉 (46)

with 〈Φ|pΦ〉 = 1 becomes

〈Ψ|V̂intΨ〉 = −λ · 〈Fa|rFa〉 = −|N |2
∫

|r−a|<1

λ · re−
2

1−|r−a|2 d3r. (47)

We perform again the translation r→ r + a and the integral will change as follows

〈Ψ|V̂intΨ〉 = −|N |2
∫
|r|<1

λ · r e−
2

1−|r|2 d3r − λ · a 〈F0|F0〉 = −λ · a = −a (48)

where we now have chosen κ = λ/|λ|2. The first integral of equation (48) is zero. From

the expression above we see that the contribution of the bilinear interaction to the energy is

proportional to −a. Summing all the different contributions, we find the total energy to be

〈Ψ|Ĥ ′Ψ〉 = T +
1

2
(E1 + E2)− Va − a ≤ T +

1

2
(E1 + E2)− a ∼ −a . (49)

From this result it becomes clear that the Hamiltonian is unbounded from below, since the

parameter a can be chosen arbitrarily (Fa can be moved further and further away from the

origin) and we can therefore lower the energy of Ĥ
′

as much as we want. Thus, we conclude

that no ground-state exists without the dipole self-energy. This is not so surprising because

we have subtracted a harmonic oscillator from the Hamiltonian (34) and despite claims in

literature this term is dominant and cannot be discarded. Maybe even more striking is that

if we transform Ĥ ′ back into the original velocity gauge, we find due to the fact that ε̂dip

commutes with the transformations

Ĥ ′V =
1

2m

[
i~∇+

e

c
Â
]2

+ vext(r) + ~ω
(
â†â+

1

2

)
− 1

2~
(λ · r)2 . (50)

It seems obvious that discarding the dipole self-energy will make the system unstable. Let

us further point out that Ĥ
′

will in general not have any eigen-states and we will have a
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purely continuous spectrum with only scattering states. Thus to use Ĥ
′

makes only sense

in a time-dependent setting. This difference we will also encounter in Sec. IV B in the case

of the semi-classical limit.

Let us finally comment on the choice of considering the particles to be in full space while

we used a box for the construction of the photon field, as well as a purely negative external

potential vext(r). It is, first of all, straightforward to allow for different lengths of the

quantization volume in different directions, such that we can model besides free space also a

planar cavity. Further, it would also not be a problem to use different boundary conditions,

say, zero boundary conditions along the z-direction (see Fig. 1) and periodic ones along

x and y and finally take the limit to infinity for these unconstrained directions [5]. But

since all these considerations become superfluous for the general investigation about the

spectral properties of the length-gauge Hamiltonian with or without the dipole self-energy

we employed the periodic setting. The explicit form of the photon field does not change

the harmonic nature of the dipole self-energy. For investigating the ground-state of the

length-gauge Hamiltonian it does, however, matter if we enclosed the particles in a finite

volume. In this case we could not lower the energy of Ĥ
′

indefinitely. But we would find a

ground-state that is localized at the edge of the box provided the box is large enough. Such

a wave-function is not a physical ground-state and we would have a maximally allowed box

length for a given atomic or molecular Hamiltonian before the subtracted dipole self-energy

becomes dominant. The inclusion of the dipole self-energy, however, allows for a box-size

independent limit, which seems a physically desirable property. Furthermore, if we consider

the case of a high-Q cavity (see Fig. 1), it is reasonable to only constrain the particles along

the quantization direction. Since the field is perpendicular, the particles will be ionized along

the unconstrained directions and again we are unbounded from below. Thus to use the full

space R3 is very sensible and we could even model the barrier of the mirrors for the particles

by just putting a very large repulsive potential at the assumed positions of the mirrors.

But even a very large repulsive, i.e., positive, potential will not help to guarantee a ground-

state. Since all potentials we consider are in the Banach space L2(R3) + L∞(R3), in the

limit |r| → ∞ only the bounded part of the potential survives. Thus by shifting Fa further

and further away from the origin only an energy contribution proportional to the limiting

constant vext(r)→ v∞ext contributes. Thus also a positive potential in L2(R3) + L∞(R3) will

not be able to compensate the linear decrease in energy due to the coupling.
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IV. SIGNIFICANCE OF THE DIPOLE SELF-ENERGY

Clearly, as shown above the dipole self-energy is very important and neglecting this

term dramatically changes the physical properties of the combined light-matter system.

Its harmonic confinement is an explicit manifestation that we assumed the wavelength of

the photon field to be much larger than the extend of the matter system. Without it an

exponentially localized ground-state becomes impossible. Even for arbitrarily small but

finite coupling to the field the system decays and has no stable ground-state. The harmonic

self-energy term is therefore necessary to guarantee a variational principle and to allow for

static properties of the combined matter-photon system. But besides this dramatic effect,

there are several other points where the dipole self-energy becomes important.

A. The Maxwell equations in matter

Let us first consider the consequences of the dipole self-energy for the photon field. As

previously stated, a peculiarity of the length gauge transformation is the mixture of the

electronic and photonic degrees of freedom. Therefore the “photonic” coordinates pα do not

correspond to pure electromagnetic quantities. This can be seen if we determine how the

electric-field Ê = −1
c
dÂ
dt

looks like in the length-gauge picture. From the definition of the

vector-potential operator (9) in the length-gauge picture, i.e.,

Â =
M∑
α=1

Âα, where Âα = −iCεα√
ωα

∂

∂pα
, (51)

the electric field becomes

Ê = − i

c~
[ĤL, Â] =

M∑
α=1

Êα where Êα =
Cεα
c

√
ωα

(
pα −

Ceεα ·R
~c
√
ωα

)
. (52)

By defining the polarization operator

P̂ = ε0

M∑
α=1

εα
C2e (εα ·R)

~c2
, (53)

we find that the pα actually correspond to the displacement field operator

D̂ = ε0

M∑
α=1

C
√
ωαεα
c

pα (54)
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of the Maxwell equations in matter, i.e., D̂ = ε0Ê+ P̂. This result, however, would still hold

even if we discarded the dipole self-energy term. The omittance of the dipole self-energy

term will show up in higher moments and will lead to a violation of the equations of motion.

To see this we first consider equations of motion of Â and Ê for the case of the Hamiltonian

with the dipole self-energy. By taking the first time-derivative for the electric field, i.e.,

d2

dt2
Â = −c d

dt
Ê, we obtain

d2

dt2
Â +

∑
α

ω2
αÂα = i

M∑
α=1

εα
C2e

mc

N∑
i=1

(εα · ∇i). (55)

The equation of motion is the mode resolved inhomogeneous Maxwell equation, where the

inhomogeneity corresponds to the projections on the transversal part of the current operator

Ĵ(r) = e~
2mi

∑N
i=1{δ3(r − ri)

−→
∇ i −

←−
∇ iδ

3(r − ri)}. It is important to note that this is indeed

the full physical current since due to the length-gauge transformation this also contains the

diamagnetic part due to the vector-potential operator [46]. For the equation of the electric

field we make the specific choice vext(r) = 0, since this simplifies the further analysis. This

choice also includes the special but important case of the homogeneous electron gas. The

Maxwell equation for the electric field then becomes

d2

dt2
Ê = −

M∑
α=1

ω2
αÊα −

C2e2N

m~c2
Ê = −

M∑
α=1

(ω2
α + ω2

p)Êα. (56)

The equation of motion of the electric field follows the well-known mode resolved Maxwell

equation. Moreover, we find that there are two contributions to the frequencies of the electric

field. The frequencies ωα, which are the bare frequencies of the photons, and the matter

contribution ωp =
(
C2e2N
m~c2

) 1
2
. After rearranging the constants the matter contribution turns

out to be the plasma frequency

ω2
p =

ne2

mε0
, (57)

where n = N/L3. The total frequencies of the electric field therefore are

ω̃2
α = ω2

α + ω2
p. (58)

This change in frequency is known as the ”depolarization shift” [47] and has been observed

experimentally, for instance, in resonant matter-photon systems in the ultra-strong coupling

regime [35–38, 48]. On the other hand, if we do ignore the dipole self-energy and make the
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specific choice of vext(r) = 0, the equation for the electric field becomes

d2

dt2
Ê +

N∑
α=1

ω2
αÊα = −C

2e2N

m~c2
D̂. (59)

The omittance of the dipole self-energy therefore leads to a wrong description of the electro-

magnetic part of the coupled system since in the right-hand side of equation (59) we do not

have the electric field Ê but the displacement field D̂. The reason is the mixing of matter

and photon degrees in the length-gauge transformation. Therefore, the dipole self-energy

term must not be ignored in order to get a complete physical description.

B. The semi-classical limit

In the length gauge Hamiltonian (16), we showed that the dipole self-energy term ε̂dip

emerges due to the photon coordinates. This term will therefore not appear if we perform

the semi-classical limit already in the original velocity-gauge Hamiltonian. Hence, the semi-

classical limit performed after the length-gauge transformations will be different. This is a

further point where the dipole self-energy term becomes significant.

The standard semi-classical limit treats the vector potential in equation (10) as an ex-

ternal field that interacts with the electronic system. Since a uniform, time-independent

classical vector potential has no physical effect, one needs to go to a time-dependent vector

potential A(t) which gives rise to an electric field via E(t) = −1
c

d
dt
A(t). Performing then

the length-gauge transformation (11), where we now use a time-dependent classical vector

potential, will eliminate the A2 and the A · ∇ terms as in the quantum case. However, the

new interaction between field and matter now emerges with ΨL(t) = Û †(t)ΨV (t) due to

i~
∂

∂t
ΨL(t) = −eE(t) ·RΨL(t) + Û †(t)i~

∂

∂t
ΨV (t), (60)

not due to the transformation of the photon coordinates as shown in equation (12). Conse-

quently the standard semi-classical length-gauge Hamiltonian

Ĥsc(t) = T̂e + Ŵe + V̂ext − eR · E(t) (61)

is based on the time-dependent Schrödinger equation. If we now take a static electric field

and turn this into an eigen-value problem we encounter the same problems as with Ĥ
′
. We

will have no ground-state unless E = 0. Since no ground-state exists, this raises problems,
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e.g., if we want to treat the Stark effect non-perturbatively. The standard semi-classical

limit for E 6= 0 only makes sense as a time-dependent problem.

If we now perform the semi-classical limit after the length-gauge transformation, i.e., we

start from the Hamiltonian (16), discard the “kinetic” term of the modes and treat pα as a

number, we get a coupled Maxwell-Schrödinger equation

Ĥ ′asc = T̂e + Ŵe + V̂ext +
M∑
α=1

~ωα
2

(
pα −

Ce

~c
εα ·R√
ωα

)2

, (62)

where we determine pα from its equation of motion using the Hamiltonian (16)

d2

dt2
pα(t) = −ω2

αpα(t) +
ωα
~
λα ·R(t). (63)

Here R(t) = 〈ψ(t)|Rψ(t)〉 and ψ(t) a purely electronic wave-function. For a static problem

we therefore find, in accordance to the fact that pα actually corresponds to the displacement

field, that we are left with the polarization term only, i.e., in equilibrium D = P[ψ] = 〈ψ|P̂ψ〉

and the electric field is zero as it should for an eigen-state [40, 49]. If we further choose a

symmetric binding potential at the origin, the eigen-states have zero dipole-moment and we

reduce to the usual Hamiltonian Ĥe plus the dipole-self energy. If we want to have a non-zero

electric field we have to couple the photons to a time-dependent external current [6, 26] that

gives rise to the same E(t) as in the standard semi-classical limit and if we make this field

static we arrive (up to a gauge shift) at an alternate form of the semi-classical limit

Ĥasc = T̂e + Ŵe + V̂ext − eR · E−
e

ε0
R ·P[ψ] + ε̂dip, (64)

which is a non-linear equation for the electronic subsystem only. It is bounded from be-

low due to the dipole self-energy term and thus supports ground-states in contrast to the

standard limit. If we instead fix the displacement D, which implies that we apriori know

the total field consisting of E and the induced field P, i.e., we just fix pα in equation (62)

without coupling to the Maxwell equation, we can remove the non-linearity and find

Ĥ ′asc = T̂e + Ŵe + V̂ext −
e

ε0
R ·D + ε̂dip. (65)

Indeed, if we find an eigen-state ψ of equation (64) for a given E and we determine the

polarization P[ψ], we can use the resulting D in equation (65) and trivially recover the same

solution ψ.
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Finally, by using Âtot(t) = (Â + A(t)) and combining both above derivations we can

include also time-dependent fields. Note, however, that we can always exchange an external

field by an appropriately chosen external time-dependent current [49]. To conclude, the semi-

classical limit performed after the length-gauge transformations supports eigen-states due

to the presence of the dipole self-energy term in contrast to the standard semi-classical limit.

It therefore allows to treat equilibrium effects, such as the Stark effect, non-perturbatively

but can also be applied to non-equilibrium situations, such as the ac-Stark shift.

V. CONCLUSION AND OUTLOOK

In this work we have shown the fundamental role played by the usually neglected dipole

self-energy term for coupled light-matter systems in the long-wavelength limit. Without it

no ground-state of the combined photon-matter system can exist. This dipole self-energy

term is not equivalent to the vector-potential operator squared and can therefore not be

absorbed by simple redefinitions of frequency and polarization. Besides this key result we

have highlighted several important consequences of the use of the length-gauge form of non-

relativistic QED, such as the emergence of polaritonic coordinates and the corresponding

change of the translational invariance. Moreover, we have shown how the dipole self-energy

influences the corresponding Maxwell equations and leads, e.g., to the “depolarization shift”

in the ultra-strong coupling regime. Further, we have introduced a different semi-classical

limit where the dipole self-energy term appears which makes this semi-classical Hamiltonian

bounded from below, in contrast to the standard form, and allows to treat, e.g., the Stark

shift non-perturbatively.

The basic assumption we employed to establish that no ground-state exists without the

dipole self-energy is that we consider the particles in infinite space. In contrast, the dipole

approximation with the dipole self-energy is bounded from below for a broad class of po-

tentials and thus has the prerequisite to support (exponentially localized) ground-states,

which is the working assumption of the dipole approximation. We have argued in the end of

Sec. III why it is physically reasonable similarly to the full minimal-coupling and uncoupled

(purely Coulombic) problem to consider the particles in infinite space. We note that we

did not consider under which conditions the dipole approximation is reasonable in the first

place. Although it is expected that in most cases it will have an (exponentially localized)
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ground-state if also the corresponding minimal-coupling problem has a ground-state, it is

not clear a priori whether only the exponential tails of the ground-state wave-function will

be affected by the approximation. This will be subject of future research.

The presented results have a direct consequence for static properties of coupled light-

matter systems in the long-wavelength limit, both for the case of quantized electromagnetic

fields as well as for static classical electric fields. The description of such properties beyond

model-system or perturbation approaches needs to include the dipole self-energy. Ab-initio

techniques for coupled light-matter systems, such as ground-state density-functional the-

ory [50] and its extension to quantized fields [40], therefore crucially depend on this harmonic

term. As shown in, e.g., Ref. [18] this term dramatically changes how the properties of a

matter-photon system adopt upon increasing the effective coupling strength. Since changing

chemical properties due to strong matter-light coupling in, e.g., polaritonic chemistry [17] is

experimentally feasible, reliable ab-initio methods that can handle such situations become

invaluable. But the inclusion of the dipole self-energy term will clearly also have an impact

on the time-dependent situation. Since the spectrum of the coupled light-matter Hamil-

tonian with and without this term is dramatically different, the resulting time-dependent

wave functions will differ. Under which conditions these differences become evident is an

interesting future research perspective. Furthermore, the dipole self-energy influences also

the photonic observables. The presented result can therefore shed new light on, e.g., the

debate of superradiance in Dicke-type models [33, 34]. By comparing, e.g., the ground-state

energy of the Dicke model [51] to ab-initio calculations when changing the coupling strength,

one can test the reliability of the standard Dicke model in capturing the correct physical

behaviour.
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Appendix A: Many-body Hamiltonian without dipole self-energy

In this appendix we consider the general case of non-relativistic QED in the long-

wavelength limit for N electrons interacting with M photon modes described by equa-

tion (16). In order to investigate the impact of the dipole self-energy we drop this term,

leading to the Hamiltonian

Ĥ
′
= ĤL − ε̂dip = − ~2

2m

N∑
i=1

∇2
i +

1

4πε0

N∑
i<j

e2

|ri − rj|
+

N∑
i=1

vext(ri)

+
M∑
α=1

[
−~ωα

2

∂2

∂p2α
+

~ωα
2
p2α − (λα ·R) pα

]
. (A1)

We consider the energy of a trial wave-function with respect to Ĥ ′ and show that we can

lower the energy indefinitely. For the electronic part of the wave-function we use a Slater

determinant. For simplicity we assume a fully spin-polarized wave-function such that, we

can separate off the spin component of the full physical wave-function and thus find

Ψe(r1, ..., rN) =
1√
N !

F1(r1) F2(r1) · · · FN(r1)

F1(r2) F2(r2) · · · FN(r2)

· · · · · ·

· · · · · ·

F1(rN) F2(rN) · · · FN(rN)

. (A2)

Every component of the Slater determinant is given by a normalized mollifier

Fi(rj) =


N exp[− 1

1−|rj−ai|2 ] if |rj − ai| < 1

0 if |rj − ai| ≥ 1

where ai = [a+ 3(i− 1)]κ

(A3)

where N is the normalization constant. The mollifiers are put on a grid along an arbitrary

vector κ as shown in Fig. 3. The mollifiers are non-zero only within the unit ball |rj−ai| < 1,

their supports are disjoint and the vector ai is the center of each of these unit balls. Further,

the grid of mollifiers depends on an arbitrary parameter a. For the photonic part we use

Φp(p1, .., pM) =
M⊗
α=1

1√
2

(φ1(pα) + φ2(pα)), (A4)
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FIG. 3. Graphic representation of the localization of the electronic wave-function Ψe. The mollifiers

are put on on an equally spaced grid along the vector κ, e.g, such that there is no overlap between

them.

where φn(pα) are the normalized eigen-functions of the corresponding harmonic oscillator.

Thus, the full wave-function is

Ψ = Ψe(r1, ..., rN)⊗ Φp(p1, .., pM). (A5)

Due to 〈pαΦp, pβΦp〉 = 2δαβ we have

〈V̂intΨ|V̂intΨ〉 =
M∑

α,β=1

N∑
i,j=1

〈pαΦp|pβΦp〉〈(λα · ri) Ψe| (λβ · rj) Ψe〉 (A6)

= 2
M∑
α=1

N∑
i,j=1

〈(λα · ri) Ψe| (λα · rj) Ψe〉 <∞.

and thus Ψ can be taken as part of the domain of ĤL as well as Ĥ ′. The expression of the

energy is

〈Ψ|Ĥ ′Ψ〉 = 〈Ψe|T̂eΨe〉+ 〈Ψe|ŴeΨe〉+ 〈Ψe|V̂extΨe〉+ 〈Φp|ĤpΦp〉+ 〈Ψ|V̂intΨ〉. (A7)

The kinetic energy of the electrons,

〈Ψe|T̂eΨe〉 = − ~2

2m

N∑
i=1

〈Ψe|∇2
iΨe〉

= − ~2

2m

N∑
i=1

N∏
n=1

∫
|rn−ai|<1

d3rnΨe(r1, ..., rN)∇2
iΨe(r1, ..., rN), (A8)
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is translationally invariant and thus we can perform a change of coordinates rn −→ rn+aκ.

The integration volume after this transformation becomes

|rn − ai| < 1 −→ |rn − 3(i− 1)κ| < 1, (A9)

and thus the result of the integral is a finite constant independent of the parameter a

〈Ψe|T̂eΨe〉 = − ~2

2m

N∑
i=1

N∏
n=1

∫
|rn−3(i−1)κ|<1

d3rnΨe(r1, ..., rN)∇2
iΨe(r1, ..., rN) = A. (A10)

The same holds for the interaction energy, which after the same translation becomes inde-

pendent of the parameter a

〈Ψe|ŴeΨe〉 =
N∑
i<j

N∏
n=1

∫
|rn−3(i−1)κ|<1

d3rnWe(ri − rj)|Ψe(r1, ..., rN)|2 = D <∞. (A11)

Without loss of generality we choose the external potential to be negative such that

〈Ψe|V̂extΨe〉 =
N∑
i=1

〈Ψe|vext(ri)Ψe〉 = −Ṽa where Ṽa ≥ 0. (A12)

The energy of the photons is

〈Φp|ĤpΦp〉 =
M⊗

α,β=1

〈 1√
2

(ψ1(pα) + ψ2(pα))|Ĥp
1√
2

(ψ1(pβ) + ψ2(pβ))〉

=
1

2

M∑
α=1

(
E

(α)
1 + E

(α)
2

)
, (A13)

where E
(α)
n = ~ωα(n+ 1

2
) are the eigen-energies of the harmonic oscillator. The contribution

of the bilinear interaction between the electrons and the photon modes is

〈Ψ|V̂intΨ〉 = −
M∑
α=1

〈Φp|pαΦp〉〈Ψe| (λα ·R) Ψe〉

= −
N∑
i=1

M∑
α=1

λα〈Φp|pαΦp〉
N∏
n=1

∫
|rn−ai|<1

d3rn ri|Ψe(r1, ..., rN)|2

= −
N∑
i=1

M∑
α=1

λα ·
N∏
n=1

∫
|rn−ai|<1

d3rn ri|Ψe(r1, ..., rN)|2. (A14)
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In equation (A14) we used that
M∑
α=1

λα〈Φp|pαΦp〉 =
M∑
α=1

λα. We perform now again the

coordinate transformation rn −→ rn + aκ and we have

〈Ψ|V̂intΨ〉 = −
N∑
i=1

M∑
α=1

λα ·
N∏
n=1

∫
|rn−3(i−1)κ|<1

d3rn(ri + aκ)|Ψe(r1, ..., rN)|2 (A15)

= −
N∑
i=1

M∑
α=1

λα ·
N∏
n=1

[

∫
|rn−3(i−1)κ|<1

d3rn ri|Ψe(r1, ..., rN)|2 (A16)

+ aκ

∫
|rn−3(i−1)κ|<1

d3rn|Ψe(r1, ..., rN)|2]. (A17)

The two integrals in the above equation do not depend in the parameter a. The result of

the first integral is some finite constant and the result of the second integral is one because

it is the norm of the electronic wave-function. Consequently we obtain

〈Ψ|V̂intΨ〉 = −B −
M∑
α=1

λα ·
N∑
i=1

aκ = −B − aN
M∑
α=1

λα · κ. (A18)

Thus, if we choose κ parallel to at least one of the coupling-strength polarization vectors

λα the contribution of the bilinear interaction is proportional to −a, where a is the position

of the first mollifier in the grid we constructed. Finally, we sum the results of all five

contributions and we obtain the inequality

〈Ψ|Ĥ ′Ψ〉 = A+D − Ṽa +
1

2

M∑
α=1

(
E

(α)
1 + E

(α)
2

)
−B − aN

M∑
α=1

λα · κ ≤ A+D (A19)

+
1

2

M∑
α=1

(
E

(α)
1 + E

(α)
2

)
−B − aN

M∑
α=1

λα · κ ∼ −a. (A20)

Since the parameter a can be chosen arbitrarily we can lower the energy as much as we want.

Thus, the Hamiltonian Ĥ
′

is unbounded from below and no ground-state exists without the

dipole self-energy.
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