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Materials and Methods

Computational Details The evolution of the electronic structure under the effect of ex-

ternal fields was computed by propagating the Kohn-Sham (KS) equations in real-space and

real time within TDDFT as implemented in the Octopus code.1 We solved the KS equations

in the local density approximation (LDA)2 with semi-periodic boundary conditions. We

used a simulation box of 60 a0 along the non-periodic dimension and the primitive cell on

the periodic dimensions with a grid spacing of 0.36 a0. We modeled graphene with a lattice

parameter of 4.651 a0 and by sampling the Brillouin zone with a 12×12 k-point grid. All

calculations were performed using fully relativistic HGH pseudopotentials.3

The linearly polarized phonon mode was prepared by starting the time-evolution of the

Kohn-Sham system from a distorted atomic configuration along the C-C bond of 1% of

the lattice parameter. From this initial condition the lattice then evolved under Ehrenfest

molecular dynamics as a stable oscillatory mode of 20.6 fs, corresponding to an energy of
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∼ 200 meV. For the circular mode the time-dependence of the lattice was explicitly driven

along the circular trajectory corresponding to a superposition of the TO and LO modes with

a π/2 phase difference and with the same frequency as the liner mode. For the photon-

excitations with photons shown in Fig. 1 and Fig. 3 the energy was chosen to be same as the

phonon energy and the peak intensity was tuned to match the phonon sideband structure

with 1.6×109 W/cm2 for the linearly polarized photons, Fig. 1(b) and Fig. 3(c), and 3.6×109

W/cm2 for the circularly polarized photons of Fig. 3(d).

Time-resolved ARPES was calculated by recording the flux of the photoelectron current

over a surface placed 30 a0 away from the system with the t-SURFFP method.4 To detect

the phonon sideband structure a probe pulse of 50 eV, 80 fs length and a peak intensity of

109 W/cm2. For Fig. 2(a) a pulse length of 160 fs was used.

The Floquet band structures of the driven system were computed using Floquet-TDDFT5

by recording the time-dependent Kohn-Sham Hamiltonians during one cycle of the phonon

mode and subsequently performing their Floquet analysis as described in the main text. We

found that at least five sidebands were needed to converge the phonon-sideband structure,

due to the strong interaction at the Γ point.
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Figure S 1: Temperature dependence of sideband structure Tr-ARPES spectrum
around the Dirac point with a clean linearly polarized coherent phonon (T=0K) and the
same mode under presence of randomized atomic velocities corresponding to a temperatuer
of T=300K.
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Figure S2: Floquet-band structure occupation Occupation of the Floquet-band struc-
ture for (a) phonon and (b) photons. The occupation of Floquet-bands are obtained
in the sudden approximation.6 For a given level εα(k) this is computed as fα(k) =∑
i |〈〈ψi(k)|Ψα(k, t)〉〉|2fFD(Ei) where the sum runs over all equilibrium states ψi with cor-

responding energies Ei, fFD is the Fermi-Dirac distribution, Ψα(k, t) is the time-dependent
Floquet eigenstate of level εα(k) and 〈〈.|.〉〉 = 1/T

∫
T dt〈.|.〉 is the scalar product in Floquet

space. In purple is shown the equilibrium band structure, showing that the Floquet bands
undergo considerable distortion in the phonon case while in the photon case the dressing
is trivial in the sense that the occupations decay fast across the sidebands and there is no
dispersion dependent deformation of the shifted bands.
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Figure S3: Floquet sidebands in the first Brillouin zone Tr-ARPES spectra calculated
along a path in the first Brillouin zone. From the spectrum it is clear that the sideband
structure is preserved as can be seen comparing with Fig.1 (b) of the main text, the only
difference being the photoemission matrix elements reflecting the probability to ionize from
a specific Bloch state. The difference is especially striking for the sigma bands close to Γ
where the photo-electron signal is suppressed. Note the logarithmic colour scale.
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Equivalence of the dynamical excitation with photons and phonons at the Dirac

point of graphene The Dirac bands of graphene for Brillouin zone points k = (kx, ky) =

K− k′ around the K-point can be described by the two-level Dirac-Hamiltonian7

HD
0 k = vFσ · k = vF

 0 kx − iky

kx + iky 0

 = vF |k|

 0 e−iθ(k)

eiθ(k) 0

 (1)

where σ = (σx, σy) is a vector of the in-plane Pauli matrices and θ(k) is the angle between

the k vector and the x-axis. This Hamiltonian has the eigenstates

ψ±k (r) =
eik·r√

2

 e−iθ(k)/2

±eiθ(k)/2

 (2)

corresponding to the eigenvalues E± = ±vF |k|. Coupling to an electro-magnetic field rep-

resented by the time-dependent vector potential A(t) in the weak coupling approximation

is done via Peierl’s substitution, letting k → k −A(t). This gives the light-coupled Dirac

Hamiltonian as HD
k (t) = vFσ · (k−A(t)) = HD

0 k − vFσ ·A(t). Writing the vector potential

as A(t) = (Ax, Ay) sin(Ωt) from which one can define an angle θ(A) in analogy to θ(k) and

expanding this Hamiltonian in the eigenbasis of the groundstate, Eq. (2), yields

HD
k (t) = vF

 |k| 0

0 −|k|

− vF |A|
 cos(θ(k)− θ(A)) −i sin(θ(k)− θ(A))

i sin(θ(k)− θ(A)) − cos(θ(k)− θ(A)).

 sin(Ωt).

(3)

The difference between the two angles defines the angle θ(k)−θ(A) ≡ θk of the main text, i.e.

it is the angle between the vector potential and the k-vector. We note that the interaction

matrix corresponds to the dipole matrix elements mij ≡ 〈i|p · A|j〉 = 〈i|∂kHD
k |j〉 = 〈i|σ ·

A(t)|j〉.

For the phonon perturbation we have to consider a tight-binding representation of the
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Figure S4: The graphene model used for the tight-binding calculations is shwon in (A). The
sublatice atoms are labeled A and B. The nearest neighbour vectors Ra pointing from an A
atom to B atoms and are defined as R1 = a0(0, 1), R2 = a0/2(−

√
3,−1),R3 = a0/2(

√
3,−1),

where a0 is the C-C bondlength. (b) shows the displacements for the longitudinal (LO) and
transverse (TO) modes along with the direction of the phonon polarization u.
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sub-lattice structure of graphene:

HD
0 k = −γ0

∑
i,a

(
cBi+a

)†
cAi +

(
cAi
)†
cBi+a (4)

where A and B are sublattice indices, i runs over all atoms of the sublattice A, a indicates

the three nearest neighbours of each A-atom (c.f. Fig. 4) and γ0 is the effective hopping

parameter.7 In an on-site sublattice basis this Hamiltonian reads

HD
0 k = −γ0

 0 f(k)

f(k)∗ 0

 (5)

where f(k) =
∑
a e

iRa·k and Ra is the vector connection atom on site A with the nearest

neighbour a of the B sublattice. Expanding f(k) around K gives the Hamiltonian Eq. (1).

To first order a coherent phonon mode now has the effect of modifying the lattice hopping

term depending on the neighbour index. By writing HD
k (t) = HD

0 k +HD
1 k(t) we have for the

perturbation term

HD
1 k(t) =

∑
i,a

δγa0 (t)
(
cBi+a

)†
cAi +

(
cAi
)†
cBi+a. (6)

Expanding this again in the sublattice basis and performing that expansion around K yields7

HD
1 k(t) = vF

 0 Aux(t)− iAuy(t)

Aux(t) + iAuy(t) 0

 (7)

where we have defined vFA
u
x(t) = δγ10(t)− 1

2
(δγ20(t)+δγ30(t)), vFA

u
y(t) =

√
(3)

2
(δγ20(t)−δγ30(t))

and have assumed that the phonon does not mediate momentum transfer from the lattice

to the electron, i.e. we are considering a Γ-point phonon. The coherent phonon can be

represented as a time-dependent lattice distortion vector u(t) which means the hopping

term modulations are given as δγa(t) = g u(t) · Ra/a0 where g is an effective parameter

for the electron-phonon coupling strength. Using the definitions of the nearest neighbour
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vectors Ra, c.f. Fig. S1, one finds vFAu(t) = g3/2 (uy(t),−ux(t)). This means that the

dynamical electron-phonon coupling at the Dirac point of graphene, can be described by the

effective gauge field Au that is perpendicular to the phonon-mode oscillation vector u(t), as

stated in the main text. Defining the angle θ(Au) one can write Eq. (7) as

HD
1 k(t) = g|u(t)|

 0 e−iθ(A
u)

eiθ(A
u) 0

 (8)

which gives represented in the groundstate eigenbasis, Eq. (2) the form8

HD
1 k(t) = g|u(t)|

 cos(θ(k)− θ(Au)) −i sin(θ(k)− θ(Au))

i sin(θ(k)− θ(Au)) − cos(θ(k)− θ(Au)).

 (9)

which has the same structure as the photon coupling matrix Eq. (3). Thus defining θk ≡

θ(k) − θ(Au) as the angle between this effective gauge field and the k-vector, as well has

letting |u(t)| = u sin(Ωt) we have shown that also the coherent phonon coupling leads to a

time-dependent Hamiltonian of the form of Eq. (1) of the main text.
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