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Phonon-driven spin-Floquet magneto-valleytronics
in MoS2
Dongbin Shin 1, Hannes Hübener 2, Umberto De Giovannini 2, Hosub Jin1,

Angel Rubio 2,3,4 & Noejung Park 1,2

Two-dimensional materials equipped with strong spin–orbit coupling can display novel

electronic, spintronic, and topological properties originating from the breaking of time or

inversion symmetry. A lot of interest has focused on the valley degrees of freedom that can

be used to encode binary information. By performing ab initio time-dependent density

functional simulation on MoS2, here we show that the spin is not only locked to the valley

momenta but strongly coupled to the optical E″ phonon that lifts the lattice mirror symmetry.

Once the phonon is pumped so as to break time-reversal symmetry, the resulting Floquet

spectra of the phonon-dressed spins carry a net out-of-plane magnetization (≈0.024μB for

single-phonon quantum) even though the original system is non-magnetic. This dichroic

magnetic response of the valley states is general for all 2H semiconducting transition-metal

dichalcogenides and can be probed and controlled by infrared coherent laser excitation.

DOI: 10.1038/s41467-018-02918-5 OPEN

1 Department of Physics, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea. 2Max Planck Institute for the Structure and
Dynamics of Matter Center for Free-Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany. 3 Center for Computational Quantum Physics
(CCQ), The Flatiron Institute, 162 Fifth Avenue New York, New York, NY 10010, USA. 4 Nano-Bio Spectroscopy Group, Departamento de Fisica de
Materiales, Universidad del País Vasco UPV/EHU, San Sebastián 20018, Spain. Correspondence and requests for materials should be addressed to
A.R. (email: angel.rubio@mpsd.mpg.de) or to N.P. (email: noejung@unist.ac.kr)

NATURE COMMUNICATIONS |  (2018) 9:638 |DOI: 10.1038/s41467-018-02918-5 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-8073-2954
http://orcid.org/0000-0001-8073-2954
http://orcid.org/0000-0001-8073-2954
http://orcid.org/0000-0001-8073-2954
http://orcid.org/0000-0001-8073-2954
http://orcid.org/0000-0003-0105-1427
http://orcid.org/0000-0003-0105-1427
http://orcid.org/0000-0003-0105-1427
http://orcid.org/0000-0003-0105-1427
http://orcid.org/0000-0003-0105-1427
http://orcid.org/0000-0002-4899-1304
http://orcid.org/0000-0002-4899-1304
http://orcid.org/0000-0002-4899-1304
http://orcid.org/0000-0002-4899-1304
http://orcid.org/0000-0002-4899-1304
http://orcid.org/0000-0003-2060-3151
http://orcid.org/0000-0003-2060-3151
http://orcid.org/0000-0003-2060-3151
http://orcid.org/0000-0003-2060-3151
http://orcid.org/0000-0003-2060-3151
http://orcid.org/0000-0002-2359-0635
http://orcid.org/0000-0002-2359-0635
http://orcid.org/0000-0002-2359-0635
http://orcid.org/0000-0002-2359-0635
http://orcid.org/0000-0002-2359-0635
mailto:angel.rubio@mpsd.mpg.de
mailto:noejung@unist.ac.kr
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Spin manipulation of charge carriers1–3 and the controllable
switching of a few-atom magnetic unit4,5 have attracted a
lot of attention in recent decades6,7. Spin–orbit coupling

(SOC) is the core ingredient enabling the control of these effects8,
as it provides a tunable intrinsic magnetic field through the
change of the scalar electronic potential. In parallel, optically
induced ultrafast spin dynamics have been studied in detail9–11.
Low-frequency terahertz sources are expected to have particular
relevance here as they allow for a straightforward control
avoiding high energy transfer to the material9. The spin dynamics
can be coupled to phonons via the SOC interaction and a
coherent infrared (IR) laser excitation can be used to control
phonons and thus to modify the effective gauge-field felt by the
electronic spin12. In two-dimensional (2D) semiconductors with
strong SOC time-reversal symmetry partners often constitute
valleys with very distinct electronic and spin properties. In fact,
these valleys are characterized by a strong electronic
spin–momentum locking that can be used to encode binary
information, known as valleytronics13–15. To achieve a con-
trollable asymmetry in the valleys of transition-metal dichalco-
genides (TMDCs), some recent studies have used either a static
magnetic field16–19 or the optical Stark effect20,21.

Here, we focus instead on phonon-dressed spin-valley states.
Using MoS2 as test material, we explore the dynamic evolution of
spins at the K- and K′-valleys when a coherent phonon mode is
excited with a weak laser pulse. We show that, while the spins of
the valence band maxima (VBM) are largely frozen, those on the
conduction band minima (CBM) exhibit interesting dynamics
governed by one particular optical phonon. We perform extensive
ab initio real-time electron-ion propagation within time-
dependent density functional theory (TDDFT)22,23. As a result,
we find that the full spin dynamics in the valley of MoS2 is well
described by a simple two-level Hamiltonian in which the internal
magnetic field oscillates along the particular optical phonon that
breaks the in-plane mirror symmetry12. We show that the Floquet
state for the valley-locked spin is characterized by two distinct

Larmor precessions whose amplitude is determined by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nph þ 1

p
,

where nph is the number of the phonon excited in the system by
the external laser field.

Results
Phonon-induced spin dynamics calculated within TDDFT. In
the TDDFT calculation, the two-component Kohn–Sham
spinors ψn;k

�� �
evolve following the time-dependent Kohn–Sham

equation:

i�h ∂
∂t ψn;k

�� �¼
"

� �h2

2m∇2 þP
λ
v̂ppðr� RλðtÞÞ

� �

þvHxc ρ tð Þ½ � þ μBbσ � ∂Exc∂m þ v̂SOC

#
ψn;k

�� �
;

ð1Þ

where v̂SOC ¼ �h
4m2c2 σ̂ � =V ´ p̂ð Þ is the spin–orbit potential

with V(r) representing the sum of the local part of the
atomic potential v̂ppðrÞ and the Hatree-exchange-correlation
potential vHxc(r). The magnetization vector field is defined as
mðrÞ ¼ μB

P
n;k ψ

þ
n;kðrÞσ̂ψn;kðrÞ with μB indicating the Bohr

magneton (μB ¼ e�h=2m). The ion dynamics Rλ(t) follows the
classical Newton equation Mλ

d2
dt2 RλðtÞ ¼ FλðtÞ with the

instantaneous Ehrenfest forces acting on each ion (Methods).
The time-dependent spin and charge densities are computed
directly from the time-dependent Kohn–Sham spinors as:
Sn;kðtÞ ¼ ψn;kðtÞ

� �� �h
2 σ̂ ψn;kðtÞ
�� �

and ρðtÞ ¼Pn;k ψ
�
n;kðtÞψn;kðtÞ.

Detailed description of the computational parameters used for the
DFT22,24 and TDDFT23 are given in Supplementary Note 1.

To start the TDDFT simulations, we mimic the effect of a
resonant right-handed photon by promoting one spin down
electron from the VBM to the CBM of the K valley, as
schematically depicted in Fig. 1a. Then, we monitor the electron
dynamics of this excited state when different zone-center phonon
modes are coherently excited. To simulate the induced dynamical
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Fig. 1 TDDFT simulation of the spin-phonon dynamics of monolayer MoS2. a The initial electronic configuration used here with one electron excited at the
K valley, for example, by right-handed light. b Top view of the solid and a side view of the eigenvectors of the four zone-center optical phonons. c The time
trace of the spin vector of the CBM electron with the E″ phonon being coherently excited. d–f The same time profiles of the Cartesian components of the
spin with each of the phonon modes E″, E′, A1, A2″ and with the frozen lattice. The full phonon dispersion is given in Supplementary Fig. 1. Here, all phonons
are linearly polarized along the y direction
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effects of the phonons, we initialize each atom in its equilibrium
position with a finite velocity along the normal mode of each
phonon we want to excite. The shape of each phonon mode is
depicted in Fig. 1b. The calculated time profiles of the spin of the
excited electron at the CBM of the K valley are presented in
Fig. 1c–f. We highlight that only the E″ optical phonon mode
appreciably couples to the spin motion, while the other three
phonons (E′, A1, and A2″) are basically uncoupled. This particular
feature can be related to the fact that the E″ is the only optical
vibration that breaks both the mirror and trigonal symmetries of
the MoS2 plane, while others preserve at least one of the
symmetries. The spin profile affected by the E″ mode is shown on
the Bloch sphere in Fig. 1c. This spin motion is neither in plane
nor out of plane and has a precession that turns out to be
proportional to the amount of phonon displacement. The time
traces of the Cartesian components of the spin driven by each
optical phonon mode are presented in Fig. 1d–f. As a reference,
we show the calculated spin dynamics for the frozen equilibrium
ionic configuration (black curve) starting from the same excited
electronic initial condition (Fig. 1a). The spin dynamics with the
latter three phonons (E′, A1, and A2″) are almost the same as that
in the frozen lattice configuration. Since the excited electronic
configuration at t=0 (Fig. 1a) deviates from the electronic self-
consistent ground state of the material, the electron exhibits a
minor dynamics even with the frozen lattice. Moreover, the spins
in the VBMs mostly remain near the equilibrium configuration
during the time evolution, which can be inferred from the fact
that their intrinsic up/down spin splitting is an order of
magnitude larger than the phonon-induced in-plane SOC
magnetic field (given in Supplementary Figs. 2d and 3d).

Static DFT calculations of the phonon-induced magnetism. We
now formulate a minimal model Hamiltonian that captures the

essence of the aforementioned spin dynamics. SOC splits the
bands, as presented in Fig. 2a, except at the symmetry-protected
degenerate points14,25. The up/down splitting of the CBM and the
VBM near K and K′ amount to 3 and 156 meV, respec-
tively14,15,26. The monolayer MoS2 honeycomb structure has a
mirror symmetry plane at the central Mo layer which in the point
group of D3h enforces the spins to be aligned out of the plane. All
these features can be cast into a simple two-level Hamiltonian.
For the CBM state in the K and K′ valleys, the up/down energy
separation can be modeled as a Zeeman splitting induced by an
effective magnetic field of the form: B ¼ τB0ẑ, where τ = 1 and
τ=−1 for K and K′, respectively. The corresponding model
Hamiltonian reads as Ĥ ¼ e

m Ŝ � B ¼ τε0σ̂z , with an energy
parameter ε0 = 1.5 meV (fitted to our first-principles calcula-
tions). The observed dynamical effect of the phonon is accounted
for by this effective Hamiltonian via including an additional
effective magnetic field that mimics the spin–phonon coupling,
namely B tð Þ ¼ τB0ẑþ BphðtÞ. The SOC potential (v̂SOC) in Eq.
(1) reveals how the effective magnetic field BphðtÞ ¼

1
2m2c2

∂
∂rV ½Rλ� ´ p̂ appears as a result of the atomic motion Rλ(t).

To quantify the phonon dependence of the effective Hamilto-
nian, instead of dealing with the operator form for Bph(t), here we
directly compute the spin resolved electronic structure variations
induced by the static atomic displacements following each
phonon mode near the CBM at the K valley. The results for the
E″ phonon and the other three optical phonons are shown in
Fig. 2b, d, respectively. Except for the E″ phonon, all the other
phonon modes do not change the spin texture of the bands
around K. Similar results are obtained near K′ but not shown. In
fact, for static displacement along the selected E″ eigenmode the
spin of the CBM lies almost in the x–y plane along the y direction.
In Fig. 2c, we show the inclination angle of the spin vector and
the up/down splitting gap (Δε) of the CBM as a function of the
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Fig. 2 Electronic structures of monolayer MoS2 in equilibrium geometry and with the displacement along a specific coherent phonon mode. a The band
structure with the equilibrium geometry. b Zoomed-in view of the CBM near the K valley with a displacement along E″. c The variations in the inclination of
the spin angle and the up/down splitting (Δεgap) with respect to the magnitude of the displacement along the E″ phonon mode. d Zoomed-in view of the
CBM near the K valley with the equilibrium geometry and with the displacement along the other three zone-center phonon modes E′, A1, A2″. In b, d the
displacement vectors are normalized such that the maximum shift of the atomic position is 0.1 Å. The dashed box in a indicates the window for the zoom in
b and d. Inset in c depicts the direction of the atomic displacement in y direction. Further details of the role of the E″ phonon mode are given in
Supplementary Table 1 and Supplementary Figs. 3 and 4
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magnitude of the atomic displacement along the phonon mode.
The angle for the spin vector is defined by θ ¼ cos�1ðSz=SÞ,
where S is the norm of the vector, i.e., �h=2. For this plot, we note
that the spin is gradually canted towards the y direction as the
atomic displacement increases and the z-component (Sz) is
reduced but remains finite over the range of displacement shown
in Fig. 2c. These variations in the spin structures can be modeled
by a magnetic field in y direction, as B ¼ τB0ẑþ Bphŷ. We note
that the E″ mode is doubly degenerate at the zone center of the
phonon Brillouin zone, and thus the linear combination of the
two eigenvectors can be chosen such that the in-plane component
of the induced spin points in any direction (summarized in
Supplementary Table 1). Furthermore, we want to emphasize that
exciting a superposition of two linear E″ modes in different
directions can result, depending on the relative detuning of the
two modes, in a circular or elliptically polarized phonon with the
same frequency.

Since the lattice distortion along the E″ phonon mode creates a
net effective in-plane magnetic field while the other three
phonons are almost ineffective, the previously derived two-level
Hamiltonian will inherit the time profile of the E″ phonon mode,
i.e., ĤðtÞ ¼ Ĥðt þ 2π=ωphÞ, where ωph the frequency of the
E″ mode. This Hamiltonian, being perfectly periodic in time and
describing the dynamics of our spin–phonon-driven system,
suggests that the spin states can be described in terms of the
corresponding Floquet spectrum, as will be outlined below27.
The details of the model Hamiltonian studies are given in
Supplementary Notes 2 and 3.

Simplified model hamiltonian. To illustrate this new phonon-
mediated spin-Floquet non-equilibrium state of the material, we
explicitly incorporate the time oscillation of the phonon into the
model Hamiltonian in the form of a simple trigonometric func-
tion. As for Fig. 1, the phonon is assumed to oscillate along the y
direction, producing a magnetic field along the same direction of
BphðtÞ ¼ Bph sin ωpht

� 	
ŷ. The corresponding two-level

Hamiltonian becomes Ĥ tð Þ ¼ ε0σ̂z þ εphσ̂y sinðωphtÞ, where
εph ¼ e�h

2mBph and the effective magnetic field Bph depends
implicitly on the amplitude of the phonon mode. The time
evolution of the two-component state vector is calculated by
ψ t þ Δtð Þj i ¼ exp � i

�h Ĥ tð ÞΔt� 	
ψ tð Þj i. The spin dynamics is

presented in Fig. 3a. We note that the calculated spin trajectories
are in good agreement with the full ab initio TDDFT simulation
performed shown in Fig. 1 for a shorter time interval up to
2T=244 fs. This excellent performance of the simple 2 × 2 model
allows for an accurate description of the spin dynamics for very
long times, which would be difficult to reach with the first prin-
ciples TDDFT approach. The plot in Fig. 3a shows only the case of
εph=3ε0, however we verified that we get qualitatively the same
behavior for a set of different values of εph.

Floquet analysis and phononic dichroism. The field of
spintronics is evolving at very high speed28. In particular, the
possibility of realizing light control of the spin has attracted
huge interest as a way to seamlessly bridge magnetic responses
and spin manipulation4,5,10,11. To achieve this goal, it was
proposed (e.g., in refs. 11,29) to use a time-dependent circularly
polarized perturbation (phonon or photon) to switch the
angular momentum eigenstate of the material11,29. Although
they indicate that the spin configuration of magnetic materials
can be indeed controlled by light, the non-equilibrium magnetic
response in an optically driven state of a non-magnetic material
has not yet been demonstrated. The open question in this regard
is whether a non-magnetic material, for instance a
semiconducting 2D material, can be driven into a stationary
magnetic state by a time-reversal breaking perturbation. We
address this point in detail next. To illustrate this concept,
we take the aforementioned two-level Hamiltonian and
extend it to the case where the driving is a circularly
polarized phonon. In this case the time-dependent Hamiltonian
reads Ĥ tð Þ ¼ ε0σ̂z þ εph σ̂x cosðωphtÞ � σ̂y sinðωphtÞ

� 	
. The time-

dependent Schrödinger equation can be solved analytically using
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Fig. 3 Time evolution of the spin driven by the E″ mode. a, b Model Hamiltonian calculation of the spin trajectory starting at t=0 with the spin-down state
shown in Fig. 1a with a a linearly polarized and b a circularly polarized in-plane magnetic field. c, d The Floquet eigenstate on the Bloch sphere for c the
model Hamiltonian with the circularly polarized in-plane magnetic field and d the full TDDFT solution with the circularly polarized E″ phonon. The inset of c
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the rotating-wave approximated model for Rabi oscillation30,31.
The spinorial solution is

Ψ tð Þj i ¼ �iei
ωph
2 t εph

�hΩ sin Ωtð Þ
e�i

ωph
2 t iΔ sin Ωtð ÞþΩ cos Ωtð Þ

Ω

0
@

1
A;where

Δ ¼ ωph

2 þ ε0
�h and

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ εph=�h

� 	2q
:

ð2Þ

The corresponding spin trajectory is presented in Fig. 3a, b for
both linearly and circularly polarized phonons, respectively. The
spin trajectories exhibit complicated femto-seconds dynamical
features, and the spin vector is not restored to its original
position unlike the Larmor-type spin precession induced by a
static magnetic field. As is the case of a two-level fermionic
system coupled to a bosonic oscillator31, the level spacing (ε0),
the frequency (ωph) and the amplitude (εph) of the perturbation
are all intertwined. However, here the vector-nature of the spin
produces more structure than the simple two-level Fermionic
oscillation. These complex spin dynamics can be rationalized in
terms of Floquet states27,32. For a given phonon (ωph) driven
Hamiltonian, the Floquet states are quasi-stationary spinors
Ψαj i ¼ e�iαt Φαj i that satisfy the following equation.

Ĥ tð Þ � i�h
∂
∂t


 �
Φαj i ¼ α Φαj i; with Φα tð Þj i ¼ Φα t þ 2π=ωph

� 	�� �
:

ð3Þ

This 2 × 2 matrix eigenvalue equation is also exactly solvable as
discussed above30. The only difference for this case is that we
have to impose periodic boundary condition in time, instead of
the fixed initial condition used to get the solution shown in Eq.
(2). The corresponding eigenvalues and eigenvectors can be
written as

Ψαþ

�� �¼ e�iαþt Φαþ

�� �
¼ εph=�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΩðΩ�ΔÞ
p e�i

ωph
2 þΩ

� 	
t

eiωpht

Ω�Δ
εph=�h

 !
;with

αþ ¼ ωph

2 þΩ:

Ψα�j i ¼ e�iα�t Φα�j i

¼ εph=�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΩðΩþΔÞ

p e�i
ωph
2 �Ω

� 	
t

�eiωpht

ΔþΩ
εph=�h

 !
;with

α� ¼ ωph

2 �Ω:

ð4Þ

These two states are always orthogonal to each other, and the
spin expectation of one is opposite to the other, as depicted in
the inset of Fig. 3c. Each Floquet state is characterized by its
rotation with respect to the fixed axis perpendicular to the 2D
plane, possessing a time-independent constant perpendicular
component of the spin vector, namely a fixed Sz value, like in a
typical Larmor precession. These two Floquet eigenstates span
the whole SU(2) space for spinors at any time, and any dyna-
mical spin motion can be resolved and analyzed in terms of this
basis.

To corroborate the conclusions from the model spin dynamics
discussed above, we now turn back to the first-principles
materials simulation to address two main aspects. First, we
demonstrate the appearance of those spin-Floquet states using the
ab initio TDDFT scheme23. Second, we analyze the obtained
Floquet spectra in terms of the second-quantized form of the
electron–phonon coupling without resorting to the Ehrenfest
semi-classical picture. For the former, considering what we have

learned from the model Hamiltonian, we set up the initial
condition of the TDDFT simulation close to the Floquet
eigenstate Ψα�ðt ¼ 0Þj i. To simulate the action of the circularly
polarized E″ phonon, the initial velocities of the two S atoms are
set in the perpendicular direction to the initial atomic displace-
ment. This is based on a classical vibration of a mass constrained
by two equal springs placed perpendicularly in a plane, namely
Etot ¼ 1

2m _x2 þ _y2ð Þ þ 1
2mω2 x2 þ y2ð Þ. In this case, the vibration

of the mass can be polarized in any in-plane direction, for
instance rðtÞ ¼ R sinðωtÞx̂ or rðtÞ ¼ R sinðωtÞŷ and a phase
difference between the two degenerate linear motions, namely
xðtÞ ¼ R sinðωtÞ and yðtÞ ¼ R sinðωt � π=2Þ, results in the
circular motion (Etot=mR2ω2). We used that the displacement
(R) and the velocity (Rω) are determined once the total energy
and the frequency is defined. The Floquet state spin-trajectory
obtained in this ab initio way is presented in Fig. 3d, which
confirms the model Larmor-type rotation with a constant Sz
value. With increasing amplitude of the E″ mode, the precessing
Floquet-spin acquires larger components in the x–y-plane, i.e., we
get a smaller Sz value (Supplementary Note 4 and Supplementary
Fig. 2).

SOC effect in terms of phonon quanta. Moving to the second
aspect, instead of having a semi-classical description of phonons,
we treat them now in a quantized form by defining the interaction
Hamiltonian in terms of electron–phonon coupling with the
quantized phonon field20,29. Since the valley states of MoS2 have
definite angular momentum eigenstates, only one of the circularly
polarized phonons can have a non-zero matrix element between
the two CBM states15,29. In this case, the interaction Hamiltonian
including only the zone-center phonon can be written as,

Ĥ ¼ e
m
B � Ŝ ¼ ε0σ̂z þ g σ̂þb̂eiωpht þ σ̂�b̂

þ
e�iωpht

� 

; ð5Þ

where b̂ and b̂
þ
represent annihilation and creation of the right-

handed circularly polarized E″ phonon. Using b̂ nj i ¼ ffiffiffi
n

p
n� 1j i,

b̂
þ
nj i ¼ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

nþ 1j i, and assuming a factorized solution
ψj i � phononj i ¼Pn Dσ1;nðtÞ σ1; nj i þ Dσ2;nðtÞ σ2; nj i� 	

, where
σ1 and σ2 indicate the spin index of the two CBM bands, the time-
dependent Schrödinger equation can be written in terms of these
coefficients, as follows (see Supplementary Notes 5 and 6 for a
detailed derivation).

i ∂∂t
Dσ2;n

Dσ1;nþ1

� �
¼ ε0 g

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
eiωpht

g
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
e�iωpht �ε0

" #
Dσ2;n

Dσ1;nþ1

� �

¼ ε0σ̂z þ g
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
cosðωphtÞσ̂x
��

�sinðωphtÞσ̂y
	� Dσ2;n

Dσ1;nþ1

� �
:

ð6Þ

This 2 × 2 matrix equation coincides with the aforementioned
semi-classical one if we substitute εph ¼ g

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
. This indicates

that the Floquet-spin states are quantized in terms of the phonon
quantum. For example, the spin Larmor precession of the α+

Floquet state has a constant Sz value of ΨαþðtÞ Ŝz
�� ��ΨαþðtÞ

� � ¼
�h= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 nþ 1ð Þ=Δ2

p� 

(see Fig. 3c and Eq. (4)). A selective

pumping of a particularly polarized phonon can be easily
obtained if the phonon mode is IR active. It is well known that the
E″ is not IR active for the monolayer but becomes active for the
bilayer33,34. This configuration of a bilayer IR active system is
achieved in thin films of TMDs35 or can be constructed through a
stacking of van der Waals layers.
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Spin-Floquet valley magnetism. Finally, we propose that total
net spin of the electrons in the valleys can be indeed engineered
and controlled through coherent excitation of phonons (in this
case of MoS2 by a linear combination of two orthogonal and
dephased E″ phonons). This can be explicitly discussed in terms
of the cumulative time-averaged total spin, defined as
SavgðtÞ¼ 1=tð ÞR t0 SKðτÞ þ SK′ðτÞð Þdτ. Suppose that, as an initial
configuration, a spin-down and a spin-up electrons are prepared
in the CBM edge of the K and K′ point, respectively, as depicted
in Fig. 4a. The time propagation of the total spin, evolved from
this initial configuration, under presence of a right-circularly
polarized phonon is presented in Fig. 4b. Remarkably, the time-
averaged total spin results in a non-negligible net magnetization
even though the system is non-magnetic in its ground state. This
surprising result can be explained in terms of the Floquet
eigenstates of the driven system. The spinor in the valley can be
decomposed into two Floquet states, each one carrying a constant
Sz value: ψðtÞj iK¼ Dþ ΨαþðtÞ

�� �
KþD� Ψα�ðtÞj iK. For the circularly

polarized phonon, the Floquet states at K and K′ differ from each
other, having different Sz values, as schematically depicted in
Fig. 4c, leading to the non-zero constant total spin value. Details
of the derivation are given in Supplementary Note 7. This
behavior is analogous to the observed dichroism for circularly
polarized photons14,15,26. We note that, in the initial configura-
tion (Fig. 4a), the electron can be paired with its time-reversal
symmetric Kramer partner30, which keeps the system in the non-
magnetic state. However, the presence of a circularly polarized
phonon makes the system lose time-reversal symmetry, through
the discrimination between the two valleys. In contrast, a linearly
polarized phonon is not able to distinguish between the two
valleys, and the spins started from the initial non-magnetic
configuration evolve in time with vanishing average value, as
presented in Fig. 4d. We examined the same phonon-driven spin-

Floquet state for the case of TMDC bilayer. For bilayer, the E″
phonon separates into two branches, among which only the Eu
mode is IR-active and produces the spin-Floquet valley magnetic
responses36,37, as summarized in Supplementary Note 8, Sup-
plementary Table 2, and Supplementary Fig. 5.

The necessary initial condition of this phonon dependent
magnetization of the valley electrons can be prepared electro-
statically or optically. A positive gating of the MoS2 semicon-
ductor attracts minimal electron carriers onto the CBM edges of
the valleys. A selective spin population of the two valleys (up and
down electrons at K′ and K, respectively) can be achieved in very
low temperature, because of the small up/down splitting of the
CBM bands. In practice, other members of the 2H-polytype
semiconducting TMDCs with a wider SOC splitting can be
considered for more efficient electrostatic gating. On the other
hand, a narrow-band linearly polarized light in resonance with
the band gap can induce the aforementioned electron net spin
population in K and K′ valleys, which leaves the holes of opposite
spin behind. As discussed above, the spins of the holes are almost
immobile (up to a few quanta of phonons), and thus the spin
dynamics of the system are mainly governed by the motion of
CBM electrons. Nevertheless, an experimental realization of the
spin-Floquet valley magnetism is quite challenging. In Supple-
mentary Table 3 we provide a full scanning of properties of 2H-
polytype semiconducting TMDCs in order to identify the best
candidate to exhibit spin-Floquet valley magnetism under realistic
experimental conditions. MoTe2 and WTe2 appear as promising
candidates due to their large SOC splitting and the phonon
frequency near low-IR range.

Discussion
In summary, by performing full-fledged first principles TDDFT
calculations and by analyzing them in terms of a model
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Hamiltonian, we found that the lowest-lying optical phonon is
delicately coupled to the spin of the electron at the CBM of valleys
of MoS2. When a circularly polarized phonon is excited, the
spin state at the valley splits into two distinct Floquet states,
characterized by Larmor rotations with the amplitude deter-
mined by the phonon occupation number. The dichroic
response of the circularly polarized phonon makes the pair of
valleys lose the time-reversal partnership, and as a result, the
electrons in the CBM produce a non-zero out-of-plane mag-
netization. Our results suggest that advances in polarity-
controlled phonon pumping through a coherent laser excita-
tion could be directed to dynamical spin manipulation of a
SOC system, which can be developed as a vehicle for quantum
computation or spintronics applications.

Methods
Computational method and code availability. The ground state electronic and
phonon structure were calculated with the Quantum ESPRESSO package22. For the
non-collinear Kohn–Sham wavefunctions with SOC interaction, the plane-wave
basis set with 30 Ry energy cut-off, the Perdew–Burke–Ernzerhof type gradient
approximated exchange-correlation functional24, and the projector augmented
wave method with full-relativistic potential were used38. The primitive unit cell
with the lattice vector of a = 3.15 Å and the vacuum slab of 15 Å vacuum were used
to simulate the monolayer MoS2. The whole Bouillon zone was sampled with the
grids of 18 × 18 × 1 points excluding any symmetric operation. The Ehrenfest
forces were calculated from the instantaneous total energy functional as
Fλ ¼ � ∂

∂Rλ
Etot ρðtÞ;RλðtÞ½ �[23]. For the computations of the time propagations we

used the plane-wave package developed by ourselves23 and the public-open
Octopus package39. The package can be released upon request to the authors. We
tested the accuracy by varying a few parameters for the time propagation, and the
presented results were calculated using the Crank–Nicolson propagator with
Δt=2.42 as, which preserve the total energy within 5.3 × 10−5 eV over 245 fs. The
reduced k-points grid of 6 × 6 × 1 k-points were used for the time-evolution which
included the occupied VBM states and some of CBM states. More details are given
in Supplementary Note 1 and Supplementary Fig. 6.

Data availability. The calculated numerical data that support our study are
available in “NOMAD repository” with the identifier “https://doi.org/10.17172/
NOMAD/2017.11.10-1”.
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