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ABSTRACT: We examine various integration schemes for the time-
dependent Kohn−Sham equations. Contrary to the time-dependent
Schrödinger’s equation, this set of equations is nonlinear, due to the
dependence of the Hamiltonian on the electronic density. We discuss
some of their exact properties, and in particular their symplectic
structure. Four different families of propagators are considered,
specifically the linear multistep, Runge−Kutta, exponential Runge−
Kutta, and the commutator-free Magnus schemes. These have been
chosen because they have been largely ignored in the past for time-
dependent electronic structure calculations. The performance is analyzed
in terms of cost-versus-accuracy. The clear winner, in terms of
robustness, simplicity, and efficiency is a simplified version of a fourth-
order commutator-free Magnus integrator. However, in some specific
cases, other propagators, such as some implicit versions of the multistep
methods, may be useful.

1. INTRODUCTION

In 1984, Runge and Gross1 extended the fundamental theorems
of density-functional theory to the time-dependent case,
thereby founding time-dependent density-functional theory
(TDDFT).2 Over the years, TDDFT has become a very
popular tool for the calculation of properties of atoms,
molecules, nanostructures, or bulk materials thanks to its
favorable accuracy/computational cost relation. It can also be
used for a wide range of applications, e.g., to calculate optical
properties,3 to study nuclear dynamics,4 charge transfer
processes,5 electronic excitations,6 and ultrafast interaction of
electrons with strong laser fields,7 to name a few. At the core of
these simulations are the time-dependent Kohn−Sham
equations (TDKS):

φ φ̇ = − ̂ =t iH n t t t m N( ) [ ( )]( ) ( ), ( 1, ..., )m m (1)

where we use the dot notation (φ̇) for time derivatives,
Ĥ[n(t)](t) is the Kohn−Sham (KS) Hamiltonian, φ ≡ {φm}m=1

N

are the KS orbitals, N is the number of electrons, and n is the
one-electron density, obtained from

∑ ∑ φ σ⃗ = | ⃗ |
σ=↑ ↓ =

n r t r t( , ) ( , )
m

N

m
, 1

2

(2)

The Kohn−Sham Hamiltonian is a linear Hermitian operator
that can have an explicit time-dependence (e.g., if the atoms are
moving, or in the presence of a laser field) and an implicit time-
dependence through the density. As the density (eq 2) is
written in terms of the Kohn−Sham orbitals, eq 1 is indeed a
set of nonlinear equations. Moreover, the KS Hamiltonian at
time t depends on the full history of the density at all times t′ ≤
t, and not only on its value at time t. These “memory” effects
are rather important in several circumstances (for example, for
multiple excitations) and have been extensively studied.8

Unfortunately, there is a lack of memory-including exchange-
correlation functionals, and the dependence on the full history
make the solution of the TDKS equations rather complex.
Therefore, almost all applications of real-time TDDFT invoke
the adiabatic approximation, which states that the KS

Received: February 23, 2018
Published: April 19, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 3040−3052

© 2018 American Chemical Society 3040 DOI: 10.1021/acs.jctc.8b00197
J. Chem. Theory Comput. 2018, 14, 3040−3052

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

M
PI

 S
T

R
U

K
T

U
R

 U
N

D
 D

Y
N

A
M

IK
 M

A
T

E
R

IE
 o

n 
Ju

ly
 9

, 2
01

8 
at

 1
2:

37
:1

8 
(U

T
C

).
 

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.
 

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b00197
http://dx.doi.org/10.1021/acs.jctc.8b00197
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


Hamiltonian at time t only depends on the instantaneous
density at the same time, as we already assumed in eq 1.
Upon discretization of the electronic Hilbert space, the

TDKS equations fall into the category of systems of initial-value
first-order ordinary differential equations (ODEs); i.e., they
have the general form:

φ φ̇ =t f t t( ) ( ( ), ) (3)

φ φ=t( )0 0 (4)

Note that if history were to be considered, the TDKS equations
would no longer be an ODE system: they would belong instead
to the more general family of delay dif ferential equations, or
time-delay systems.9

Centuries of research since the early days of Newton, Euler,
etc. have produced a wide variety of numerical methods to
solve ODEs.10−12 Any of those can in principle be applied to
the TDKS equations, but finding the most efficient one is a
difficult task.13−23 In the following paragraphs, we make a
necessarily nonexhaustive recap of the ODE schemes that have,
or have not, been tried for TDDFT problems.
A first division can be established between one-step and

multistep methods. The former provide a recipe to compute an
approximation to the solution at some time t from the
knowledge of the solution at a single previous time t − Δt. The
latter use information from a number of previous steps t − Δt, t
− 2Δt, etc. Multistep formulas have been scarcely used in the
quantum chemistry or electronic structure community, and
only recently tried for TDDFT calculations.16 Perhaps the
reason is the need to store the information about a number of
previous steps, a large amount of data for this type of problem.
The most common alternatives are the implicit and explicit
formulas of Adams, and the backward-differentiation formulas
(BDFs).
For what concerns single-step methods, arguably the most

used and studied one is the family of Runge−Kutta (RK)
integrators.24 This includes the implicit and explicit Euler
formulas, the trapezoidal (also known as Crank-Nicolson25)
and implicit midpoint rules, the explicit RK4 formula
(considered “the” RK formula since it is perhaps the most
common), the Gauss-Legendre collocation methods, the Radau
and Lobatto families, etc. Moreover, numerous possible
extensions and variations are possible: partitioned RK,
embedded formulas, use of variable time-step, extrapolation
methods on top of the RK schemes (e.g., the Gragg−Bulirsch−
Stoer algorithm26), composition techniques, the linearly
implicit Rosenbrock methods, etc. (see refs 10−12 for a
description of these and other ideas). Once again, many of
these options have never been tested for TDDFT problems.
Linear autonomous ODE systems can also be solved directly

by acting on the initial state with the exponential of the
operator that defines the system. Quantum problems without
an explicitly time-dependent Hamiltonian belong to this class.
The problem of the quantum propagator can therefore be
reduced to finding a good algorithm to compute the action of
the exponential of an operator. Various alternatives exist: a
truncation of the Taylor expansion,27 the Chebychev28 and
Krylov polynomial expansions,29,30 Leja and Pade ́ interpola-
tions,31 etc.
For nonautonomous linear systems (e.g., quantum problems

with time-dependent Hamiltonians), a time-ordered exponential
must substitute the simple one. By using short-enough time-
steps, however, a constant Hamiltonian can be applied within

each interval, and the simple exponential methods mentioned
above may suffice. Otherwise, one can resort to Magnus
expansions.32 Perhaps the most used one is also the simplest:
the second-order Magnus expansion, also known as the
exponential midpoint rule. More sophisticated (higher order)
expansions require the computation of commutators of the
Hamiltonian at different times, a costly operation. Recently,
commutator-free Magnus expansions have also been pro-
posed.33 Other recent options essentially based on the
exponential (and tested for TDDFT) are the nonrecursive
Chebychev expansion of Williams-Young et al.34 and the three-
term recurrence of Akama et al.18

An old-time favorite in condensed matter physics is the split-
operator formula.35 It belongs to the wide class of splitting
techniques, whose simplest members are the Lie-Trotter36 and
Strang37 splittings. In chemistry and physics, these use the usual
division of the Hamiltonian into a kinetic and a potential part,
as both can be treated exactly in the proper representation
the main computational problem is then reduced to the
transformation to and from real and Fourier space. More
sophisticated splitting formulas have also been developed (see
e.g. refs 38−41).
The TDDFT Hamiltonian may also be divided into a linear

and a nonlinear part. The nonlinear part must of course include
the Hartree, exchange, and correlation potentials. The kinetic
term is almost always included in the linear term. This is
considered to be the term responsible for the possible stif fness
of the equations. It is difficult to give a precise definition of
stiffness, and a pragmatic one is generally accepted: “stiff
equations are equations where certain implicit methods
perform better, usually tremendously better, than explicit
ones.”42 Implicit methods require the solution of nonlinear
algebraic equations. Besides outperforming explicit methods for
stiff cases, some of them may also have the advantage of
preserving structural properties of the system, such as
symplecticity−a topic that we will discuss later on. For cases
in which one part of the equation requires an implicit method,
but another part does not, the implicit−explicit (IMEX)
methods were invented.16,43,44 Another recent approach that
relies on the separation of a linear and a nonlinear part are the
exponential integrators.45−48 There are various subfamilies:
“integrating factor” (IF), “exponential time-differencing”
(ETD) formulas, exponential RK, etc. These techniques have
not been tested for nonequilibrium electron dynamics in
general, or TDDFT in particular, until very recently.16

An alternative that has been followed by several groups is the
transformation of the system to the adiabatic eigenbasis, or to a
closely related one (a “spectral basis,” generally speaking). In
that appropriately chosen basis, the dimension of the system is
small, and any method can do the job. The burden of the task is
then transferred to the construction and update of the basis
along the time evolution, an operation that involves
diagonalization. Refs 15, 17, and 49−51 are some recent
examples, some of them based on Houston states,52 that report
notable speed-ups over conventional methods. This result
seems, however, to depend on the type of problem,
implementation details, etc.
The former list of algorithms, though long, was not

exhaustive: for example, we can also mention Fatunla’s
algorithm,30,53,54 or the very recent semiglobal approach of
Schaefer et al.55 based on the Chebychev propagator. It
becomes evident that the list of options is extensive, making the
identification of the most efficient, accurate, or reliable
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algorithm a hard task. Some of us presented in 2003 a
performance analysis of various propagation methods for the
TDKS equations;13 it is the purpose of this Article to continue
along those lines, by investigating other promising propagation
schemes and by providing several benchmarks in order to assert
their efficiency in real-world applications. In particular, we look
here at multistep based propagators, exponential RK integrators
(along with the standard RK), and a commutator-free version
of the Magnus propagator. We implemented these propagation
schemes in our code octopus,56,57 a general purpose
pseudopotential, real-space, and real-time code.
The remainder of this article is organized in the following

way: first, we study in section 2 the theory regarding the
propagation schemes and its relation with the KS equations,
paying special attention to the issue of symplecticity. Then, in
section 3 we show the benchmarks obtained for the different
propagation schemes. Finally, in section 4 we state our
conclusions.

2. EXACT PROPERTIES
2.1. The Propagator. If eqs 1 were linear, their solution

could be written as

φ φ= ̂ − Δ − Δ =t U t t t t t m N( ) ( , ) ( ), 1, ...,m m (5)

for some discrete time step Δt (that we will consider to be
constant along the evolution in this work). The evolution
operator is given by

∫ τ τ̂ − Δ = − ̂
−Δ{ }U t t t i H( , ) exp d ( )

t t

t

(6)

That is, it is the time-ordered evolution operator. The
nonlinearity, however, implies that a linear evolution operator
linking φm(t − Δt) to φm(t) does not exist. We may however
still assume the existence of a nonlinear evolution operator, that
is usually called a f low in the general case [eqs 3 and 4]; it is
defined as

Φ − Δ =y t t y t( ( )) ( )t (7)

This is the object that must be approximated through some
algorithman algorithm that of course takes the form of a
linear operator whenever employed on linear systems.
To choose a numerical method to propagate the TDKS

equations, one is usually concerned by its performance and
stability. Performance is loosely speaking related to the
computer time required to propagate the equations for a
certain amount of time. Stability, on the other hand, is a
measure of the quality of the solution after a certain time. For
linear systems (or for propagators applied to linear systems), it
is possible to give a simple mathematical definition of stability.
A propagator is stable below Δtmax if, for any Δt < Δtmax and n
> 0, Ûn(t + Δt, t) is uniformly bounded. One way to ensure that
the algorithm is stable is by making it “contractive,” which
means that ∥Û(t + Δt)∥ ≤ 1. Of course, if the algorithm is
unitary, it is also contractive and hence stable, but if the
algorithm is only approximately unitary, it is better if it is
contractive. We can also talk about unconditionally stable
algorithms if their stability is independent of Δt and of the
spectral characteristics of Ĥ.
Clearly, in many cases stability can be enhanced by

decreasing the time-step of the algorithm, i.e., by decreasing
its numerical performance. In other cases, however, long-time
stability is almost impossible to achieve for some methods.

A common strategy to develop stable numerical methods is
to request that these obey a number of exact features (although
this does not ensure the stability or the performance). There
are a series of exact conditions that can be easily derived. For
example, it is well-known that, for linear systems with
Hermitian Hamiltonians, the propagator is unitary

̂ − Δ = ̂ − Δ† −U t t t U t t t( , ) ( , )
1

(8)

This property ensures that the KS wave functions remain
orthonormal during the time evolution. Algorithms that
severely violate eq 8 will have to orthogonalize regularly the
wave functions, a rather expensive (N3) operation, especially for
large systems. Note that for the TDKS equations it is not,
strictly speaking, correct to speak of unitarity due to the
nonlinear character of the propagators even if the orthogonality
condition still holds among the KS orbitals (see the discussion
in ref 58).
For systems that do not contain a magnetic-field or a spin−

orbit coupling term (or any other term that breaks time-reversal
symmetry), the evolution operator fullfils

̂ − Δ = ̂ − Δ−U t t t U t t t( , ) ( , )
1

(9)

This relation is rather important in order to ensure stability of
the numerical propagator, and it is often violated by many
explicit methods.

2.2. Symplecticity. The geometrical structure of an ODE
system, as well as that of its numerical representation (i.e., the
propagator), is another important issue to consider.12 In this
context, an important property is symplecticity. A differentiable
map → g : n n2 2 is symplectic if and only if

∂
∂

∂
∂

= =
−

⎡
⎣⎢

⎤
⎦⎥

g
y

J
g
y

J J
I

I
,

0
0

T

(10)

Given any system of ODEs, the f low is a differentiable map.
The first requirement for a flow to be symplectic is that the
system is formed by an even number of real equations. Any
complex system, however, may be split into its real and
imaginary parts and is equivalent to a system with an even
number of real equations.
The system of equations is also required to be Hamiltonian: a

system is Hamiltonian if it follows the equation of motion

̇ = ∇−y J H y( )1
(11)

where ∈ y n2 and H is some scalar function of y. It is usual to
decompose y = (q, p)T, leading to the well-known Hamilton
equations of motion

̇ =
∂

∂
q

H p q
p

( , )
i

i (12a)

̇ = −
∂

∂
p

H p q
q

( , )
i

i (12b)

with qi and pi elements of the vectors q and p. The flow of a
Hamiltonian system is symplectic. Roughly speaking, the
inverse is also true.12,59

One can easily prove that the (usual) Schrödinger equation

|Ψ ⟩ = ̂ |Ψ ⟩i
t

t H t
d
d

( ) ( )
(13a)

|Ψ ⟩ = |Ψ ⟩(0) 0 (13b)

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00197
J. Chem. Theory Comput. 2018, 14, 3040−3052

3042

http://dx.doi.org/10.1021/acs.jctc.8b00197


forms a Hamiltonian system60 and is therefore symplectic. It is
possible to perform the derivation in coordinate space, but the
proof is somewhat simpler if we expand the wave function in a
given basis set

∑|Ψ ⟩ = |Ψ⟩t c t( ) ( )
i

i i
(14)

where {|Ψi⟩} forms an orthonormal basis and ci(t) = ⟨Ψi|Ψ(t)⟩
are the time-dependent expansion coefficients. The Schrö-
dinger equation is thus transformed into

̇ = −c iHc (15a)

= ⟨Ψ|Ψ ⟩c (0)i i 0 (15b)

where the Hamiltonian matrix H is defined by Hij = ⟨Ψi|H|Ψj⟩,
and c is the vector of the coefficients. We now split the
coefficients ci of the wave function into their real and imaginary
parts

= +c q ip
1
2

( )i i i (16)

that is, = ℜq c2i i, = ℑp c2i i. We can now define a
Hamiltonian function of the vectors q and p

=⟨Ψ | ̂ |Ψ ⟩

= − ℜ + ℑ +

= ℜ + ℜ + ℑ

H q p q p H q p

q H i H q ip

q p p Hq

( , ) ( , ) ( , )

1
2

( ip) ( )
1
2

( )

1
2

Hq
1
2

Hp

T

T T T

where we have used the fact that, if H is Hermitian, then H(q,
p) must be real, and the real part of H is symmetric
(ℜ = ℜH HT ) while its imaginary part is antisymmetric
(ℑ = −ℑH HT ). We can now calculate the partial derivatives

∑∂
∂

= ℜ − ℑ
H q p

q
H q H p

( , )
( )

i j
ij j ij j

(17a)

∑∂
∂

= ℜ + ℑ
H q p

p
H p H q

( , )
( )

i j
ij j ij j

(17b)

In order to find the equations of motion for the q and p
coordinates, we rewrite eq 15a as

∑̇ + ̇ = − ℜ + ℑ +q ip i H i H q ip( )( )i i
j

ij ij j j
(18)

The proof follows by separating the real and imaginary parts of
eq 18 and comparing them to eq 17a. The Schrödinger’s
equation forms a Hamiltonian, symplectic system.
Whether or not an ODE system is symplectic has important

theoretical consequences: to name a couple, the flow preserves
the volume in phase space, and the total energy is conserved
as it has been pointed out, for the case of the TDKS equations
in the adiabatic approximation, for example, in ref 14. The
algorithm that we choose to approximate the real flow defines a
numerical f low that may or may not be symplectic. It is of
course convenient for it to be; for example, one can
demonstrate61 that symplectic numerical flows lead to long-
term stability of the energy, that typically oscillates around its
true value. Usually, the error in the conservation of other
constants of motion also behaves better when symplectic

algorithms are used. In the following, we shall prove, following
a similar procedure to the one above for the Schrödinger
equation, that the TDKS equations, in the adiabatic
approximation, form a symplectic, Hamiltonian system. There-
fore, it is convenient (although not strictly necessary) to choose
symplectic algorithms to approximate the TDKS propagator.

2.3. Symplecticity and the TDKS Equations. For the
TDKS equations, eq 1, the Hamiltonian operator can be
written (assuming the adiabatic approximation):

̂ = ̂ + ̂ + ̂H n t T V V n t[ ( )] [ ( )]Hxc (19)

where the terms represent the kinetic energy operator, the
external potential, and the Hartree-exchange-correlation (Hxc)
potential. In the coordinate representation, we have

σ φ

φ σ φ σ

φ σ

⟨ | ̂ | ⟩

= − ∇ +

+

H n t t

t v t

v n t t

r

r r r

r r

[ ( )] ( )
1
2

( , ) ( ) ( , )

[ ( )]( ) ( , )

m

m m

m

2

Hxc (20)

We now expand the KS orbitals in a one-electron basis {|ϕi⟩}

∑φ ϕ| ⟩ = | ⟩cm
i

mi i
(21)

The TDKS equations are thus transformed into the initial value
problem

̇ = −c iH c c[ ]m m (22a)

ϕ φ= ⟨ | ⟩c (0)mi i m
0

(22b)

where the matrix H[c] is given by

ϕ ϕ= ⟨ | ̂ | ⟩H c H c[ ] [ ]ij i j (23)

Note that the dependence on the (instantaneous) density is
rewritten as a dependence on the full set of coefficients c. We
again split the coefficients into their real and imaginary parts

= +c q ip
1
2

( )mi mi mi (24)

The TDKS equation may then be rewritten as

̇ + ̇ = − ℜ + ℑ +q ip i H q p H q p q ip( [ , ] [ , ])( )m m m m (25)

and separating into real and imaginary parts

̇ = ℑ + ℜq H q p q H q p p[ , ] [ , ]m m m (26a)

̇ = −ℜ + ℑp H q p q H q p p[ , ] [ , ]m m m (26b)

In order to rewrite the TDKS system as a classical Hamiltonian
system, we need to find a Hamiltonian function H(q,p). It can
be easily seen that the noninteracting energy of the KS system
does not work. However, we can use the ground-state energy
functional, which is given by

= + +E n T n V n E n[ ] [ ] [ ] [ ]S Hxc (27)

evaluated adiabatically with the time-dependent density.
Remembering that the density is evaluated from the KS
orbitals, we can write the energy as a functional of these

φ φ φ φ= + +E T V E[ ] [ ] [ ] [ ]S Hxc (28)

Representing the orbitals by the new variables (q, p), we define
a Hamiltonian function
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= + +H q p T q p V q p E q p( , ) ( , ) ( , ) ( , )S Hxc (29)

The first two terms can be treated exactly in the same way as
for the standard Schrödinger equation. The noninteracting
kinetic energy function reads

∑ ∑

∑

= ℜ + ℜ

+ ℑ

T q p q Tq p Tp

p Tq

( , )
1
2

1
2m

m m
m

m m

m
m m

S

(30)

where ℜT and ℑT are the real and imaginary parts of the
kinetic energy operator matrix in the chosen basis. The external
potential is

∑ ∑

∑

= ℜ + ℜ

+ ℑ

V q p q Vq p Vp

p Vq

( , )
1
2

1
2m

m m
m

m m

m
m m

(31)

Calculating the partial derivatives of the previous expressions,
we arrive at

∑∂
∂

= ℜ − ℑ
T q p

q
T q T p

( , )
( )

mi j
ij mj ij mj

S

(32a)

∑∂
∂

= ℜ + ℑ
T q p

p
T p T q

( , )
( )

mi j
ij mj ij mi

S

(32b)

and with a similar expression for ∂V(q, p)/∂qmi and ∂V(q, p)/
∂pmi. Using eq 26, we see that these two terms verify the
necessary conditions for a Hamiltonian system. We are left with
the term EHxc(q, p). Its partial derivatives can be computed with
the help of the chain rule

∫ δ
δ

∂
∂

=
∂

∂
E p q

q
r

E
n q p

n q p
qr

r( , )
d

( , ; )
( , ; )

mi mi

Hxc 3 Hxc

(33a)

∫ δ
δ

∂
∂

=
∂

∂
E p q

p
r

E
n q p

n q p
pr

r( , )
d

( , ; )
( , ; )

mi mi

Hxc 3 Hxc

(33b)

The density n(q, p, r) is the one that corresponds to the set of
Kohn−Sham orbitals defined by the (q, p) coordinates. The
functional derivative of EHxc is the Hartree, exchange, and
correlation potential

δ
δ

=
E q p
n q p

v q p
r

r
( , )

( , ; )
( , ; )Hxc

Hxc
(34)

In order to compute the partial derivatives of the density with
respect to q and p, one needs to write it in terms of those
variables

∑ ϕ σ ϕ σ= − + *
σ

n q p q ip q ipr r r( , ; )
1
2

( )( ) ( ) ( )
m

i j

mi mi mj mj i j
,
,

(35)

Then

∑ ∑

∑ ∑

ϕ σ ϕ σ

ϕ σ ϕ σ

∂
∂

= ℜ *

− ℑ *
σ

σ

n q p
q

q

p

r
r r

r r

( , ; )
( ) ( )

( ) ( )

mi j
mj i j

j
mj i j

(36a)

and

∑ ∑

∑ ∑

ϕ σ ϕ σ

ϕ σ ϕ σ

∂
∂

= ℑ *

+ ℜ *
σ

σ

n q p
p

q

p

r
r r

r r

( , ; )
( ) ( )

( ) ( )

mi j
mj i j

j
mj i j

(36b)

Plugging these expressions into eq 33a results in

∑∂
∂

= ℜ − ℑ
E p q

q
V q p q V q p p

( , )
( [ , ] [ , ] )

mi j
ij mj ij mj

Hxc Hxc Hxc

(37a)

∑∂
∂

= ℑ + ℜ
E p q

p
V q p q V q p p

( , )
( [ , ] [ , ] )

mi j
ij mj ij mj

Hxc Hxc Hxc

(37b)

where the matrix VHxc[q, p] is given by

ϕ ϕ= ⟨ | ̂ | ⟩V q p V q p[ , ] [ , ]ij i j
Hxc

Hxc (38)

Therefore, the partial derivatives of EHxc also have the right
structure, which concludes the proof that the TDKS equations
form a Hamiltonian system.

3. RESULTS
In order to analyze the performance of the integration schemes,
we used a “real world” benchmark based on the propagation of
a benzene molecule. We placed the molecule in a spherical
simulation box of radius r = 12 au, with a grid spacing of a = 0.4
au. At time zero, the system is subject to an instantaneous
perturbation:

φ φ φ→ = =+t( 0 ) ej j
ikz

j
GS GS

(39)

i.e., each KS orbital, initially at its ground-state equilibrium
value φj

GS, is transformed at time zero into a slightly perturbed
orbital φj(t = 0+), corresponding to a sudden application of an
electric field with strength k = 0.1 au in the z-direction. Then, it
evolves freely for a total propagation time T = 2π au. We
compared both the wave function and the energy obtained at
the end of the run with a reference “exact” calculation,
performed with a very small time step and the explicit RK4
propagator. The error in the wave function is then defined as

∑ φ φΔ = || − ||E T t T T( , ) ( ) ( )
m

m mwf
exact 2

(40)

and the error in the energy is defined as

Δ = | − |E T t E T E T( , ) ( ) ( )energy
exact

(41)

where φm
exact and Eexact are the KS orbitals and the energy

obtained from the “exact” calculation.
3.1. Exponential Midpoint Rule. We used the exponential

midpoint rule (EMR), one of the propagators studied in ref 13,
as a base for comparison with the new schemes. The EMR
prescribes

φ φ φ= − Δ ̂ ̅ − Δ − Δt i tH t t t t( ) exp( [ ]( /2)) ( ) (42)

where φ̅ is the average wave function:

φ φ φ̅ = + − Δt t t
1
2

[ ( ) ( )]
(43)
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The EMR is second order in Δt, symplectic, and preserves
time-reversal symmetry. It is also an implicit scheme as it
requires the Hamiltonian calculated with the average wave
function. The nonlinear eqs 42 and 43 can be solved, e.g., by
iteration until self-consistence is achieved. The first iteration
can be started by making use of an extrapolated Hamiltonian

φ φ= − Δ ̂ − Δ−Δt i tH t t( ) exp( ) ( )t t
(1)

( /2)
extr

(44)

We will use the shorthand notation Ĥ(τ)
extr for a Hamiltonian that

is obtained via extrapolation or interpolation to time τ from a
number p of known Hamiltonians: Ĥt−Δt, Ĥt−2Δt, ..., Ĥt−pΔt. We
will also use the notation

φ τ τ̂ = ̂τH H[ ( )]( )( ) (45)

In practice, most of the time, one does not iterate the self-
consistent procedure, but uses eq 44 directly. This leads to an
explicit EMR, that is, the method used in the remainder of this
work. Of course, this approximated method no longer fulfills
the exact properties stated above.
The definition of the algorithm must be complemented with

a recipe to compute the action of the exponential of an operator
on a vector. There are a variety of possibilities, passing by a
truncated Taylor expansion, a Lanczos expansion, the split-
operator scheme (as well as any of the higher-order variants of
this), etc. For our purposes, we decided to use the first, namely,
a Taylor expansion truncated to fourth order.
One may also design other exponential-based methods that

can be considered variations of the EMR. For example, in ref
13, we defined the “enforced time-reversal symmetry” (ETRS)
scheme

φ φ= − Δ ̂ × − Δ ̂ − Δ−Δ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠t i

t
H i

t
H t t( ) exp

2
exp

2
( )t t t( ) ( )

(46)

This algorithm was designed to improve on the preservation of
time-reversal symmetry. It is also an implicit method, and the
nonlinear eq 46 can be solved iteratively. Alternatively, one can
use an extrapolated Hamiltonian Ĥ(t)

extr in eq 46, leading to the
approximate ETRS (AETRS) algorithm.
3.2. Commutator-Free Magnus Expansions. Restricting

the discussion momentarily to linear systems, for time-
dependent Hamiltonians, the evolution operator (eq 6) has a
rather complicated form involving an integral over time and a
time-ordering operator. It is natural to wonder, however, if
there exists an operator Ω̂(t, t − Δt) that makes the following
expression exact

̂ − Δ = Ω̂ − ΔU t t t t t t( , ) exp( ( , )) (47)

In 1954, Magnus32 showed that, for some neighborhood of t,
there exists an infinite series such that

∑Ω̂ − Δ = Ω̂ − Δ
=

∞

t t t t t t( , ) ( , )
k

k
1 (48)

and provided a recursive relation to find the operators Ω̂k:

∫∑ τ τΩ̂ + Δ =
!

̂
=

− +Δ
t t t

B

j
S( , ) ( ) dk

j

k
j

t

t t

k
j

0

1

(49)

τ τ τ̂ = − ̂ ̂ = >S iH S k( ) ( ), ( ) 0 ( 1)k1
0 0

(50)

∑τ τ̂ = Ω̂ + Δ ̂ ≤ ≤ −
=

−

−
−

S t t t S j k( ) [ ( , ), ( )] (1 1)k
j

m

k j

m k m
j

1

1

(51)

where Bj are Bernoulli numbers.
This recursive relation involves nested commutators of the

Hamiltonian at different times. To obtain a Magnus propagator
of order 2n, ÛM(2n), one truncates the series in eq 48 at the nth
term and approximates the time integrals in eq 49 with some
nth order quadrature formula. As an example of this procedure,
the aforementioned EMR is in fact the Magnus expansion of
order two (although, strictly speaking, only for linear systems):

̂ − Δ = − Δ ̂ = ̂−ΔU t t t i tH U( , ) exp( )t t MEMR ( /2) (2) (52)

This second order formula is unusual as it does not involve
commutators. For higher orders, the main difficulty arises from
the evaluation of the commutators. To circumvent this
problem, Blanes et al.33 developed a series of alternative
Magnus expansions that are free of the commutators in eq 51
and also address the nonlinear case.
In the linear case, these schemes consist of products of

exponentials:

∏̂ − Δ =
=

̂U t t t( , ) e
q m

i

m
D,

1

i

(53)

where m is the number of exponentials, q is the order of the
method, and D̂i are some operators whose form must be
determined in order to ensure the order q of the approximation.
In our case, we implemented the fourth order (q = 4)

commutator-free version of the Magnus expansion, presented
in eq 43 of ref 33 and labeled as the “method 4” on page 6 of
ref 62. This method, that we will call “CFM4” in the following,
only requires two exponentials (m = 2) and is given by

φ α α

α α φ

= − Δ ̂ − Δ ̂

× − Δ ̂ − Δ ̂ − Δ

t i t H i t H

i t H i t H t t

( ) exp( )

exp( ) ( )

t t

t t

1 ( ) 2 ( )

2 ( ) 1 ( )

1 2

1 2 (54)

for some carefully chosen constants α1 and α2 and intermediate
times t1 and t2. The application of this method to the nonlinear
TDKS equations leads again to an implicit rule, as we need Ĥ(t1)

and Ĥ(t2). Therefore, we have implemented an approximate
version, again relying on extrapolated Hamiltonians. If this
extrapolation is peformed at fourth order (i.e., using at least
four previous steps), then the order of the method is preserved.
Figures 1 and 2 depict the results obtained with the CFM4,

EMR, ETRS, and AETRS methods. The top (botton) panel of
Figure 1 shows the error in the energy (wave function) as a
function of the time-step. We used logarithmic scales in both
axes, so that the curves become straight lines in the small Δt
limit (until numerical precision is reached). The slope of those
lines is given by the order of each methodat least for the
error in the wave function. For larger values of the time-step,
the curves are no longer straight lines and may actually exhibit a
faster behavior: for example, the EMR, ETRS, and AETRS
methods behave as fourth order propagators for larger Δt,
whereas their order is actually two. As we can see in Figure 1,
for the largest time-steps (up to 10−2 au.), all the methods have
similar precision, except the EMR, which becomes unstable
(this is the reason why this data point is missing). When the
time-step decreases, EMR, ETRS, and AETRS behave as order-
two methods while CFM4 maintains its fourth order
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throughout the whole range of Δt. This makes CFM4
significantly more precise than the other propagators for Δt
< 10−2 au.
In Figure 2, we show the cost (measured in seconds) of the

propagation as a function of the error in the wave function,
again in logarithmic scale. From these kinds of plots, one can
identify the best performing method for a given required
precision. This required precision must be decided a priori by
the user, and it is problem dependent. For the largest values of
the error, the performance of all the integrators is very similar.
For smaller values, EMR, ETRS, and AETRS have a similar
cost, but CFM4 is significantly faster. This makes CFM4 the
best method overall.
3.3. Multistep Methods. In 1883, J. C. Adams and F.

Bashforth proposed multistep methods in the context of fluid
mechanics.63 These methods use s > 1 previous steps in order
to calculate the following one. They require a starting
procedure to provide those first s steps. The simplest procedure
consists in using a single-step method. In our case, we used the
standard explicit fourth-order RK (described below).
We examined linear multistep formulas given by

∑

∑

φ φ

φ

+ − Δ

= Δ − Δ − Δ

=
−

=
−

t a t k t

t b f t k t t k t

( ) ( )

( , ( ))

k

s

s k

k

s

s k

1

0 (55)

where {ak}k=0
s−1 and {bk}k=0

s are the coefficients that determine the
method. If bs = 0, then the method is explicit, since the equation
is an explicit formula for φ(t). If bs ≠ 0, then the method is
implicit, as it provides a relation between φ(t) and f(φ(t), t). If
we consider the dynamical function relevant for TDDFT

φ φ= −f t iH( , ) t( ) (56)

and we define the shorthand notation

φ φ= − Δ− ΔH t k t( )k
t k t

( )
( ) (57)

we finally arrive at

∑

φ

φ φ

+ Δ

= − − Δ + Δ
=

− −

I b i tH t

a t k t b i t

( ) ( )

[ ( ) ]

s t

k

s

s k s k
k

( )

1

( )

(58)

The first multistep integrators that we studied belong to the
family of explicit Adams methods, also known as Adams−
Bashforth (AB) methods. They are explicit (bs = 0) and the
coefficients a are as−1 = −1 and as−2 = ... = a0 = 0. The
remaining bk’s are chosen such that the methods have order s,
which determines them uniquely. The method then reads

∑φ φ φ= − Δ − Δ
=

−t t t b i t( ) ( )
k

s

s k
k

1

AB ( )

(59)

The implicit Adams, or Adams−Moulton (AM), family is
similar to the Adams−Bashforth methods in that they also have
as−1 = −1 and as−2 = ... = a0 = 0:

∑φ φ φ+ Δ = − Δ − Δ
=

−I b i tH t t t b i t( ) ( ) ( )s t
k

s

s k
kAM

( )
1

AM ( )

(60)

Again, the b coefficients are chosen to obtain the highest
possible order. The Adams−Moulton methods are implicit
methods, since the restriction bs = 0 is removed. This fact
permits the increase of the order of the error: an s-step Adams−
Moulton method is on the order s + 1, while an s-step Adams−
Bashforth method is only of order s.
Equation 60 was solved iteratively. We also implemented a

“linearized” version of the Adams−Moulton formula (lAM),
where we used an extrapolation of the Hamiltonian at time t,
thereby transforming eq 60 into a linear equation. Another
possible simplification of the Adams−Moulton formula regards
the use of the so-called “predictor−corrector” schemes, which
avoid the linear system solution altogether by turning the
implicit method into an explicit one. In our implementation, it
consists of using Adams−Bashforth to get an approximated
(“predictor”) φ̃(t) and using this to obtain the Hamiltonian on
the left-hand side of eq 60. We named this procedure the
Adams−Bashforth−Moulton (ABM) method.
The backward differentiation formulas (BDF) are implicit

methods with bs−1 = ... = b0 = 0 and the other coefficients
chosen such that the method has order s (the maximum
possible). These methods are especially suited for the solution
of stiff differential equations. This fact has been explained in

Figure 1. Error in the total energy (top panel) and in the wave
function (bottom panel), as a function of the time-step, for the various
reference propagators (ETRS, AETRS, and EMR) and for the CFM4
propagator.

Figure 2. Cost of the method, as a function of the error obtained (in
the wave function), for the various reference propagators (ETRS,
AETRS, and EMR) and for the CFM4 propagator.
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terms of the analysis of the “stability region”: in the case of the
BDFs, it includes the negative real axis, which is the place where
the real part of the eigenvalues of stiff systems lie (check section
V.1 from ref 11 for a more in depth discussion about this).
The general formula for a BDF can be written as

∑φ φ+ Δ = − − Δ
=

−I b i tH t a t k t( ) ( ) ( )s t
k

s

s k
BDF

( )
1

BDF

(61)

We implemented these families of integrators in an octopus,
ran these five methods with steps s = 1, ..., 5, and compared
them among each other and with the EMR. Figures 3 and 4

show the best candidate from each family. The number
accompanying the name of the propagator indicates the
number of previous steps s used in the calculation. As we can
see, the EMR is more stable than any of the multistep methods
for large time-steps (especially AB4, which is the most
unstable) but is outclassed in precision by every other
propagator. This is not surprising, as they are methods of
order 4 (AB4 and ABM4), 5 (AM4), or 6 (linearized AM5).
The most precise method for a given time-step is the lAM5,
reaching the numerical precision of our machines for the
smallest time-steps.
In Figure 4, we plot the cost of the methods as a function of

the error. AB4 cannot compete in precision, stability, or
performance with the EMR. For error values larger than 10−7,

the EMR is the fastest propagator, while for smaller values it is
overcome by AMB4 and linearized AM5. AM4 is, as expected,
the most computationally expensive method, with the
linearization procedure dramatically improving its speed.
In Figure 5, we represent the BDF results for s = 1, ..., 5. Our

aim here is to illustrate one important characteristic of the

multistep methods, namely, that the cost does not increase
significantly with the number of previous steps s. This can be
clearly seen on the left panel of Figure 5. Furthermore, in the
right panel, we can see that each extra step included in the
method increases its order by one. Then, why not increase the
number of steps to a very larger number? First, there is a
memory issue, as the previous s steps have to be stored in
memory. But more importantly, as the number of previous
steps increases, the stability of the method decreases. This can
be seen in both panels of Figure 5. Both BDF1 and BDF2 have
better stability properties than EMR, but as soon as we make s
≥ 3 we need to reduce the time-step by a factor of 16 to avoid
the breaking down of the method. This reduction of the
stability region with the number of steps seems to hold for all
linear multistep methods. Moreover, for BDF, there is a
mathematical proof that states that for s ≥ 7 these methods are
unstable (check section III.3 from ref 11 for a more detailed
explanation).
Finally, one important caveat of multistep methods is that

they cannot be symplectic. In fact, the definition does not even
apply, as a multistep algorithm is a map from several previous
steps into the next one, and one cannot speak of a flow in the
usual way. There are however some ways to understand
symplecticity also for these methods,12 but the conclusion is in
any case negative, and the long-term stability properties of
these methods is disappointing.

3.4. Runge−Kutta Schemes. 3.4.1. “Standard” Runge−
Kutta Schemes. The Runge−Kutta (RK) schemes form a
family of methods developed around 1900 by C. Runge and M.
W. Kutta.64 Let bi and aij (i, j = 1, ..., s) be real numbers and ci =
∑j=1

i−1aij. The scheme

∑φ φ= − Δ + Δ
=

t t t t b Y( ) ( )
i

s

i i
1 (62)

where the functions Yi are defined as

Figure 3. Error in the total energy (top panel) and in the wave
function (bottom panel), as a function of the time-step, for the various
multistep methods (AB, AM, ABM, and linearized AM) and for the
EMR propagator.

Figure 4. Cost of the method, as a function of the error obtained (in
the wave function), for the various multistep methods (AB, AM, ABM,
and linearized AM) and for the EMR propagator.

Figure 5. Left: Cost as a function of the error for the BDF methods
(going from s = 1 to 5) and for the EMR propagator. Right: Error in
the propagated wave function, as a function of the time-step, for the
BDF methods (going from 1 to 5 previous steps) and for the EMR
propagator.
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∑φ= − Δ + Δ
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Y f t t t a Y t( ) ,i

j

s

ij j i
1 (63)

at the time-steps

= − Δ + Δ =t t t c t i s, 1, ...,i i (64)

is called an s-stage RK scheme. To specify a particular method,
one needs to provide the integer s (the number of stages) and
the coefficients aij, bi, and ci (for i = 1, 2, ..., s). These are usually
arranged in a mnemonic device, known as a Butcher tableau:

When aij = 0 for i ≤ j, the method is explicit, whereas in all
other cases the method is implicit. Explicit RK methods are
generally unsuitable for the solution of stiff equations because
their region of absolute stability is small. These shortcomings
motivated the development of implicit methods. They are
visually easy to identify looking at their tableaux, as they include
nonzero entries in the upper triangle.
For the implicit methods, we need to solve a system of

algebraic equations, the dimension of which grows with the
number of stages: For a method with s stages, the equation has
m × s unknowns, where m is the dimension of the original
system. In contrast, linear multistep methods only require the
solution of m-dimensional algebraic equations.
For a RK scheme to be symplectic, one can prove65 that the s

× s matrix M with coefficients

= + −m b a b a b bij i ij j ji i j (66)

has to satisfy M = 0. This implies that no explicit RK scheme
can be symplectic.
We studied the RK propagators up to order four. The reason

behind this choice is that, up to this order, the required number
of stages s for explicit methods is equal to the desired order of
the method. From order five onward, however, s is strictly
greater than the desired order.12,24,64 Therefore, the precision
gained by increasing the order does not compensate for the
increase in the computational cost. Regarding explicit methods,
the most widely known RK scheme is the fourth order explicit
RK method, also known as “RK4” or simply “the” RK method.
Its Butcher tableau is

Unfortunately, this method, as any other explicit one, is not
symplectic.
A particularly relevant branch of the RK family is the Gauss-

collocation scheme. Gauss-collocation methods of s stages have
order 2s, and they are both symplectic and symmetric. We
chose two of these methods for our benchmarks, specifically the
second-order “implicit midpoint rule” (that we will call imRK2)
and the fourth-order method (imRK4).
The table for imRK2 is

and leads to the nonlinear equation for φ(t)

φ φ

φ φ

+ Δ ̅ − Δ

= − Δ ̅ − Δ − Δ

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠⎟

I
i

tH t t t

I
i

tH t t t t

2
,

1
2

( )

2
,

1
2

( )
(69)

where φ̅ = 1/2[φ(t) + φ(t − Δt)]. Note that this equation is
similar, but not identical, to the trapezoidal or Crank-Nicolson
rule. These two methods are in fact conjugate,10 and the name
“Crank-Nicolson” is sometimes used indistinctly for both.
The Butcher tableux for imRK4 is

Once again, we face nonlinear equations that we
implemented through self-consistent iterative procedures
similar to the ones described for the AM formulas. Each
iteration requires the solution of a linear system. We also define
“linearized” variants of RK as the simplified versions in which
we just perform the first step of the self-consistent cycle with an
extrapolated Hamiltoniana strategy that always seems to
produce the best performing algorithm.
We plotted the errors in the energy and wave function as a

function of the time-step in Figure 6. The points for imRK4

and lRK4 in the energy panel that do not appear for time-steps
smaller than ∼10−1.8 are those that reached the precision of our
machines. From the bottom panel of this figure, we can see that
the EMR is significantly more precise than the second order RK
methods for the wave function, and it can even compete with
the fourth-order methods for time-steps smaller than 10−2.5. On
the other hand, as far as the energy is concerned, we can see
that EMR is outclassed by every RK method, and especially by
the implicit methods and their linearized versions. The EMR
also breaks down for the larger time-steps values, like the RK4
method.

Figure 6. Error in the total energy (top panel) and in the wave
function (bottom panel), as a function of the time-step, for the various
RK methods (implicit and linearized RK2 and RK4 and explicit RK4)
and for the EMR propagator.
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We also found that the linearized versions of the implicit
methods behave similarly to their full counterpart as far as the
wave function is concerned but that there is a significant
difference in the error of the energy (see the curves for imRK2
and lRK2). The explicit RK4 method performs worse both for
the wave function and for the energy when compared with the
implicit methods.
In Figure 7, we show the cost as a function of the error in the

wave function. Here, the explicit methods have the advantage,

with both the EMR and RK4 performing around an order of
magnitude faster than the implicit propagators. The EMR has
the best performance up to an error of 10−8. The lRK2
performs better than the imRK2, while imRK4 and the lRK4
have the same cost (implying that the self-consistent cycle
converged in one iteration). Among the implicit methods, lRK2
is the best performing method up to an error of 10−4, but for
smaller values either the lRK4 or the imRK4 propagators are
the best choice.
Finally, a word of caution regarding these comparisons

between explicit and implicit methods: the latter require the
solution of linear systems, and their performance will depend
on the performance of the linear solvers. The existence or not
of preconditioners, for example, makes these comparisons very
system and implementation dependent.
3.4.2. Exponential RK Schemes. Recently, we saw the

appearance of the so-called “exponential Runge-Kutta” (ERK)
schemes.46,66,67 The main appeal in this family of propagators
lies in its ability to tackle stiff problems. The key idea is solving
the stiff part of the equation precisely and approximating the
remaining part by a quadrature formula. Let us rewrite our
nonlinear TDKS equation as

φ φ φ φ̇ = − −t iT t iV t t t( ) ( ) [ ( ), ] ( ) (71)

where T is the kinetic operator (the stiff part), and the last term
is the Kohn−Sham potential acting on the orbitals. An ERK
scheme for this equation has the form

∑φ φ= − Δ − Δ ̅ − Δ− Δ

=

t t t i t b i V Y t Y( ) e ( ) ( tT) [ , ]i tT

i

s

i i i i
1

(72)

with the definition

∑φ= − Δ − Δ ̅ − Δ− Δ

=

Y t t i t a i V Y t Ye ( ) ( tT) [ , ]i
ic tT

j

s

ij j j j
1

i

(73)

Equation 73 is in general a set of s nonlinear equations. The
constants ci and the operator functions ai̅j and bi̅ fully determine
the algorithm. These constants reduce to an underlying RK
scheme at T = 0, so that ai̅j(0) = aij and bij(0) = bij. Just as with
normal RK schemes, the methods can be explicit or implicit.
For the explicit ERK schemes, we have to compute some

auxiliary functions Yi(Yj, ti), with j < i and i = 1, ..., s, where s is
the number of stages of the method. Here, the coefficients ai̅j
and bi̅ are linear combinations of the so-called ϕk functions,
defined by the recurrence relation

ϕ
ϕ ϕ

ϕ=
−

=+ z
z

z
z e( )

( ) (0)
, ( )k

k k z
1 0 (74)

leading to

∑ϕ =
+ !=

∞

z
z

k i
( )

( )k
i

i

0 (75)

For the evaluations of the ϕk functions, we used this Taylor
expansion. This allows us to compute both the regular
exponential function and these ϕk’s, and any linear combination
of them in a simple subroutine, simplifying the implementation
of the generalization of the explicit ERK methods.
The simplest example of this family is the exponential version

of the Euler method, given by

φ φ

ϕ φ φ

= − Δ

+ Δ Δ − Δ − Δ − Δ

t t t

t V t t t t t t

( ) ( )

( tT) [ ( ), ] ( )1
(76)

which is an order 1 method (we call it ERK1).
We implemented a general algorithm for a broad family of

ERK schemes of any order described by Hochbruck and
Ostermann.47 We show results for the best performing methods
for orders 2, 3, and 4: method 5.4 for order 2 (we name it
ERK2), method 5.8 for order 3 (we name it ERK3), and
method 5.17 for order 4 (we name it ERK4).
Explicit exponential RK schemes cannot be symplectic (just

as explicit “normal” RK ones), but implicit ones can.67 This is
achieved if the underlying RK method is symplectic and if the
functions ai̅j and bi̅ obey

̅ − Δ = − Δ −a i tT a( ) eij ij
i t c c T( )i j

(77)

̅ − Δ = − − Δb i tT b( ) ei i
i c tT(1 )i (78)

Following this recipe, we implemented the exponential version
of RK2 (labeled imERK2 in the figures), characterized by s = 1,
c1 = a11 = 1/2, and b1 = 1, resulting in the equations

φ φ= − Δ − Δ − Δ− Δ − Δ ⎡
⎣⎢

⎤
⎦⎥t t t i t V Y t

t
Y( ) e ( ) e ,

2
i tT i tT1/2

(79)

with

φ= − Δ − Δ − Δ− Δ ⎡
⎣⎢

⎤
⎦⎥Y t t i

t
V Y t

t
Ye ( )

2
,

2
i t T/2

(80)

Figures 8 and 9 display the numerical results obtained for this
implicit method, and for the four explicit methods mentioned

Figure 7. Cost of the method, as a function of the error obtained (in
the wave function), for the various RK methods (implicit and
linearized RK2 and RK4 and explicit RK4) and for the EMR
propagator.
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above, compared to the EMR scheme. As we can see, all the
exponential methods keep their order for the values of the time-
step where they do not break down. Furthermore, the implicit
version of the exponential RK2 propagator has a wider range of
stability than the explicit versions. From the top panel, we can
see that imERK2 has slightly smaller errors for the energy than
EMR2 up to Δt ∼ 10−2.7, and it is always better than the EMR
as far as the error in the energy is concerned. The ERK4 beats
every other propagator in the top panel. On the other hand, for
the wave function the EMR is on par with ERK4, being slightly
more precise for the largest values of the time-step, and only
being overtaken by ERK4 when Δt < 10−2.5. If we compare the
explicit and implicit ERK2, we can see that imERK2 has a
smaller error in the wave function than ERK2, but in the energy
comparison ERK2 is better for time-step values below 10−2.5. As
we have mentioned before, this figure clearly shows that the
methods behave as expected from the theoretical formulas,
maintaining their order during the whole range of time-steps
studied.
From Figure 9, we can see that these methods are

computationally expensive, with none of the exponential RK
methods coming close to the EMR cost. Among the ERK
family, ERK4 has the best performance for values of the error in
the wave function below 10−2.2, making it the best overall ERK
method from the ones we tested.

4. CONCLUSIONS
We implemented and analyzed four families of numerical
integrators for the Kohn−Sham equations in our code octopus,
specifically commutator-free Magnus expansions, multistep
methods, Runge−Kutta propagators, and exponential Runge−
Kutta integrators. These were compared to the previously
studied exponential midpoint rule, enforced time-reversal
symmetry, and approximately enforced time-reversal symmetry
propagators. For each method, we evaluated the error in the
wave function and the energy as a function of the time-step,
together with the cost in computational time as a function of
the error.
Among the new families of propagators studied in this paper,

the fourth-order commutator-free Magnus expansion beats
every other propagator in terms of cost/accuracy, making it the
recommended method for TDDFT. The multistep integrators’
main advantage is that the computational cost remains constant
independently of the number of previous steps considered. The
exponential Runge−Kutta propagators do not show any clear
advantage over the regular Runge−Kutta methods, with the
explicit Runge−Kutta method of fourth-order being usually the
best choice. The exception is stiff problems or in situations
where a high degree of conservation of some quantity is
required. In such cases, the symplecticity of the implicit
versions of Runge−Kutta comes into play.
We have shown how the TDKS equations, in the adiabatic

approximation, form a Hamiltonian and therefore a symplectic
ODE system. Therefore, for long time propagations, one
should benefit from the use of structure preserving algorithms.
This fact discourages the use of multistep schemes, for example,
and favors implicit schemes that are unfortunately less cost-
effective.
The numerical integration of first-order ordinary differential

equations is a very active field of research, with new schemes
being proposed and old ones refined regularly, and many other
methods still untested. We can therefore still expect new
developments in the numerical propagation of the time-
dependent Kohn−Sham equations, opening the way for the
study of larger systems for longer periods of time.
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(20) Schaffhauser, P.; Kümmel, S. Using time-dependent density
functional theory in real time for calculating electronic transport. Phys.
Rev. B: Condens. Matter Mater. Phys. 2016, 93, 035115.
(21) O'Rourke, C.; Bowler, D. R. Linear scaling density matrix real
time TDDFT: Propagator unitarity and matrix truncation. J. Chem.
Phys. 2015, 143, 102801.
(22) Oliveira, M. J. T.; Mignolet, B.; Kus, T.; Papadopoulos, T. A.;
Remacle, F.; Verstraete, M. J. Computational Benchmarking for
Ultrafast Electron Dynamics: Wave Function Methods vs Density
Functional Theory. J. Chem. Theory Comput. 2015, 11, 2221−2233.
(23) Zhu, Y.; Herbert, J. M. Self-consistent predictor/corrector
algorithms for stable and efficient integration of the time-dependent
Kohn-Sham equation. J. Chem. Phys. 2018, 148, 044117.

(24) Butcher, J. C. The Numerical Analysis of Ordinary Differential
Equations: Runge-Kutta and General Linear Methods; Wiley-Inter-
science: New York, 1987.
(25) Crank, J.; Nicolson, P. A practical method for numerical
evaluation of solutions of partial differential equations of the heat-
conduction type. Adv. Comput. Math. 1996, 6, 207−226.
(26) Stoer, J. C.; Bulirsch, R. Introduction to Numerical Analysis;
Springer Verlag: New York, 2002.
(27) Flocard, H.; Koonin, S. E.; Weiss, M. S. Three-dimensional
time-dependent Hartree-Fock calculations: Application to 16O + 16O
collisions. Phys. Rev. C: Nucl. Phys. 1978, 17, 1682−1699.
(28) Chen, R.; Guo, H. The Chebyshev propagator for quantum
systems. Comput. Phys. Commun. 1999, 119, 19−31.
(29) Hochbruck, M.; Lubich, C. On Krylov Subspace Approx-
imations to the Matrix Exponential Operator. SIAM J. Numer. Anal.
1997, 34, 1911−1925.
(30) Frapiccini, A. L.; Hamido, A.; Schröter, S.; Pyke, D.; Mota-
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