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A) Materials and Methods 
 
The experiment has been performed at the LCLS [1, 2] using 10.363 keV, 50 fs x-ray 
pulses at a repetition rate of 120 Hz. The x-ray beam was focused to a 0.5×0.5 mm2 spot 
in the sample yielding an incident fluence of about 0.6 mJ/cm2. The x-ray bandwidth 
ΔE⁄E was about 10-4. Time dependent changes in the diffracted intensity around (004) 
Bragg reflection were measured by a PIPS diode, see Fig. S1. At a variable time relative 
to the arrival of the x-ray pulses, a p-polarized femtosecond laser pump pulse (λlas=800 
nm, τFWHM=50 fs), nearly collinearly with the x-ray beam (clearance of ~0.6 deg), focused 
down to a 1.0×1.8 mm2 spot, excites the sample with an absorbed fluence of about 4 
mJ/cm2. Each data point in Figs. 1 and 2 in the manuscript has been averaged over 360 
pulses. 
 
The x-ray photon energy Ex=10.363 keV was referenced near to the Ga K-edge (10.367 
keV) in order to observe, in addition to x-ray diffraction, the onset of ferromagnetic phase 
by collecting the fluorescence intensity by a large area, energy and position dispersive, 
single-electron counting pnCCD detector devices [3]. 
  
The experiment has been designed to observe long wavelength longitudinal acoustic 
phonons which are excited in the Ga0.91Mn0.09As film. To avoid excitation of the 
substrate, the sample thickness was chosen to be larger than the laser penetration depth ζ. 
Since laser generated coherent acoustic phonons have a q-space distribution which peaks 
around the inverse of laser penetration depth, qpeak~1/ζ , a near infrared beam with λ=800 
nm and large penetration depth (ζ≈700 nm) has been used to excite the sample. 
 

 
Fig. S1 Scheme of the experimental setup (top view). Time dependent changes in the diffracted intensity 
around (004) Bragg reflection were measured by a PIPS diode. In addition to x-ray diffraction, we have 
observed the onset of ferromagnetic phase by collecting the fluorescence intensity by a large area, energy 
and position dispersive, single-electron counting pnCCD detector devices. In a vacuum chamber with 
pressure on the order of 10-5 mbar, the sample was attached to a cold finger that was in thermal contact with 
a liquid helium bath. 
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A 1 μm-thick GaMnAs epitaxial film with a nominal Mn composition of 9%, (001) 
surface orientation and 1 μm thick Al0.2Ga0.8As buffer layer, was grown by low 
temperature molecular-beam epitaxy technique [4]. The Mn flux, and hence the nominal 
Mn doping x, including all the possible occupied sites such as the Ga lattice and the 
interstitial sites, was estimated by measuring the ratio of the beam equivalent pressures of 
Mn and Ga sources. The sample was then cut into several pieces, and annealed at 
different temperatures in the air for 1 hour, see Fig. S2. Temperature dependence of the 
remnant magnetization (M-T) along GaAs [-110] direction (easy axis) were measure by 
SQUID magnetometer with 2 mT nominal magnetic field. The irregular shape of the 
magnetization curve at around T=30 K (see also Fig. S3) is due to the change of the 
preferential magnetization axis at this temperature, an effect which results from the 
interplay of in-plane biaxial and uniaxial anisotropy fields [5]. 

 

Fig. S2 Temperature dependence of the remnant magnetization of Ga0.91Mn0.09As pieces annealed at 
different temperatures and measured along [-110] direction using a SQUID magnetometer with 2 mT 
nominal magnetic field. 
 
Our sample has been annealed in air at 270°C for one hour. As the required annealing 
time to reduce the compensating defects increases with sample thickness [6], a large 
fraction of Mn interstitials are not passivated (e.g. by oxidation due to the diffusion at the 
surface) but will act like a double donors that reduce the total magnetic moment by 
antiferromagnetic coupling of their spin with the substitutional Mn spin, and likely form 
pairs with a net magnetic moment close to zero [7]. The partial concentrations of 
substitutional and interstitials impurities, xs≈0.055 and xi≈0.035, respectively, have been 
estimated from the saturation magnetization (~16 emu/cm3) assuming (a) the interstitial 
atoms form pairs with substitutional Mn atoms,  yielding thus to an effective 
substitutional doping xs,eff ≈0.02, and (b) the magnetic moment per xs,eff  is 4μB. These 
numbers compare well with those calculated using the TBA (tight binding 
approximation) approach presented by Jungwirth et al. (2005) [8] where, for a nominal 
doping x=0.09, one finds xs,TBA=0.07 and xi,TBA=0.02. Although for thick GaMnAs 
samples (thicker than 500 nm) a realiable measurement of intrinsic semiconducting and 
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magnetic properties is difficult [6], the onset of ferromagnetic state at Tc≈90K was 
observed, which corroborates with our x-ray diffraction data that measure scattering of 
phonons from spin fluctuations and show a critical behavior around 90 K (Fig. 2, 
manuscript). 
 
To check the emergence of a superparamagetic-like spin arrangement observed by 
Sawicki et al. (2010) [9], a series of magnetization curves along [-110] have been 
measured, see Fig. S3. Here, similar to the paper by Sawicki et al. [9], the sample has 
been cooled to T0=10 K and then, instead of warming the system directly to above Tc, the 
temperature sweep is interrupted at some intermediate temperatures (Tf =30 K to 150 K) 
and redirected back to T0 where the warming is restarted. Our data indicate that the 
spontaneous magnetization does not depend on the cooling and warming history—the 
merged curves indicate that superparamagnetic-like portion in our sample, if it exists, 
might be neglected. 

Fig. S3 Temperature dependence of the remnant magnetization of Ga0.91Mn0.09As annealed at 270 °C 
measured along [-110] to check the reversibility of the ferromagnetic state. The sample has been cooled to 
T0=10 K and then, instead of warming the system directly to above Tc, the temperature sweep is interrupted 
at some intermediate temperatures (Tf=30 K to 150 K) and redirected back to T0 where the warming is 
restarted. 

 
 
B) X-Ray Diffraction as a Tool for Probing Phonon Modes 
 
Time resolved x-ray diffraction is a very powerful tool to directly observe small shifts in 
the interatomic distance associated with phonons. The sensitivity of x-ray diffraction to 
coherent lattice dynamics as well as its advantages compared to other methods have been 
extensively discussed and demonstrated in many experiments in both Bragg and Laue 
geometries [10-13]. Here we give some brief excerpt which illustrates the idea on how 
time resolved x-ray diffraction can probe phonon modes of wavelength λq =2π /q. 
 
Coherent acoustic phonons modulate the crystal lattice—they modulate the interplanar 
spacing by a small amount ∆d (on the order of picometers) and thus induce time 
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dependent strains, see Fig. S4. Since x-ray diffraction is susceptible to shifts in 
interatomic distances, any new induced periodicity in the lattice, e.g. due to a phonon 
mode of wavelength λq=2π⁄q, will change the Laue condition to ΔK=G±q and introduce 
side-bands to the main rocking curve peak at ∆θq=q|G|-1(tanθB cosα+sinα), with ΔK being 
the momentum change of x-rays, G is the reciprocal lattice vector, θB the Bragg angle and 
α =0 is the asymmetry angle for waves propagating along G. 
 

 
 
Fig. S4 (A) Schematics of a crystal with a single phonon mode. (B) Phonons modulate the d-spacing 
between the lattice planes. (C) X-ray diffraction from a single coherent acoustic phonon mode uqsin(qz–ωt)  
leads to the appearance of the side bands at Δθq. (D, E) The side band at Δθq is related to the phonon 
wavevector q by the relation q(Δθ)= Δθ|G|⁄tan(θB), and oscillates at the phonon frequency ωq≈vq, with v 
being the speed of sound. 
 
Excitation of the sample with the laser light generates a broad distribution of phonons 
[10, 14]. Different phonon modes are selected out by measuring the time dependent x ray 
diffraction at particular position in the rocking curve (i.e. at a particular angle ∆θq from 
the Bragg peak), see Fig. S5. 
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Fig. S5 (A) Simulated time dependent x-ray diffraction from a superposition of coherent longitudinal 
acoustic phonons in GaMnAs. (B) Different phonon modes are selected out by measuring the time 
dependent x-ray diffraction at particular positions Δθq in the rocking curve. 
 
 
C) Spin-Phonon Interaction 
 
In a crystal containing magnetic atoms, spins and lattice vibrations are correlated. This 
correlation, the so-called spin-phonon interaction, occurs because the displacements of 
magnetic atoms from their equilibrium positions due to phonons will change the distance 
between the neighboring spins and, thus, will lead to a change in the exchange interaction 
[15-18].  
 
The total potential energy of a non-magnetic host crystal with magnetic impurities can be 
written as a sum of lattice and spin contributions,  

SLtot UUU += .         (S1) 
Here UL is the lattice potential energy. In the harmonic approximation [19], 
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where Rm is the average position of atom m, um is the displacement of atom m from its 
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average position Rm, Φ is the interaction energy per atom-pair and U0 is the equilibrium 
potential energy (cohesive energy). In this expression, the indices m and n run over all 
atoms in the crystal. 
 
To quantify the spin contribution US on the lattice potential energy, one can start with the 
expression of the exchange energy between two magnetic atoms located a positions ri and 
rj, 

( )∑ −−=
ji

jijiS JU
,2

1 SSrr
,          (S3) 

where J(ri – rj) is the exchange interaction and 〈SiSj〉 is the two-spin correlation function 
[15-18]. Since the instantaneous position ri(t) can be expressed as ri(t)=Ri+ui(t), the 
dynamical variable ui(t) will enter the exchange interaction 
( ) ( ))()( ttJJ jijiji uuRRrr −+−=−           (S4) 

which, then, can be written as Taylor series, 
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Substituting Eq. (S5) into (S3) we obtain 
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Using Eqs. (S2) and (S6), the total potential energy of the crystal Utot can be written as  
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In this equation, 
– the zeroth order term in (ui-uj) determines the ground state spin configuration, 
– the linear term in (ui-uj) provides the magnetic force for the lattice distortion 

(magnetostriction), and  
– the term quadratic in (ui-uj) affects the phonon dispersion.  
 
In Eq. (S7) the second derivative of the potential energy Φ with respect to the 
displacement u gives us the elastic spring constant 



 
 

8 
 

( )
2

2

u
k nm

mn ∂
−Φ∂

=
RR

.               (S8) 
Similarly, we can define a magnetic spring constant Δkij, which represents the 
contribution of the exchange interaction on kij, as 
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With these definitions, the term quadratic in displacement can be rewritten as 
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D) Space Discretization of Elastic Continuum Equation 
 
Our time dependent x-ray diffraction data demonstrate that at room temperature the 
probed acoustic modes can be well described by elastic waves conform to the Thomsen 
equation [20], 
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,            (S11) 
where u is the displacement, v is the longitudinal speed of sound, ρ is the mass density 
and R(z) is a source term which depends on the excitation energy and wavelength. Spatial 
distortion of vibrational modes indicates inhomogenities in the medium. In this case, the 
atomic details of the medium need to be considered. To include these details in our 
modelling, we start with the equation that describes the propagation of elastic waves 
through an inhomogeneous medium, 
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where G(z) is the elastic modulus. By using the forward discretization scheme with a step 
size ∆z equal to the lattice constant a,  
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with kj=aGj, we obtain 

( ) ( ) ( )jjjjjjj
j

j zFuukuuk
dt

ud
m +−+−= −++ 1112

2

,        (S14) 
where F=a3R. Equation (S14) represents a linear chain composed of N particles, each 
with a mass mj, see Fig. S6. Modelling approaches based on the linear chain of masses 
have been successfully used in the past to understand the excitation response of the 
sample and to visualize the dynamics of the lattice [21,22].   
 
Equation (S14) describes the motion of a particle in a chain which stores the potential 
energy 
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Fig. S6 Schematic illustration of a linear chain concept which results from the spatial discretization of Eq. 
(S12). The unit cell contains both basis atoms, Ga atom at the origin and As atom at d=a/4 (in a 3D lattice, 
a/4 is the fractional coordinate of the As atom along the [001] direction). kj+1=kα and kj-1=kβ are the effective 
force constants between the layers (j, j+1) and (j, j-1). 
 
 

 
Fig. S7 Schematic illustration of a linear chain containing magnetic impurities. Spin-phonon interaction 
contributes on the vibrations of the chain by adding a spring constants Δki ≈–J''(u)〈S0S1〉 which connect the 
neighboring impurity atoms i+p’ and i-p’’ with the central atom i. 
 
If the chain contains magnetic impurities (see Fig. S7) then, according to Eq. (S7), the 
potential energy becomes 
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In this equation, the index j runs through all atoms whereas index i through impurity 
atoms only. 
 
The equation of motion for an atom mn is 
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with mn being the mass of an Ga, As, or Mn atom (depending on the layer, cf. Fig. S6 and 
S7) , kn+1 and kn-1 are the effective force constants between the layers (n, n +1) and (n, n-
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1), respectively, and Δkmag ≈–J ''(u)〈S0S1〉. Indices p’ and p’’ stand for the nearest 
neighbor impurity atoms, and fi≈〈S2〉dJ⁄du. For a host atom r =0, whereas for an impurity 
atom r =1. 
 
The motion of all atoms in the chain, including both hosts and impurities, can be cast into 
a matrix form 
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d

           (S18) 
where, [M] is N×N diagonal matrix. For an impurity atom at the site i=3, for example, we 
can write 
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where, k*
α and k*

β are force constants for the impurity atoms whereas kα and kβ for the 
host atoms. Other elements in the [K] matrix are zero. 
 
Interstitial atoms MnI are assumed to form pairs with substitutional atoms MnGa. Such a 
MnI-MnGa pair is assumed to have zero magnetic moment [7,8] and is represented by a 
pseudoatom with a mass 2mMn, where mMn is the mass of a Mn atom, see Fig. S8. 
 

 
Fig. S8 Inclusion of interstitials. Mn substitutional and Mn interstitial atoms form a pair with zero magnetic 
moment, and are represented by a pseudoatom with a mass 2mMn, where mMn is the mass of Mn atom. 

 
[U] is N×1 displacement matrix. Its elements are displacements of atoms in the chain: 
[U]=[U1,U2,U3,⋯,UN ]. 
 
[F] is N×1 force matrix. Its elements are: Fi1=-(rfi+Fi). 
 
By using the transformation [21]  
[ ] [ ] [ ] [ ]FKUu 1−−= ,            (S19) 
the inhomogeneous matrix equation (S18) is transformed into a homogeneous one 

[ ] [ ] [ ]uKuM ⋅−=







⋅ 2

2

dt
d

 .           (S20) 
Following Barker and Sievers [23], by assuming  
[ ] [ ] ( )tiωexpAu =  ,             (S21) 
with [A] being the amplitude (normal mode) matrix, Equation (S20) can be transformed 
into an eigenvalue problem 

[ ] [ ] [ ] [ ]AKAM ⋅−=⋅2ω                        (S22) 
Solution of this equation gives N eigenvalues and N eigenvectors AQ. Here Q is a 
parameter which describes the spatial periodicity. 
 
 
E) Effect of doping level on the quasilocalization of vibrational modes 
 
Quasilocalization of long wavelength vibration modes depends strongly on the magnetic 
force constant Δkmag=-(d2J/du2) <S0S1>. The width of vibrational modes Δq increases 
monotonically with Δkmag but not with the doping level x, see Fig. S9. A minimum 
doping level which affects considerably the periodicity of the vibration modes is about 
0.5%. In this case, all modes with wavevector smaller than 0.003 π/a lose their spatial 
periodicity. The dependence of quasilocalization of vibrational modes with doping level 
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above x≈5% can be explained in terms of the magnetic force Fmag =Δkmag (ui-uj), where ui 
and uj are displacements of two neighboring magnetic atoms. For a constant Δkmag, the 
effect of magnetic force on the quasilocalization of vibrational modes is largest when (ui-
uj) is large. With increasing doping level, the distance between magnetic atoms 
decreases; This leads to a small (ui-uj) at large wavelengths since the number of impurity 
atoms populating the same crest (or the same trough) increases. 
 

 
Fig. S9 The effect of doping level on the quasilocalization of vibrational modes. qc represents the 
wavevector below which the spatial periodicity of vibrational modes is destroyed (i.e. modes with q<qc 
cannot sample the spatial periodicity of the lattice) and x the concentration of substitutional impurities. The 
wavevector qc has been calculated using the approach described in Section D (Eqs. 18-22) with 
concentration of interstitials xi=3.5%, no antisites, Δkmag=-26 meV/Å2 and was averaged over 20 random 
configurations of impurities. 
 
 
F) The effect of various interactions in the quasilocalization of vibrational modes 
 
Impurities typically perturb the energetics of the crystal by producing an alternation in 
the kinetic energy due to the mass difference relative to the host atom and by modifying 
the force constants around the impurity atom.  
 
When impurity atoms are less massive than the host atoms (which is the case of Mn in 
GaAs) or, when they are coupled to neighboring atoms more strongly than host atom do, 
localized vibrational modes will appear [23]. These modes are characterized by large 
vibrational amplitudes at the impurities and its immediate neighbors while the rest of 
atoms is not displaced, see Fig. S10 (a). These modes, however, have frequencies which 
lie outside the acoustic branch of the host crystal (they lie in the gap between the acoustic 
and optical branch, or in the gap between two optical branches) and do not affect phonon 
dispersion at low frequencies. 
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Fig. S10 Eigenvectors of (a) localized and (b) resonant modes in a GaAs chain containing Mn impurities. 
 
When Mn impurity atoms are coupled weakly to their neighbors than the host atoms do, 
resonant modes with frequencies within the acoustic branch of the host crystal will occur 
[23,24]. Here, all atoms vibrate in a sinusoidal patterns but with extra amplitude at the 
impurity atom, see Fig. S10 (b). They are activated only when the reduction of force 
constant is large, typically more than 50% and will manifest themeselves as broad peaks 
in the density of states (i. e. will modify the dispersion relation locally).  Even when 
reduction of force constants is very large γ=(k-k’)/k=90%, with k and k’ being the nearest-
neighbor force constants for the host and impurity atoms, respectively, resonant modes 
will have frequencies around νres~(6k’/Mimpurity)1/2/2π ≈0.18 THz which is more than four 
times higher than frequencies involved in our work. Being, however, able to measure 
well defined phonon modes with a linear dispersion at the room temperature, where the 
impurities are not correlated but are still in the host lattice, implies that resonant modes 
do not affect phonon dispersion at small wave vectors. Weakly bound impurities do not 
affect long wavelength modes because the impurity is “carried over” by the two 
neighboring host atoms to move in a sinusoidal envelope of the host vibrational modes. 
This balance is disrupted when an impulse is exerted upon by another impurity, for 
example, when impurities are correlated. In our case, even though the magnetic force 
constant Δkmag is only few percent of the spring constant connecting the impurity with its 
nearest neighbors, it is still enough to introduce a phase shift on the displacement at the 
impurity atom. In contrast to resonant modes where impurity atoms gain extra 
displacements (and thus, force constants need to be reduced considerably to allow that), 
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magnetic correlations affect the vibrational modes by introducing a phase shift at the 
impurity atoms.   
 
The effect of various interactions in the quasilocalization of vibrational modes is shown 
in Fig. S11. Here we plot the wavevector qc below which the spatial periodicity of 
vibrational modes is destroyed (i.e. modes with q<qc cannot sample the spatial periodicity 
of the lattice) when various interactions are taken into account or are omitted. Here, we 
assume xs,eff=2%, xi=3.5% and xa=3.5% antisites (since the formation energies of Mn 
interstitials and As antisites have roughly the same value [25], we have assumed xi=xa). 
Small q modes are affected considerably only when reduction of force constants is very 
large. In this case the impurity atoms are loosely bound so they can act independently of 
their neighbors. When reduction of force constants is small (<50%) the impurity atoms 
are forced to follow the displacement envelope of their nearest neighbors. 
 

 
 
Fig. S11 The effect of various interactions in the quasilocalization of vibrational modes. qc represents the 
wavevector below which the spatial periodicity of vibrational modes is destroyed (i. e. modes with q<qc 
cannot sample the spatial periodicity of the lattice). Column 1: interstitials are taken into account, force 
constants on each side of interstitials have not been reduced, antisites were not taken into account. Column 
2: interstitials were taken into account, force constants on each side of interstitials have been reduced by 
90%, antisites were not taken into account. Column 3: interstitials were taken into account without reducing 
their force constants, antisites were taken into account (without reducing force constants on each side of 
antisites). Column 4: interstitials were taken into account, force constants on each side of interstitials have 
been reduced by 90%, antisites were taken into account (force constants on each side of antisites were 
reduced by 90%). Column 5: force constants on each side of substitutional atoms have been reduced by 
90%, interstitials were taken into account, force constants on each side of interstitials have not been 
reduced, antisites were taken into account (without reducing force constants on each side of antisites). The 
wavevector qc  has been calculated using the approach described in Section D (Eqs. 18-22), Δkmag=-26 
meV/Å2 and was averaged over 20 random configurations of defects. 
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