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Abstract  

Rapidly evolving pathogens, such as viruses and bacteria, accumulate genetic 

change at a similar timescale over which their epidemiological processes occur, 

such that it is possible to make inferences about their infectious spread using 

phylogenetic time-trees. For this purpose it is necessary to choose a 

phylodynamic model. However, the resulting inferences are contingent on 

whether the model adequately describes key features of the data. Model 

adequacy methods allow formal rejection of a model if it cannot generate the 

main features of the data. We present TreeModelAdequacy (TMA), a package for 

the popular BEAST2 software, that allows assessing the adequacy of phylodynamic 
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models. We illustrate its utility by analysing phylogenetic trees from two viral 

outbreaks of Ebola and H1N1 influenza. The main features of the Ebola data were 

adequately described by the coalescent exponential-growth model, whereas the 

H1N1 influenza data was best described by the birth-death SIR model. 
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Phylogenetic trees depict the evolutionary relationships between groups of 

organisms. In the context of infectious diseases, pathogen genetic data can be 

used to infer such trees. By assuming a substitution model and including 
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independent information about time, one can calibrate the molecular clock to 

obtain time-trees, where the branch lengths correspond to units of time, and 

internal nodes of the tree represent the timing of divergence events. For rapidly 

evolving viruses and bacteria it is possible to use the sampling times as time-

calibrations (Drummond et al. 2003; Rieux and Balloux 2016). In these organisms, 

genetic change and epidemiological or ecological processes occur over a similar 

timescale. Thus, time-trees can be informative about epidemiological dynamics, a 

field of research known as phylodynamics (Holmes et al. 1993; Grenfell et al. 2004; 

Kühnert et al. 2011; Volz et al. 2013).  

 

Phylodynamic models describe the distribution of node times, branch lengths, and 

sampling times. In full Bayesian phylogenetic analyses, the tree, parameters for 

the molecular clock, the substitution model and the phylodynamic model can be 

estimated simultaneously using molecular data. In this Bayesian framework, the 

phylodynamic model is effectively a ‘tree prior’ (e.g. du Plessis and Stadler 2015). 

The simplest phylodynamic models are the coalescent exponential-growth (CE) 

and the coalescent constant-size (CC). These two models have very different 

expectations about the shape of phylogenetic trees, with exponentially growing 
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populations tending to produce trees with longer external branches than those 

evolving under constant population sizes (O’Meara, 2012; Volz et al., 2013). 

Alternative phylodynamic models are the birth-death models, which include a 

parameter to describe the sampling rate, so they have an expectation on the 

number of taxa and their distribution over time (Stadler 2010; Stadler et al. 2012).  

 

Choosing an appropriate model is important to draw reliable inferences from 

parameters of interest. For instance, the CE and the constant birth-death (BD) 

models can estimate the basic reproductive number, R0 (Frost & Volz, 2010; 

Stadler et al., 2012; Volz et al., 2013), which is defined as the average number of 

new cases that a single case will generate over the course of its infection in a fully 

susceptible population (Anderson and May 1979, 1992). Failing to account for 

complex epidemiological dynamics can bias the estimate of this key parameter 

(Stadler et al. 2014; Alkhamis et al. 2016; Ratmann et al. 2016). A Bayesian 

approach to selecting a phylodynamic model is to estimate marginal likelihoods 

for a pool of models and selecting that with the highest marginal likelihood 

(Baele et al. 2012; Baele et al. 2016), but it is also possible to obtain weighted 

averages of parameter estimates based on the support for each model (e.g. Baele, 
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Li, Drummond, Suchard, & Lemey, 2013; R. Bouckaert & Drummond, 2017; 

Huelsenbeck, Larget, & Alfaro, 2004; Li & Drummond, 2012). 

 

Model adequacy in phylogenetics 

Model selection methods only allow a relative comparison of a set of models, but 

they cannot determine whether any of the models in question could have 

generated key features of the data at hand (i.e. absolute model fit). Such 

information however is key to avoid unreliable inferences from a model and to 

improve our understanding of the biological processes that produced the data. 

Absolute model fit can be assessed via model adequacy methods, where a model 

is considered ‘adequate’ if it is capable of generating the main features of the 

empirical data. Consequently, model adequacy allows the user to formally reject a 

model or to identify aspects of the data that are poorly described, instead of 

ranking it with respect to other models, as is the case with model testing (e.g. 

Goldman 1993; Bollback 2002; Ripplinger and Sullivan 2010; Brown 2014).  

 

Model adequacy is typically conducted by fitting a model to the empirical data, 

and generating synthetic data from the model in question, a procedure that is 
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similar to a parametric bootstrap (Goldman 1993). The adequacy of the model is 

determined depending on whether the synthetic data are similar to the empirical 

data, according to a descriptive test statistic (Gelman and Shalizi 2013; Gelman et 

al. 2014). The test statistics should summarise key aspects of the data or a 

combination of the data and parameter estimates (Gelman et al. 1996). Examples 

of test statistics that have been used to assess the substitution model include the 

multinomial likelihood or a measure of compositional homogeneity (Goldman 

1993; Huelsenbeck et al. 2001; Foster 2004). The joint clock model and tree prior 

key can be assessed using the expected number of substitutions in individual 

branch lengths of the tree as test statistics (Duchêne et al. 2015). For DNA 

barcoding the number of OTUs and multinomial likelihood have been shown to 

be effective test statistics (Barley and Thomson 2016). Phylodynamic and 

diversification models are fitted to phylogenetic trees and their parameters 

depend on the distribution of nodes, such that some useful test statistics include 

the ratio of external to internal branch lengths, the tree height, and measures of 

phylogenetic tree imbalance (Revell et al. 2005, 2008; Drummond and Suchard 

2008; Höhna et al. 2015). Clearly, designing test statistics is not trivial, but they 

should attempt to explicitly test some of the assumptions of the model. For 
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example, the CE and CC models have different expectations of the ratio of 

external to internal branch lengths, such that this may be a useful test statistic.  

 

Bayesian model adequacy 

Bayesian model adequacy consists of a posterior predictive framework (Rubin 

1981, 1984; Bollback 2002; Brown 2014a, 2014b; Lewis et al. 2014; Höhna et al. 

2017). The posterior distribution of the model in question is approximated given 

the empirical data, for example using Markov chain Monte Carlo (MCMC). 

Samples from the MCMC are drawn to simulate data sets under the model used 

for the empirical analysis. For example, the posterior distribution of the growth 

rate and population size parameters of the CE model can be sampled to simulate 

phylogenetic trees. Such simulations are known as posterior predictive 

simulations. Test statistics are then calculated for every posterior predictive 

simulation (i.e. for every simulated tree) to generate a distribution of values 

according to the model. A posterior predictive probability, similar to the 

frequentist p-value, can be calculated by determining where the value of the test 

statistic for the empirical data (i.e. the empirical phylogenetic tree) falls with 

respect to the posterior predictive distribution (Gelman et al. 2014). Following 
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Gelman et al. (2014) we refer to the posterior predictive probability as pB to 

differentiate it from the frequentist p-value. A useful guideline to determine 

whether the model is adequate is to determine whether a test statistic within the 

95% credible interval (Bollback 2002; Brown 2014a). This approach is sometimes 

conservative, particularly when test statistics do not follow a Gaussian distribution, 

and other methods of calculating posterior predictive probabilities are also 

possible (Gelman et al. 2014; Höhna et al. 2017). Combining multiple test statistics 

leads to multiple testing, which can be addressed by using a multivariate pB 

values (Drummond and Suchard 2008). However, Gelman et al. (2014) suggest 

considering each test statistically separately to assess individual aspects of the 

model and the data, which is the approach taken here. 

 

Bayesian model adequacy is similar to Approximate Bayesian Computation (ABC) 

techniques in that both methods use test statistics from simulated data. The aim 

of ABC is to approximate the posterior by comparing test statistics from 

simulations from the prior and the empirical data (Csilléry et al. 2010; Ratmann et 

al. 2012; Poon 2015), which sometimes leads to biases for model testing (Robert 

et al. 2011). In contrast, in model adequacy the simulations are generated from 
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the posterior distribution and they are not used to approximate the posterior. In 

spite of these differences, test statistics developed for ABC can be useful to assess 

model adequacy.  

 

“TreeModelAdequacy” package in BEAST2 

We implemented a computational framework to assess the adequacy of 

phylodynamic models as a package for BEAST2 (Bouckaert et al., 2014). Analyses 

as outlined in Fig 1 are easy to set up through BEAUti, the graphical user 

interface for BEAST, to generate an xml file with the tree, the model, and test 

statistics. Our package, TreeModelAdequacy (TMA), takes a tree with branch 

lengths proportional to time. The tree can be a summary tree from BEAST2, or 

estimated using a different method. 

 

We fit phylodynamic models available in BEAST2 by approximating the posterior 

distribution of the parameters of the model using MCMC. To generate the 

posterior predictive simulations, we draw random samples from the posterior for 

the parameters from the MCMC after removing the burn-in phase, and we 

simulate phylogenetic trees using stochastic simulations and master equations 
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using MASTER (Vaughan and Drummond 2013) or the coalescent simulator in 

BEAST2. The last step consists in calculating test statistics for the empirical data 

and for the posterior predictive simulations, which depends on the TreeStat2 

package (available at http://github.com/alexeid/TreeStat2). The user can select a 

large number of test statistics (Supplementary material). At the end of the 

analysis, pB values and quantiles for the posterior predictive distribution are 

shown, but they can also be visualised in Tracer (available at: 

http://beast.bio.ed.ac.uk/tracer) or using an R script included in the package. At 

present, the range of phylodynamic models that can be assessed includes the CC 

and CE coalescent models, the constant BD with serial sampling (Stadler et al. 

2012), and the birth-death susceptible-infected-recovered model (BDSIR; Kühnert 

et al. 2014).  

 

Our implementation allows parallelisation of the tree simulation step, which can 

increase computational speed when the simulation conditions require extensive 

calculations. This step can also be conducted independently on a computer 

cluster. Our standalone application TreeModelAdequacyAnalyser can also 

compute test statistics and pB values, even for trees generated in a different 
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program than BEAST2, given that the posterior predictive trees are provided. TMA 

is open source and freely available under a LGPL licence. It can be downloaded 

from BEAUTi2 (part of BEAST2), and the documentation and example files are 

available at: http://github.com/sebastianduchene/tree_model_adequacy. 

 

To verify our implementation, we conducted a simple simulation experiment. We 

simulated 100 trees under each of the four phylodynamic models (CC, CE, BD, 

and BDSIR) using BEAST2 and MASTER and analysed them with the matching 

model. We assessed their adequacy according to nine test statistics 

(Supplementary material). The parameters for our simulations were based on 

analyses of 72 whole genome sequences of Ebola virus (Gire et al. 2014). We 

found that the pB values for all test statistics were between 0.025 and 0.975 for 

about 95% of each set of simulations, indicating that our implementation is 

correct (Supplementary material).  

 

Phylodynamic model adequacy in empirical virus data 

West African Ebola virus 
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We obtained a phylogenetic tree inferred in a previous study from 72 Ebola virus 

whole genome samples collected during the 2013-2016 epidemic (Gire et al. 

2014). The samples were collected from May to July 2014 in Sierra Leone. These 

data have been used in previous studies to estimate epidemiological parameters, 

with estimates of R0 ranging from 1.5 to 2.5, depending on the phylodynamic 

model (Stadler et al., 2014; Volz & Pond, 2014). An important consideration about 

our analysis is that we assume that the tree topology and divergence time 

estimates are sufficiently accurate and that the data are informative. 

 

We inferred phylodynamic parameters for the Ebola virus tree using four models; 

CC, CE, the BD, and the BDSIR (Kühnert et al. 2014). The CE, BD, and BDSIR 

models can estimate R0 if information about the sampling process (for the birth-

death models) or present number of infected individuals (for the coalescent) is 

available. In this case, we assumed that the sampling proportion was 0.7 (Gire et 

al. 2014) by fixing this parameter in the BD and BDSIR models. For the remaining 

parameters of these two models, we used the same prior distributions as in a 

previous analysis of these data (Stadler et al. 2014). For the CE model we used a 

Laplace distribution and a 1/x distribution as priors for the growth rate and for 
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the effective population size, respectively. We ran an MCMC of 107 steps and 

generated 1,000 posterior predictive simulations, and we computed four test 

statistics. 

 

To compare the different models, we calculated pB for  four test statistics; the tree 

height, the slope ratio of a lineages-through-time (LTT) plot, the ratio of external 

to internal branch lengths, and the Colless index of phylogenetic imbalance (Fig. 

2; Supplementary material). Importantly, the slope ratio of the LTT plot has been 

found to be informative for inferring epidemiological parameters using ABC 

(Saulnier et al. 2017).  

 

In the CC model the pB was < 0.05 for all test statistics, with the exception of the 

tree height at 0.06 (Fig. 2 and Supplementary material Fig. S1). The CE and BD 

models described these data better, with most pB values between 0.11 and 0.56. 

The pp value for the Colless index in the CE model was the lowest for both of 

these models, at 0.04. The BDSIR model had overall low pB values, from to 0.01 to 

0.18, with the lowest values found for the ratio of external to internal branch 

lengths (0.03) and for the slope ratio of the LTT plot (0.01). The fact that most pB 
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values for the CE and BD models frequently fall near the centre of the posterior 

predictive distributions is consistent with the rapid spread that Ebola virus was 

undergoing at the time the sequences were collected. 

 

For the CE, BD, and BDISIR models we can estimate R0 and the infectious period, 

1/δ. The R0 median estimates were: 1.6 (95% credible interval (CI): 1.12 – 2.2) for 

the BD, 1.21 (95% CI: 1.1 – 1.5), for the CE, and 1.59 (95% CI: 1.22 – 1.94) for the 

BDSIR. Estimates for the infectious period in calendar days were: 5.46 (95% CI: 

4.14 – 7.24) for the BD, 2.90 (95% CI: 1.75 – 5.50) for the CE, and 5.21 (95% CI: 

4.24 – 7.02) for the BDSIR. The estimates from these models were very similar and 

overlapped with those from previous studies (Stadler et al. 2014). Although the 

BDSIR did not capture some of the main features of these data, this model is 

similar to the BD when the number of susceptible individuals is very large, which 

probably explains the overlap in R0 estimates between these models. 

 

2009 H1N1 Influenza 

We obtained a phylogenetic tree from a previous study (Hedge et al. 2013),which 

was estimated from 328 whole genome samples from the 2009 H1N1 Influenza 
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pandemic. The samples were collected from April to December 2009, such that 

they encompass a large portion of the duration of the pandemic. We used a 

similar method as for the Ebola virus phylogenetic tree to fit the four 

phylodynamic models (CC, CE, BD, and BDSIR). However, instead of fixing the 

sampling proportion we used an informative prior distribution of the infectious 

period via the becomeUnifectiousRate parameter, with a normal distribution of 

mean 85 and standard deviation of 15 (corresponding to an infectious period of 

about 4.45 days). 

 

The CC and CE models had pB values of 0.00 for all four test statistics, such that 

they did not adequately describe any of these aspects of the tree. The BD model 

had pB values of 0.53 and 0.09 for the tree height and the slope ratio of the LTT 

plot, and of 0.00 for the ratio of external to internal branch lengths (Fig. 2 and 

Supplementary material Fig. S2). In contrast, the BDSIR model overall described 

the H1N1 tree better overall than the other three models, with pB values of 

between 0.07 and 0.44. This result is consistent with the sampling time of the 

data, which includes the start of the pandemic and the decline in the number of 

infections towards the end of the year. We calculated an R0 of mean 3.01 (95% CI: 
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2.5 – 3.7) at the start of the pandemic in January that declined to R0 < 1 around 

June, when infectious spread was lower. This estimate is similar to those made in 

previous studies based on census data (Forsberg White et al. 2009), but in the 

higher range of those based on the CE model for samples collected in early 

stages of the pandemic (e.g. Hedge et al. 2013). For comparison, the R0 estimate 

from the BD model, which appeared inadequate, was substantially lower, with a 

mean of 1.02 (95% CI: 1.00 – 1.03). 

 

Conclusion 

Model adequacy methods are useful to understand the biological processes that 

generate the data, such as the evolutionary branching process. For example, our 

approach reveals that in July of 2014 the West African Ebola outbreak was still 

growing exponentially and that the 2009 H1N1 influenza virus pandemic had 

evidence of a depletion of susceptible individuals in December. In some cases, 

identifying models that indadequately describe key aspects of the data may 

improve estimates of parameters of interest, such as R0 in our H1N1 influenza 

analyses. One consideration of our approach is that it requires an accurate 

estimate of a single phylogenetic tree. Clearly, the phylogenetic tree should be 
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inferred using informative sequence data and the sensitivity to the prior should 

be carefully examined (Ritchie et al. 2016; Boskova et al. 2018; Möller et al. 2018), 

which is also the case for any Bayesian analysis. For example, a tree estimated 

from uninformative sequence data will be driven by the prior and will necessarily 

appear to be adequately described by the matching model, potentially leading to 

increased rates of type 2 errors. A limitation of our method is that it does not 

account for phylogenetic uncertainty, which can be addressed by comparing sets 

of trees from the posterior with those from the posterior predictive distribution. 

However, this approach will require the development of new test statistics and 

model assessment criteria. Model adequacy in phylogenetics will benefit from 

further development of methods to assess more sophisticated phylodynamic 

models, such as those that account for population structure (Kühnert et al. 2016; 

Müller et al. 2017a, 2017b; Volz and Siveroni 2018), and techniques to improve 

the interpretation of pB values for test statistics that are not normally distributed, 

such at the Colless index. Model adequacy software, such as TMA, will be key to 

address these questions. 
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Figure Legends 

Fig 1. Posterior predictive simulation framework implemented in the 

TreeModelAdequacy package. Step (1) consists in Bayesian analysis in BEAST 

under model M to estimate the posterior distribution of parameters η, shown with 

the arrow and posterior density in orange. In step (2) samples from the posterior 

are drawn to simulate phylogenetic trees, known as posterior predictive 

simulations, using MASTER as shown by the green arrow. In step (3) the posterior 

predictive simulations are analysed in TreeStat to generate the posterior 

predictive distribution of test statistic Ta, shown by the blue arrow and probability 

density. Finally, Ta is also computed for the tree from the empirical data using 

TreeStat, shown by the red arrow, to calculate a posterior predictive probability 

(pB). Test statistics and pB values can also be computed for trees generated in 

other programs using TreeModelAdequacyAnalyser, given that the tree from the 

empirical data and the posterior predictive simulations are provided. 

 

Fig 2. Model adequacy results for the two empirical data sets, West African Ebola 

and 2009 H1N1 influenza. The histograms show the distribution of two test 

statistics, the tree height and the slope ratio of the lineages-through-time (LTT) 

plot, for the posterior predictive simulations. The black points also show the 

distribution of the test statistics, and they have been jittered along the y-axis to 

improve visualisation. The red lines denote the value for the tree estimated from 

the empirical data. The posterior predictive p-value, pB, is shown for each test 
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statistic. A feature of the empirical phylogenetic tree described by a test statistic, 

such as the tree height, is considered adequately described by the model if the 

empirical value falls within the 95% quantile range of the posterior predictive 

distribution, such that the pB > 0.05. Two more test statistics were computed, the 

ratio of external to internal branch lengths and the Colless index, which are 

shown in Supplementary material Fig. S1. Note that for the H1N1 influenza 

analyses, the values are shown in a log10 scale. 

 

Supplementary figure captions 

Fig S1. Model adequacy results for Ebola virus data with four test statistics. The 

colours and symbols match those in Fig 2. 

 

Fig S2. Model adequacy results for H1N1 influenza data with four test statistics. 

The colours and symbols match those in Fig 2. Note that the values are shown in 

log10 scale. 

 

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy048/5044211
by MPI Science of Human History user
on 10 July 2018



References 

Alkhamis M.A., Perez A.M., Murtaugh M.P., Wang X., Morrison R.B. 2016. 

Applications of Bayesian phylodynamic methods in a recent US porcine 

reproductive and respiratory syndrome virus outbreak. Front. Microbiol. 7:67. 

Anderson R.M., May R.M. 1979. Population biology of infectious diseases: Part I. 

Nature. 280:361. 

Anderson R.M., May R.M. 1992. Infectious diseases of humans: dynamics and 

control. Oxford university press. 

Baele G., Lemey P., Bedford T., Rambaut A., Suchard M.A., Alekseyenko A. V. 2012. 

Improving the accuracy of demographic and molecular clock model 

comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 

29:2157–2167. 

Baele G., Lemey P., Suchard M.A. 2016. Genealogical working distributions for 

Bayesian model testing with phylogenetic uncertainty. Syst. Biol. 65:250–264. 

Baele G., Li W.L.S., Drummond A.J., Suchard M.A., Lemey P. 2013. Accurate model 

selection of relaxed molecular clocks in bayesian phylogenetics. Mol. Biol. 

Evol. 30:239–243. 

Barley A.J., Thomson R.C. 2016. Assessing the performance of DNA barcoding 

using posterior predictive simulations. Mol. Ecol. 25:1944–1957. 

Bollback J.P. 2002. Bayesian model adequacy and choice in phylogenetics. Mol. 

Biol. Evol. 19:1171–1180. 

Boskova V., Stadler T., Magnus C. 2018. The influence of phylodynamic model 

specifications on parameter estimates of the Zika virus epidemic. Virus Evol. 

4:vex044. 

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy048/5044211
by MPI Science of Human History user
on 10 July 2018



Bouckaert R., Drummond A.J. 2017. bModelTest: Bayesian phylogenetic site model 

averaging and model comparison. BMC Evol. Biol. 17:42. 

Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.-H., Xie D., Suchard M.A., 

Rambaut A., Drummond A.J. 2014. BEAST 2: a software platform for Bayesian 

evolutionary analysis. PLOS Comput. Biol. 10:e1003537. 

Brown J.M. 2014a. Detection of implausible phylogenetic inferences using 

posterior predictive assessment of model fit. Syst. Biol. 63:334–348. 

Brown J.M. 2014b. Predictive approaches to assessing the fit of evolutionary 

models. Syst. Biol. 63:289–292. 

Csilléry K., Blum M.G.B., Gaggiotti O.E., François O. 2010. Approximate Bayesian 

computation (ABC) in practice. Trends Ecol. Evol. 25:410–418. 

Drummond A.J., Pybus O.G., Rambaut A., Forsberg R., Rodrigo A.G. 2003. 

Measurably evolving populations. Trends Ecol. Evol. 18:481–488. 

Drummond A.J., Suchard M.A. 2008. Fully Bayesian tests of neutrality using 

genealogical summary statistics. BMC Genet. 9:68. 

Duchêne D.A., Duchêne S., Holmes E.C., Ho S.Y.W. 2015. Evaluating the adequacy 

of molecular clock models using posterior predictive simulations. Mol. Biol. 

Evol. 32:2896–2995. 

Forsberg White L., Wallinga J., Finelli L., Reed C., Riley S., Lipsitch M., Pagano M. 

2009. Estimation of the reproductive number and the serial interval in early 

phase of the 2009 influenza A/H1N1 pandemic in the USA. Influenza Other 

Respi. Viruses. 3:267–276. 

Foster P.G. 2004. Modeling compositional heterogeneity. Syst. Biol. 53:485–495. 

Frost S.D.W., Volz E.M. 2010. Viral phylodynamics and the search for an “effective 

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy048/5044211
by MPI Science of Human History user
on 10 July 2018



number of infections.” Philos. Trans. R. Soc. London B Biol. Sci. 365:1879–

1890. 

Gelman A., Carlin J.B., Stern H.S., Dunson D.B., Vehtari A., Rubin D.B. 2014. Model 

checking. Bayesian data analysis. Boca Raton, Florida: CRC press Boca Raton, 

FL. p. 141–163. 

Gelman A., Meng X.-L., Stern H. 1996. Posterior predictive assessment of model 

fitness via realized discrepancies. Stat. Sin.:733–760. 

Gelman A., Shalizi C.R. 2013. Philosophy and the practice of Bayesian statistics. Br. 

J. Math. Stat. Psychol. 66:8–38. 

Gire S.K., Goba A., Andersen K.G., Sealfon R.S.G., Park D.J., Kanneh L., Jalloh S., 

Momoh M., Fullah M., Dudas G. 2014. Genomic surveillance elucidates Ebola 

virus origin and transmission during the 2014 outbreak. Science (80-. ). 

345:1369–1372. 

Goldman N. 1993. Simple diagnostic statistical tests of models for DNA 

substitution. J. Mol. Evol. 37:650–661. 

Grenfell B.T., Pybus O.G., Gog J.R., Wood J.L.N., Daly J.M., Mumford J.A., Holmes 

E.C. 2004. Unifying the epidemiological and evolutionary dynamics of 

pathogens. Science. 303:327–332. 

Hedge J., Lycett S.J., Rambaut A. 2013. Real-time characterization of the molecular 

epidemiology of an influenza pandemic. Biol. Lett. 9:20130331. 

Höhna S., Coghill L.M., Mount G.G., Thomson R.C., Brown J.M. 2017. P3: 

Phylogenetic Posterior Prediction in RevBayes. Mol. Biol. Evol. 

Höhna S., May M.R., Moore B.R. 2015. TESS: an R package for efficiently 

simulating phylogenetic trees and performing Bayesian inference of lineage 

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy048/5044211
by MPI Science of Human History user
on 10 July 2018



diversification rates. Bioinformatics. 32:789–791. 

Holmes E.C., Zhang L.Q., Simmonds P., Rogers A.S., Brown A.J.L. 1993. Molecular 

investigation of human immunodeficiency virus (HIV) infection in a patient of 

an HIV-infected surgeon. J. Infect. Dis. 167:1411–1414. 

Huelsenbeck J.P., Larget B., Alfaro M.E. 2004. Bayesian phylogenetic model 

selection using reversible jump Markov chain Monte Carlo. Mol. Biol. Evol. 

21:1123–1133. 

Huelsenbeck J.P., Ronquist F., Nielsen R., Bollback J.P. 2001. Bayesian inference of 

phylogeny and its impact on evolutionary biology. Science (80-. ). 294:2310–

2314. 

Kühnert D., Stadler T., Vaughan T.G., Drummond A.J. 2014. Simultaneous 

reconstruction of evolutionary history and epidemiological dynamics from 

viral sequences with the birth–death SIR model. J. R. Soc. Interface. 

11:20131106. 

Kühnert D., Stadler T., Vaughan T.G., Drummond A.J. 2016. Phylodynamics with 

migration: A computational framework to quantify population structure from 

genomic data. Mol. Biol. Evol. 33:2102–2116. 

Kühnert D., Wu C.H., Drummond A.J. 2011. Phylogenetic and epidemic modeling 

of rapidly evolving infectious diseases. Infect. Genet. Evol. 11:1825–1841. 

Lewis P.O., Xie W., Chen M.-H., Fan Y., Kuo L. 2014. Posterior predictive Bayesian 

phylogenetic model selection. Syst. Biol. 63:309–321. 

Li W.L.S., Drummond A.J. 2012. Model averaging and Bayes factor calculation of 

relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 29:751–

761. 

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy048/5044211
by MPI Science of Human History user
on 10 July 2018



Möller S., du Plessis L., Stadler T. 2018. Impact of the tree prior on estimating 

clock rates during epidemic outbreaks. Proc. Natl. Acad. Sci. USA. 115:4200–

4205. 

Müller N.F., Rasmussen D.A., Stadler T. 2017a. MASCOT: Parameter and state 

inference under the marginal structured coalescent approximation. 

bioRxiv.:188516. 

Müller N.F., Rasmussen D.A., Stadler T. 2017b. The Structured Coalescent and Its 

Approximations. Mol. Biol. Evol. 34:2970–2981. 

O’Meara B.C. 2012. Evolutionary inferences from phylogenies: a review of 

methods. Annu. Rev. Ecol. Evol. Syst. 43:267–285. 

du Plessis L., Stadler T. 2015. Getting to the root of epidemic spread with 

phylodynamic analysis of genomic data. Trends Microbiol. 23:383–386. 

Poon A.F.Y. 2015. Phylodynamic inference with kernel ABC and its application to 

HIV epidemiology. Mol. Biol. Evol. 32:2483–2495. 

Ratmann O., Donker G., Meijer A., Fraser C., Koelle K. 2012. Phylodynamic 

inference and model assessment with approximate bayesian computation: 

influenza as a case study. PLoS Comput. Biol. 8:e1002835. 

Ratmann O., Hodcroft E.B., Pickles M., Cori A., Hall M., Lycett S., Colijn C., Dearlove 

B., Didelot X., Frost S. 2016. Phylogenetic Tools for Generalized HIV-1 

Epidemics: Findings from the PANGEA-HIV Methods Comparison. Mol. Biol. 

Evol. 34:185–203. 

Revell L.J., Harmon L.J., Collar D.C. 2008. Phylogenetic signal, evolutionary process, 

and rate. Syst. Biol. 57:591–601. 

Revell L.J., Harmon L.J., Glor R.E. 2005. Under-parameterized model of sequence 

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy048/5044211
by MPI Science of Human History user
on 10 July 2018



evolution leads to bias in the estimation of diversification rates from 

molecular phylogenies. Syst. Biol. 54:973–983. 

Rieux A., Balloux F. 2016. Inferences from tip-calibrated phylogenies: a review and 

a practical guide. Mol. Ecol. 25:1911–1924. 

Ripplinger J., Sullivan J. 2010. Assessment of substitution model adequacy using 

frequentist and Bayesian methods. Mol. Biol. Evol. 27:2790–2803. 

Ritchie A.M., Lo N., Ho S.Y.W. 2016. The impact of the tree prior on molecular 

dating of data sets containing a mixture of inter-and intraspecies sampling. 

Syst. Biol. 66:413–425. 

Robert C.P., Cornuet J.-M., Marin J.-M., Pillai N.S. 2011. Lack of confidence in 

approximate Bayesian computation model choice. Proc. Natl. Acad. Sci. USA. 

108:15112–15117. 

Rubin D.B. 1981. Estimation in parallel randomized experiments. J. Educ. Stat. 

6:377–401. 

Rubin D.B. 1984. Bayesianly justifiable and relevant frequency calculations for the 

applied statistician. Ann. Stat. 12:1151–1172. 

Saulnier E., Alizon S., Gascuel O. 2017. Assessing the accuracy of Approximate 

Bayesian Computation approaches to infer epidemiological parameters from 

phylogenies. PLOS Comput. Biol. 13:e1005416. 

Stadler T. 2010. Sampling-through-time in birth-death trees. J. Theor. Biol. 

167:696–404. 

Stadler T., Kouyos R., von Wyl V., Yerly S., Böni J., Bürgisser P., Klimkait T., Joos B., 

Rieder P., Xie D. 2012. Estimating the basic reproductive number from viral 

sequence data. Mol. Biol. Evol. 29:347–357. 

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy048/5044211
by MPI Science of Human History user
on 10 July 2018



Stadler T., Kühnert D., Rasmussen D.A., du Plessis L. 2014. Insights into the early 

epidemic spread of Ebola in Sierra Leone provided by viral sequence data. 

PLoS Curr. 6. 

Vaughan T.G., Drummond A.J. 2013. A stochastic simulator of birth–death master 

equations with application to phylodynamics. Mol. Biol. Evol. 30:1480–1493. 

Volz E., Pond S. 2014. Phylodynamic analysis of Ebola virus in the 2014 Sierra 

Leone epidemic. PLoS Curr. 6. 

Volz E., Siveroni I. 2018. Bayesian phylodynamic inference with complex models. 

bioRxiv.:268052. 

Volz E.M., Koelle K., Bedford T. 2013. Viral phylodynamics. PLOS Comput. Biol. 

9:e1002947. 

 

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy048/5044211
by MPI Science of Human History user
on 10 July 2018



Empirical data (tree)

Bayesian analysis 
(model M, with parameters η)

Posterior distribution
P(η|tree,M)

η

Posterior 
probability

Sample P(η|tree,M) to 
simulate trees

Posterior predictive 
simulations

BEAST

TreeStat

TreeStat

Ta

(1)

(2)

(3)

(3)

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy048/5044211
by MPI Science of Human History user
on 10 July 2018



0.1 0.2 0.3 0.4 F
re
q
u
e
n
c
y

−0.14 −0.10 −0.06 −0.02

0.08 0.12 0.16F
re
q
u
e
n
c
y

−0.16 −0.12

0.06 0.08 0.10 0.12 0.14F
re
q
u
e
n
c
y

−3.5 −2.5 −1.5 −0.5

0.06 0.08 0.10 0.12 0.14F
re
q
u
e
n
c
y

−0.5 −0.4 −0.3 −0.2 −0.1

1 3.2 10 32

F
re
q
u
e
n
c
y

0.03 0.32 1.0 3.2

1.0 3.2 10 32 100

F
re
q
u
e
n
c
y

0.01 0.1 1.0 3.2

0.50 0.80 1.3

F
re
q
u
e
n
c
y

0.01 0.1 1.0 10

0.1 0.25 0.63

F
re
q
u
e
n
c
y

0.1 1.0 3.2 10

West African Ebola (2014) H1N1 Influenza (December 2009)

Tree height 
(years)

Slope ratio of 
LTT plot

Constant-size
coalescent

Exp. growth
coalescent

Constant 
birth-death

Birth death 
SIR

pB = 0.06 pB = 0.01 pB = 0.00 pB = 0.00

pB = 0.27 pB = 0.55 pB = 0.00 pB = 0.00

pB = 0.56 pB = 0.21 pB = 0.53 pB = 0.09

pB = 0.18 pB = 0.01 pB = 0.47 pB = 0.07

Tree height 
(years)

Slope ratio of 
LTT plot

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy048/5044211
by MPI Science of Human History user
on 10 July 2018




