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We investigate the structure of the one-body reduced density matrix of three electron systems, i.e.,
doublet and quadruplet spin configurations, corresponding to the smallest interacting system with an
open-shell ground state. To this end, we use configuration interaction (CI) expansions of the exact wave
function in Slater determinants built from natural orbitals in a finite dimensional Hilbert space. With
the exception of maximally polarized systems, the natural orbitals of spin eigenstates are generally
spin dependent, i.e., the spatial parts of the up and down natural orbitals form two different sets. A
measure to quantify this spin dependence is introduced and it is shown that it varies by several orders of
magnitude depending on the system. We also study the ordering issue of the spin-dependent occupation
numbers which has practical implications in reduced density matrix functional theory minimization
schemes, when generalized Pauli constraints (GPCs) are imposed and in the form of the CI expansion
in terms of the natural orbitals. Finally, we discuss the aforementioned CI expansion when there are
GPCs that are almost “pinned.” Published by AIP Publishing. https://doi.org/10.1063/1.5020978

. INTRODUCTION

Reduced density matrices are used in different approx-
imation methods for solving the many-body problem. For
example, the one-body reduced density matrix (IRDM) serves
as the basic variable in reduced density matrix functional the-
ory (RDMFT),'~7 where the total energy is approximated by
a functional of the 1IRDM. With the inclusion of fractional
occupation numbers, RDMFT has the potential to improve the
description of strongly correlated systems®? that are very dif-
ficult to describe within density functional or Hartree Fock
theories. In order to ensure that the ground-state 1RDM,
obtained from a RDMFT minimization scheme, corresponds
to fermions, the so-called ensemble N-representability condi-
tions' are enforced as constraints on the occupation numbers.
Recently, the IRDM has also been used in a geometric method
to understand noise-assisted energy transfer.!’"'? Instead of
the 1RDM, one can employ the two-body reduced density
matrix (2RDM) as the basic variable, in which case the energy
functional is known exactly.'* Although the complete set
of N-representability conditions can be constructed for the
2RDM, 4 in practice, only a limited number of them are imple-
mented.'> Consequently, employing either the 1RDM or the
2RDM as the basic variable, one obtains approximate density
matrices by the minimization procedure. Recently, a system-
atic derivation of the generalized Pauli constraints (GPCs) for
a given number of electrons in a finite dimensional Hilbert
space was presented in Ref. 16. The GPCs ensure that the
IRDM not only is fermionic but also corresponds to a pure
state rather than an ensemble. Hereafter, it was shown that the
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approximate density matrices, obtained within RDMFT or a
2RDM approach, suffer from some deficiencies which can be
removed if the energy minimization is constrained so that the
IRDM satisfies the GPCs.!”!8

In electronic structure theory, one often focuses on repro-
ducing the physical behavior of systems with an even number
of particles that form closed-shell systems, i.e., spin sin-
glets. Open-shell systems are usually treated by extending
the closed-shell approximations or even just applying them
without any modifications. For example, most RDMFT func-
tionals, although devised for closed-shells, are extended to
treat open-shell systems.'>?® With only a small number of
exceptions,*?” these generalizations and the corresponding
calculations typically use spin-independent natural orbitals,
i.e., the eigenfunctions of the 1IRDM are treated to be the
same in both spin channels while the occupation numbers can
differ. While this treatment is correct for spin singlets and
states with maximum total spin S, generally open-shell sys-
tems with a different total spin cannot be treated accurately this
way.?!

Already decades ago, the natural orbitals have been con-
sidered as the ideal single-particle basis for the convergence
of a configuration interaction (CI) expansion in Slater deter-
minants to the many-body wave function.'%?? Although it was
later found that this claim is only true for two-particle sys-
tems,?>?* the natural orbitals are still a good basis for the
fast convergence of a CI expansion. For example, for the
fully polarized linear equidistant H3 system in equilibrium
geometry, we find that the 12 natural orbitals with the largest
occupation numbers are sufficient to construct a CI wave

Published by AIP Publishing.
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function which yields the correct total energy within the chem-
ical accuracy (1 kcal/mol), while 45 Hartree-Fock orbitals
are needed to achieve the same accuracy. In the past, little
attention was paid to this type of expansion since the exact
natural orbitals can only be obtained by solving the inter-
acting many-body problem. In light of the recently derived
GPCs, the expansion of the exact many-body wave function
in terms of Slater determinants built from natural orbitals has
gained increasing attention, as “pinning” of a GPC leads to zero
expansion coefficients for certain Slater determinants.>~27 A
recent study shows that using the simplified CI ansatz that
is implied by the pinning of a GPC, in cases where the cor-
responding GPC is only almost pinned, yields wave func-
tions that can recover a significant part of the correlation
energy.”®

In order to truly allow for the application of density matrix
methods to open-shell systems, it is crucial to understand the
structure of the IRDM beyond closed-shell configurations. To
this end, we study a few different three-electron systems which
can form spin doublets or spin quadruplets. We calculate the
exact wave function in a restricted active space and obtain
the corresponding 1RDM, its natural orbitals, and occupation
numbers. The natural orbitals are used as a single-particle basis
to reconstruct the exact wave function. For specific examples,
we can show that in the doublet case the natural orbitals have to
be spin dependent, i.e., the spatial parts of up and down orbitals
do not coincide. The GPCs are always given as conditions
on ordered occupation numbers. However, these occupation
numbers correspond to spin up or down natural orbitals in all
states except for the fully polarized ones. We discuss the pos-
sible orderings of spin occupation numbers for three electrons
in Hilbert spaces of dimension 6 or 8. For the larger Hilbert
space, the sets of GPCs will be different for different order-
ings of the occupation numbers, which has practical impli-
cations since we find different orderings present in different
systems.

The paper is structured as follows: In Sec. II, we pro-
vide a short overview of the GPCs, the theoretical background
of this work, and the numerical details of our investigation.
In Sec. III, we discuss the spin-dependence of the natural
orbitals by studying three electron systems with total spin
S =1/2 or S = 3/2. Note that we always consider Hamiltonians
that commute with S, thus S is a good quantum number. In
Sec. IV, we discuss the problem of the ordering of the occu-
pation numbers when spin is taken into account, in relation to
GPCs, which is relevant in any open-shell system. Finally, in
Sec. V, we discuss the relation between a GPC being almost
pinned and the coefficients in the CI expansion in terms of
natural orbitals using one of the systems we studied and a
Hilbert space with dimension 8. We conclude our findings in
Sec. VL.

Il. THE METHOD
A. Generalized Pauli constraints

The generalized Pauli constraints ensure that a given
IRDM not only represents a fermionic ensemble but also
actually corresponds to a fermionic wave function. For closed-
shell systems with time-reversal symmetry, one does not need
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to consider the GPCs, as the necessary and sufficient condition
for a IRDM to be pure-state N-representable is that it satisfies
the ensemble N-representability conditions and, in addition, its
occupation numbers in the two spin channels are identical >
For open-shell systems or systems without time-reversal sym-
metry, the GPCs can be derived for a given number of particles
N and a given size of the Hilbert space of the natural orbitals
M.'® The number of constraints increases quickly with both
N and M, and, for practical applications, one considers typi-
cally only small values for N and M. Furthermore, the GPCs,
for three electron systems that are considered here, have been
derived in practice only for M < 12.° We emphasize that the
size of the Hilbert space refers to the number of natural orbitals
that are assumed to have non-zero occupation numbers, while
the basis set in which we expand these natural orbitals can be
much larger than M.

The GPCs are linear constraints on the occupation num-
bers n; and have the form

M
K0+Zanj20, (D
=1

with integer coefficients «;. Note that the occupation numbers
are ordered in non-increasing order, i.e., ny > ny > n3 > ---.
Special consideration needs to be given to cases where a con-
straint is saturated, i.e., it is satisfied as an equality rather than
an inequality and, in addition, there are no degenerate occu-
pation numbers. In this situation, a configuration interaction
(CI) expansion of the many-body wave function in terms of
Slater determinants built from the natural orbitals is simpli-
fied since the constraint removes certain determinants from
the expansion.26 However, the constraints which are satisfied
as equalities, if there are any, depend strongly on the particu-
lar system.>'-3? There is one particular case, namely, that with
N =3 and M = 6, in which three out of the four constraints are
actually given as equalities. The constraints, in this case, were
initially derived by Borland and Dennis* in the 1970s while
their necessity was proven by Ruskai just a decade ago.>* The
constraints in this case read as

ny+ns =1,
ns +ng —ng > 0. 2)

ny+ng =1,

ny+ng =1,

One can write the equality constraints in operator form and
apply these operators to a CI expansion with Slater deter-
minants expressed in terms of natural orbitals. Thus, e.g.,
ny + ng — 1 = 0 corresponds to the operator 71 + fig — 1. In
this case, each Slater determinant that contains either orbital
@1 or ¢g is an eigenstate of this operator with a zero eigen-
value. For determinants that contain neither orbital ¢; nor ¢,
the eigenvalue is —1; whereas, for Slater determinants that con-
tain both orbitals, the eigenvalue is +1. One can show that only
those determinants that have a zero eigenvalue for all constraint
operators can be part of the CI expansion.”® Consequently, the
CI expansion for three electrons and M = 6 reads as

W) = ¢1]123) + c2]124) + ¢3]135) + c4]145)
+¢51236) + c6|246) + ¢71356) + c5456),  (3)
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i.e.,itconsists of eight different Slater determinants. With |ijk),
we denote a Slater determinant that contains the natural orbitals
&i, ¢;, and ¢;. As discussed various times in the literature, see
for example Ref. 35, if the inequality is satisfied as an equality,
another five determinants are removed leaving a total wave

function containing only the determinants [123), [145), and
|246).

B. Numerical details

In order to illustrate our findings, we perform complete
active space self consistent field (CASSCF) calculations, using
the GAMESS computer code,*® for a set of three electron sys-
tems in spaces of dimensions 6, 8, and 9 using an extended
basis set. We extract the exact natural orbitals in these spaces
and thus we can discuss either the CI expansion in these nat-
ural orbitals or the corresponding GPCs. Note here that the
GPCs are different for different dimensions of the Hilbert
space.

We investigate different three electron systems, namely,
the Li atom, the LiH* molecule at equilibrium and dissociation
geometry, and an equilateral H; triangle, and three different
linear H3 configurations. For the linear H3 systems, we choose
two equidistant configurations, one at equilibrium geometry at
bond length 0.9 A and one at 0.7 A. We also choose a non-
equidistant linear H3 configuration with bond lengths 0.5 A
and 1.3 A. The bond length of the triangular hydrogen sys-
tem is 0.9 A. The natural orbitals are expanded in Gaussian
basis sets. For Li, we use the aug-cc-pCVQZ basis set; while
for H3, we employ the aug-cc-pVQZ basis set.’” In all cal-
culations, the systems have spin S = S, = 1/2 and the natural
orbital spaces have dimension 6 or 8. The only exception is
the calculation of the number of natural orbitals necessary to
obtain the total energy within chemical accuracy, which was
carried out for the § = S, = 3/2 state in a Hilbert space of
dimension 9.

lll. SPIN DEPENDENCE OF NATURAL ORBITALS

In this section, we discuss under which conditions the
spatial parts of up and down natural orbitals are the same, in
the case of Hilbert spaces with dimensions 6 and 8. If the wave
function in terms of natural orbitals describes a maximally
polarized quadruplet, no special considerations about the spin
need to be taken, since all electrons are of the same spin and
one can, therefore, ignore it and consider only the spatial parts.
However, in the case that three-electron systems form doublets,
one needs to take into account the spin dependence of the
spatial parts of the natural orbitals.

A. Natural orbitals of three electron doublets
in a Hilbert space of dimension 6

Performing a CASSCF calculation for the set of systems
described in Sec. IT B with a doublet spin configuration, in
a restricted Hilbert space with three natural orbitals per spin,
we always find the following ordering of the six occupation
numbers:

nyy = nyp 2 Ny = N3 = N > N3, @)
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where spin-up is assumed to be the majority spin channel.
As we will discuss later, this ordering is unique apart from
an interchange of n;| and n3;. However, this interchange
does not affect the three equality GPCs which now read
as

n1T+n3l=1, n2T+n2l=1,

n1l+n3T:1. (5)

For the ordering (4), the inequality condition ny| + n3| —
n3y > 0 is always satisfied as an equality. Since the sum
of occupation numbers with spin down is fixed to one, it
reduces to the condition n;| + n3s < 1 which is one of the
equality constraints above. As we discuss in Appendix A 1,
only three Slater determinants contribute to the total wave
function

) = cior 11727170 + 131173724 + 02531273737y, (6)

Note that the ordering (4) and the resulting wave function (6)
were discussed in Ref. 38, as it was found to be the only pos-
sible ordering compatible with the two largest occupations
belonging to the majority spin channel. Let us now make the
assumption that the natural orbitals are spin independent, i.e.,
the spatial parts of orbitals i, ", fori =1, 2, 3, are iden-
tical. Then, the first and the last of the determinants in (6)
are eigenstates of the total spin §” with S = 1/2. The second
determinant, however, cannot be an eigenstate of 52 unless the
spatial parts of the natural orbitals are spin dependent. For a
different assumption, namely, the following pairs of orbitals
with the same spatial part, (1T|1"Y) = [ &3 @1 (0) = 1,
@2"3Y) = 1, and (3727Y) = 1, all three determinants in (6) are
eigenstates of Sz with § = 1/2. However, in an atomic system
like the Li atom, this assignment implies that the second largest
occupation number in one spin channel is of s-character while
in the other spin channel it has p-character. Under normal con-
ditions, this appears to be very unlikely. A similar argument
can be used for the assignment (17]2"4) = 1, 27[1"}) = 1,
and (37|3"}) = 1. Here, the largest occupation number in one
spin channel would be the 1s orbital, while in the other spin
channel it would be the 2s orbital. If one of the coefficients
in Eq. (6) is zero, there are additional possibilities, for exam-
ple, if ¢33 = 0 the assignment (17[3"}) = 1, 2T[1"Y) = 1, and
(372"Y) = 1 yields a spin eigenstate. All these cases repre-
sent explicit exceptions that are not realized in general. Hence,
from the wave function (6), we conclude that in general the
spatial parts of natural orbitals have to be spin dependent. This
implies that none of the Slater determinants is an eigenstate
of the total spin by itself anymore. In order for the wave func-
tion to represent an eigenstate of the total spin with § = 1/2,
the spin contaminations from the three different determinants
have to cancel out. Consequently, the natural orbitals corre-
sponding to the two spin channels, although different from
each other, have to span the same space. Therefore, one can
expand the natural orbitals of a spin channel in terms of the
orbitals of the opposite one (see also Appendix B for an explicit
example).

Furthermore, the three coefficients c;j; have to satisfy cer-
tain relations necessary for the wave function to represent
a spin eigenstate. Since the orbitals are different in the two
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spin channels, these conditions are nontrivial and depend on
the overlaps between the orbitals in the two channels. As a
simple example, we consider the case where the spatial parts
of the orbitals 2T and 2"¥ are orthogonal to each other, i.e.,

. . . . A2
(2712"Y) = 0. Since the wave function ¥ is an eigenstate of S”,
the remaining orbitals have to satisfy the condition

c1a1 3T = —cp33 (17137, 7

A more detailed discussion of the relation between the orbitals
of the two spin channels and the conditions between the
coefficients of the expansion is given in Appendix B.

B. Quantifying the difference between spin up
and spin down natural orbitals

In the above discussion, we demonstrated analytically that
the spatial parts of spin up and spin down natural orbitals are
in general different, in the case of a Hilbert space of dimen-
sion 6. This “spin dependence” is expected in general for any
dimension of the Hilbert space for systems that are not in either
singlet or in spin configuration with maximal S. We introduce
the following definition:

1 M
Aspin =1—A—4;]{111§M

which quantifies the deviation of the spatial parts of the natural
orbitals in the up and down spin channels. Thus, for identical
natural orbitals in both spin channels Agpi, = 0.

We calculated this quantity for three electron systems,
in restricted Hilbert spaces of dimensions 6 and 8 using the
natural orbitals obtained from CASSCF calculations in the
corresponding spaces. In Table I, the quantity Agpi, for differ-
ent systems is presented. As one can see, the only case where
for both M = 6 and M = 8§ the set of spin up and spin down
natural orbitals are identical is the LiH* at dissociation. This
is a special case with a configuration where there is a pair of
electrons, one with spin up and one with spin down, localized
at the Lithium cation and a third one localized at the hydrogen
atom. Consequently, the system consists of two subsystems,
a closed-shell lithium cation, and a fully polarized hydrogen
atom, both of which can be described with spin-independent
natural orbitals (see Sec. III C for a detailed analysis of maxi-
mally polarized systems). For the wave function, we find that
c132=01nEq. (6) and there are two pairs of natural orbitals, i.e.,
(17174 = 1 and (313"}) = 1. Therefore, both determinants

. ¥

/ d*re(r)g; ()

TABLE I. Difference between the exact natural orbitals of the two spin
channels for different systems using 6 or 8 natural orbitals.

Aspin
System M=6 M =8
Li 0.003 0.003
LiH* equilibrium 0.003 0.002
LiH* dissociation 0.000 0.000
Hj triangular 0.063 0.115
Hs linear, equidistant, small distance 0.000 0.130
H3 linear, equidistant, equilibrium 0.005 0.004
Hj3 linear, non-equidistant 0.075 0.097

J. Chem. Phys. 148, 114108 (2018)

which contribute to the wave function are eigenstates of the
total spin. The behavior of Agpi, for the linear equidistant H3
at the small distance is somewhat unexpected. Apparently for
M =6, the orbitals are identical in the two spin channels; while
for M = 8, we find that they are strongly “spin dependent.”
A detailed investigation of the wave function for the M = 6
case shows that only two determinants contribute to the wave
function, the coefficient c;33 in Eq. (6) being zero. As a conse-
quence, the occupation number 73 is zero. We find again two
pairs of natural orbitals with identical spatial parts, (2T|174) = 1
and (37|2"Y) = 1. However, in this case, contrary to that of LiH*
in the dissociation limit, there is no explanation based on geom-
etry for the zero value coefficients in (6). Due to our findings for
M =8, we conclude that the space with only six natural orbitals
is too limited for a correct representation of the natural orbitals
of this system. For the remaining systems, it is not clear if the
spin dependence of the orbitals increases or decreases with M.
Most likely, there are two competing effects: the variational
freedom increases on going from M = 6 to M = 8, allowing
thus weaker “spin dependence.” The “spin dependence” of the
M = 6 case was due to the fact that only three of the nine possi-
ble Slater determinants in the CI expansion can have non-zero
coefficients. On the contrary, the M = 6 case can be very restric-
tive, as we have seen for the linear H3 discussed earlier, which
implies that the only way to construct a spin eigenstate is to
set one of the coefficients in Eq. (6) equal to zero. In this case,
by increasing the variational freedom the “spin dependence”
increases.

C. Natural orbitals of states with maximum S?2

For three electrons, the maximum possible total spin is
S = 3/2 with the four possible values for the z-component
S, =-3/2, -1/2, 1/2, 3/2. For the maximally polarized state
|S =3/2,S, = 3/2), there is no question of spin-dependence
of the spatial parts of the natural orbitals since only the up
channel has non-zero occupations. Therefore, we can choose
any set of orbitals for the down channel without changing the
1IRDM since they have zero occupations. In a restricted space
of only three natural orbitals for each spin channel, the wave
function of the maximally polarized state is a single Slater
determinant,

IS =3/2,8. =3/2) =[172137). )

The other states of the quadruplet configuration can be
obtained by applying successively the S_ operator to this state
flipping one spin at a time to the down direction. For example,
we get

1
IS =3/2,8.=1/2) = N (1142737y +172437) + [172134)) .

(10)
Since S_ only affects the spin degrees of freedom, the spatial
parts of the natural orbitals for the two spin channels are iden-
tical. Applying the S_ operator again, the same arguments can
be used for the natural orbitals of the |S = 3/2,S, = —1/2)
and |S = 3/2,S, = —3/2) states. Therefore, for all the states
with maximum total spin, the natural orbitals can be chosen
to be spin-independent. Although, in this example, we used
three electrons and three spatially orthogonal natural orbitals
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in each spin channel, the same arguments hold generally for
states with maximum total spin S irrespective of the number
of electrons and the number of natural orbitals, which are used
to expand the corresponding wave function.

IV. ORDERING OF THE OCCUPATION NUMBERS

A. Practical implications of different orderings
of spin-dependent occupation numbers

So far, we have discussed the spin dependence of the natu-
ral orbitals. Additionally, the occupation numbers are also spin
dependent. If we fix the number of spin up N and spin down
N electrons, the ensemble N-representability conditions'”
must be satisfied per spin channel i.e.,

Z”iT:NT’ Zl’l,‘ile.

The above conditions are typically used as constraints in
RDMFT minimizations, when the ground state of odd-particle
systems is calculated.

As we discussed already, the GPCs (1) are additional con-
ditions that involve the occupation numbers of the IRDM so
that it corresponds to a pure state. Contrary to the ensem-
ble N-representability conditions, these conditions assume
the occupation numbers indexed in non-increasing order, i.e.,
ny = np > n3 > ---. This ordering ignores the spin index.
If both spin channels have non-zero occupation numbers, we
can order them for each spin channel separately, nio > noo
> n3o > ---. However, one does not know in general how a
specific occupation number from one spin channel compares
to the occupation numbers in the other spin channel. As an
example, we consider three electron systems with two up and
one down electron. For not too strongly correlated systems,
we expect two occupation numbers in the up channel and one
in the down channel close to one and all remaining occupation
numbers close to zero. We can therefore choose the two large
occupation numbers in the up channel as ny1 and ny¢ with n¢
> np1 and ny| as the largest occupation number in the down
channel. Obviously, we do not know a priori if ny | is smaller
or larger than the two large occupation numbers in the up
channel.

The ordering of spin indexed occupation numbers is essen-
tial for many approximate functionals in RMDFT, e.g., for
possible open-shell extensions of functionals that separate
the orbitals according to their occupation.® Also, as we will
demonstrate for the case of M = 8§, there is not a unique way
to express GPCs in terms of the spin indexed occupation num-
bers. This means that if we choose to employ these conditions
as constraints in an actual RDMFT minimization we might
need to employ a different expression of constraints in every
iteration. For the exact functional, this issue does not exist
since one only needs to use the ensemble N-representability
conditions, making thus the GPCs redundant.’® However, for
approximate RDMFT functionals, the GPCs are violated when
the ensemble conditions alone are employed during an actual
minimization.!”

The non-uniqueness of ordering is also relevant for the
CI expansion of the wave function in terms of natural orbitals.
If there is a pinned GPC, i.e., a GPC which is satisfied as an
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equality, as discussed earlier, certain Slater determinants from
the CI expansion will be removed. It is worth to mention that,
the same pinned GPC written in descending order occupation
numbers, ignoring spin, would remove different determinants
from the expansion depending on the ordering of occupation
numbers.

B. Orderings of occupation numbers for doublets
in spaces of 6 or 8 orbitals

As discussed above, the existence of different orderings of
the spin-dependent occupation numbers in different systems
leads to complications in practical applications of the GPCs. In
this section, we examine whether different orderings of spin-
dependent occupation numbers appear in practice for systems
of three electrons in Hilbert spaces of dimensions 6 and 8.
We find that the ordering indeed depends on the system. For
example, for the Li atom and M = 8, we find the following
ordering:

nit > N2y =Ny > N3p = N2 = N3 = N4t > N4, (11)
while for the LiH* molecule, we find
nip > Ny > nop > N3y > Ny > N4t > N3] > N4y (12)

All orderings of occupation numbers for the systems
studied here fall in three groups. In group 1, the ordering is

nyp 2Ny 2N 2 N3 2 Ny 2 N3 2 N4t 2 N4, (13)
while, in group 2,
nyp = Ny = Ny = 37 2 N 2 N4y = N3 = N4, (14)

i.e., the occupation numbers n3; and n4q are exchanged
compared to the ordering of group 1. Finally, in group 3,

nyy 2Ny 2 Npp 2 N3p 2 N 2 N4y 2 N3 2 N4 . (15)

The occupation numbers n,1 and ny; in the ordering of the
group 3 have exchanged their positions in relation to that of
group 2. As we see, in ordering groups (13)—(15), neither the
ordering of the large occupation numbers nor that of the small
ones remains the same in all groups.

The ordering of the occupation numbers for the linear
non-equidistant H3 and the linear equidistant Hz at equilib-
rium geometry is in group 1. For the linear equidistant H3
at a smaller than the equilibrium distance, the ordering falls
into the second group while for LiH* at equilibrium geome-
try into the third. The remaining three systems, the Li atom,
the LiH* at dissociation distance, and the equilateral Hs, con-
tain degenerate occupation numbers. Therefore, the ordering
of the occupation numbers is not unique. Comparing Eq. (11)
with Egs. (13)—(15) shows that any of the three orderings can
be assigned to the Li atom. The same is true for the LiH* at
dissociation. In the case of equilateral Hs, the ordering of the
occupation numbers falls into group 2, however, n3; and ny |
are degenerate.

Since the ordering of the occupation numbers is indeed
different for different three electron systems, the question
arises whether the set of GPCs are truly different. Of course,
most GPCs are different, if the ordering changes but one could
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imagine a situation where one constraint switches its role with
another one. To clarify this question, we compare the con-
straints for the first two cases explicitly. (The full lists of
constraints for all three cases are given in Appendix A 2.)
As these two cases differ only in an exchange of ordering
affecting the occupation numbers n3| and ng4y, it is clear that
any constraint which does not include either of these two
occupation numbers is identical in both cases. This is true
for several constraints (3, 5,9, 11, 17, 19, and 21). There are
also three constraints (12, 13, and 24) which contain the sum
n3| + naq and are therefore also unaffected by the change in
order. Then, we have two conditions (15 and 16 in case 1)
which are interchanged (16 and 15 in case 2). Without these
obviously identical constraints, there remain 19 constraints
which appear to be different in the two cases. We tried to iden-
tify other constraints or combinations of them that are the same
for the two cases but could not find any beyond the ones men-
tioned above. We also found that if the first constraint in case
2 is satisfied as an equality and there are no degenerate occu-
pation numbers, 12 Slater determinants from the CI expansion
of the many-body wave function would be removed. We could
not find any combination of constraints in case 1 which causes
removal of the same set of determinants. Hence, we conclude
that the GPCs take indeed a different form in these two cases
and suspect that the same is true for any two different orderings
of the occupation numbers.

In the case of three electrons in six natural orbitals three
in each spin channel, there are only two possibilities for the
ordering of the occupations. The one we always encountered
numerically from our CASSCEF calculations in 3-6

() nip2my 2ny 2 n3 2np 203 (16)
and the following one
(i1) nyp 2oy 2 N31 2Ny 2Ny 2 N3 . (17)

As already discussed in Sec. III, the inequality GPC for the
first case is satisfied as an equality. For the second order-
ing, where n1 | and n3 are interchanged, the inequality reads
as

n2i+n3¢—n1l20, (18)

which implies that n;| < 0.5. However, it is rather unlikely,
in practice, for the biggest spin-down occupation to have such
a small value and that explains why we find only the first
ordering in our calculations. Note that in the set of systems
that we explored numerically the lowest value for ny | is 0.98.
Whether the inequality is pinned or not has no effect on the
wave function form in terms of natural orbitals which always
reads as

1P = 1211727174 + €132 ]1737274) 4+ 093312737374y, (19)

Of course, the wave function might contain even less determi-
nants if some of the coefficients c;j are zero.

As we show in Appendix A 1, all the other possible
orderings one could construct lead to degenerate occupation
numbers and could be considered as special cases of the afore-
mentioned orderings. Both orderings lead to the same three
equality GPCs [see Eq. (5) and Appendix A 1].
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V. EFFECT OF “QUASIPINNING”
ON THE STRUCTURE OF THE WAVE FUNCTION

So far, we have discussed the effect of a truly pinned
GPC on the structure of the wave function. The question arises
whether a constraint that is almost pinned (quasipinned) leads
to certain Slater determinants with a very small coefficient.
These determinants are those that the constraint would remove
if it was fully pinned. This would imply that there is an ansatz
of the wave function in terms of natural orbitals where one
knows a priori that there are a number of Slater determinants
which contribute to small coefficient and can then be excluded
from the variational optimization.?>

As a test case, we present the results for the linear Hs at
equilibrium geometry, in a doublet state, in the M = 8 space. In
this example, we do not have degenerate occupation numbers
and one can apply the pinned GPCs as operators to the wave
function.?® In this system, there is no GPC which is exactly
pinned. There are three constraints which are very close to the
border, namely, numbers 5, 8, and 12 in table of Appendix A 2
(case 1). The left-hand sides of the inequalities are 1.9 x 10711,
1.7 x 1072, and 1.8 x 107°. The next smallest value we find
is 1.7 x 1073, Looking at the coefficients in the CI expan-
sion, we find four determinants with coefficients larger than
4.0 x 1072 while the remaining coefficients are of the order
of 107> or smaller. In other words, in the constraints there is a
clear distinction between those that are close to the border and
those that are not. Similarly, for the CI coefficients, we can
clearly distinguish between small and large coefficients. We
now assume that all three constraints that are very close to the
border are actually at the border, i.e., that they are satisfied as
equalities. We then find that only 6 Slater determinants remain
in the CI expansion. The Slater determinants with the four
largest CI coefficients are among those and indeed have a zero
eigenvalue for all three constraints. However, already the deter-
minant with the fifth largest coefficient should be removed by
the second and third constraints. There are two Slater determi-
nants that are allowed by the quasipinned constraints; however,
their coefficients are very small, presumably for reasons other
than GPCs.

We verified that all three constraints satisfy the recently
proven inequality?®® [see Eq. (15) of Ref. 26] that relates
the structure of the wave function to quasipinning. Thus, our
findings support the claim that this inequality is a useful tool
to analyze quantitatively the structure of the wave function.

VI. CONCLUSIONS

In this paper, we studied the IRDM of three electron sys-
tems that form doublets or quadruplets in restricted Hilbert
spaces. In a 6-dimensional natural orbital space, we demon-
strated that, for the doublet, the spatial parts of the up and
the down natural orbitals form different sets. We provided a
theoretical explanation based on the CI expansion in terms
of the natural orbitals. We also introduced a measure to
quantify the deviation between up and down spatial parts and
we found by studying three electron systems that “spin depen-
dence” is largely system dependent. This result is important
for the RDMFT minimization, where typically one set of spa-
tial orbitals for both up and down spin is used. While this is
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justified for quadruplet states of three-electron systems, and
in general for states with maximal total spin S, we have seen
that the “spin dependence” can be significant in other cases.
In other words, for an accurate description of general open-
shell systems, one needs to extend the currently used RDMFT
implementations and allow for “spin-dependent” natural
orbitals.

We also studied the possible ordering of occupation num-
bers in both spin channels for a natural orbital space of dimen-
sion 8 using the same set of three electron systems forming
doublets. We found different orderings realized in different
systems which then lead to different expressions of the Gener-
alized Pauli Constraints. This has implications whenever one
employs the GPCs as constraints during a RDMFT minimiza-
tion since one would have to deal with different expressions
of GPCs not only for different systems but also during the
minimization procedure. The GPCs have gathered some inter-
est over the last years for studying the general properties
of the 1RDM in relation to the CI expansion of the many-
body wave function in terms of natural orbitals. The possible
different orderings of occupation numbers of different spin
channels have also implications for the simplifications in the
CI expansion.

Finally, we used a specific example of the numerical CI
expansion in terms of natural orbitals to explore the relation
between GPCs being almost pinned, known as quasipinning,
and coefficients of particular Slater determinants being close to
zero. We found that quasipinning is consistent with the struc-
ture of the wave function at a quantitative level and a recently
introduced measure’®*’ was found to be satisfied.
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APPENDIX A: GENERALIZED PAULI CONSTRAINTS
FOR DIFFERENT SPIN ORDERINGS

1.N=3,M=6

As discussed in Sec. III, numerically, we find only one
ordering of the occupation numbers. Since different orderings
are in principle possible for this case, the question remains
why they are not realized in any of the systems that are consid-
ered here. In this Appendix, we consider all orderings that are
possible and the implications the corresponding GPCs have
on the occupation numbers and, as a consequence, on the
structure of the wave function. As usual, the occupation
numbers are ordered in non-increasing order separately for
each spin channel.
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We consider a wave function with S, = 1/2, therefore, each
Slater determinant contributing to the wave function contains
two orbitals for spin up and one for spin down. We divide the
M = 6 orbitals into two sets, three orbitals per spin channel.
The number of possible Slater determinants is then nine and, if
there were no additional constraints, the wave function would
be written as

IS = 1/2,8. = 1/2)
= 1727170 + ¢1p0]172727 ) + ¢15511727374)
+e31 1737174 + 1321737274 4 ¢133]173737))
+0231 12137174 + 02321273727 ) + 35 [2737370),
(A1)

where the coefficients cji; are labeled according to the orbitals
which appear in the determinant. The prime on the orbitals of
the down channel indicates that the orbitals can differ in the
two spin channels. We note that for the above wave function
to consist of natural orbitals, additional constraints between
the expansion coefficients cj; must be satisfied to make the
constructed 1RDM diagonal. However, as we discuss in the
following, for most orderings, the GPCs impose even stricter
constraints on the wave function form, which automatically
results in a diagonal IRDM. There are two orderings, where
the off-diagonal elements appear and one needs to impose
additional conditions on the involved coefficients so that they
become zero [see cases 2a (ii) and (iii) below].

From the number of electrons in the up channel being
two, we can conclude that the two largest occupation numbers
cannot both have spin down and the two smallest occupation
numbers cannot both have spin up. Also, due to the separate
ordering in the two spin channels, the largest occupation num-
ber overall is either nj¢ or 1| while the smallest occupation
number is either n34 or n3 . We now consider each case sepa-
rately and study the implications of all four GPCs starting with
the three equalities.

Case 1: nj| is the largest occupation number.
It follows immediately that 71 is the second largest
occupation number. We now investigate the two
possibilities for the smallest occupation number.
(a) n3| is the smallest occupation number.

The first GPC reads nj| + n3| = 1. As the sum of
down occupations is one, it follows that n | = 0 which
implies that n3 | = 0 because of the ordering, and con-
sequently n;| = 1. Hence, in Eq. (A1), only ci21, c131,
and c,3] can be non-zero. The complete ordering for this
case is given by

nyy = Ny 2 N 2 137 2 Np| 2 N3j.

The inequality GPC, therefore, reads as ny | + n3| — n3p
> 0. As the two down occupation numbers are zero, this
can only be satisfied if n34 = 0 from which we imme-
diately conclude that n11 = np1 = 1 as the sum of the
up occupations is two. Hence, only the coefficient ¢y
can be non-zero and the wave function is a single Slater
determinant.
(b) n31p is the smallest occupation number.
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It follows that the second smallest occupation num-
ber is n3 |, since, as we mentioned before, the two small-
est occupations cannot both belong to spin up. Hence,
the three equality GPCs read as

ny +n3 = 1, nipr+n3 = 1,
npr+ny = 1. (A2)

Acting with these three GPCs on the wave function
(A1), we see that only the coefficients cy21, 132, and
¢33 can be non-zero. Then, the two largest and the two
smallest occupation numbers are given in terms of the
coefficients as

2 2 2

niy = le1l®, nip = leil” +lezl®, (A3)
2 2 2

n3p = lc33l®, nap = lc1zl” +les3l”. (A4)

As we required ny| > ny1, it follows that c13; = 0 and
then, due tons| > n3y, 233 =0. Again, only 121 remains
and the wave function is a single Slater determinant. At
this point, one might argue that the removal of Slater
determinants from the wave function due to the equality
GPCs was not appropriate since we are having degener-
ate occupation numbers in the end. Hence, we assume a
degeneracy with either ny| = ny4 or ny4 = nzq from the
beginning and investigate the effect on the coefficients
in Eq. (19). We only need to consider the degenera-
cies in the three largest occupation numbers since the
degeneracies in the small occupation numbers follow
directly from the three equality GPCs. Also, the degen-
eracy n| = npq implies that, due to the ordering, the
largest three occupation numbers are all degenerate. It
can therefore be regarded as a special case of the two
cases mentioned above. For both degeneracies, one can
show that the only possibility to satisfy the equality
GPCs and the ordering is for all coefficients but ¢
to vanish. Hence, one arrives at the same single Slater
determinant as with the above procedure which would
have allowed for non-degenerate occupation numbers
initially.

Hereafter, the only possible ordering that we find
starting from the hypothesis that n;; is the largest
occupation number is

niy =nyy =ny =1,
n3y =ny =n3| = 0. (AS)
The state consists of only one Slater determinant,
IS =1/2,8. = 1/2) = 17271}y, (A6)

and the inequality constraint is pinned as all of the occu-
pations involved are zero. The aforementioned ordering
can be seen as a special case of the ordering that we find
numerically (A1).

Case 2: nj4 is the largest occupation number.
(a) n3 | is the smallest occupation number.

The second largest occupation number can be either
np| or ny1; while, the second smallest occupation num-
ber is either n3; or ny|. Therefore, we find the fol-
lowing five possibilities for the overall ordering of the
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occupation numbers:

[\
[\

n3|, (A7)
n3;, (A8)
n3;, (A9)
n3y, (A10)
not 2 N3t =2 Ny = noy > n3, (All)

(i) niq
(i) niy =2 n1p = nyp 2 n3p > nyy
(iii) I’l]T
(iv) nyp
(v) niy

nyy = npp 2 Ny 2 N3p

\4
I\

\%
\%

npy 2 Ny = Ny = N3p

\%
\%

nap 2 Ny 2 N3p 2 Ny

\%

The first equality reads as nj; + n3| = 1 for all cases.
For the cases (ii) and (iii), we find

ny tny = 1, npt +n3p = 1. (A12)

We can then immediately conclude that n3) = 0 and
niq =1 due to the sum of occupation numbers per spin
channel. Therefore, only the coefficients cy»1, c131, c122,
and c;3, can be non-zero since all the determinants that
contain the 3’! orbital have to vanish and the same is
true for the determinants that do not contain 17. As the
smallest occupation is zero, the inequality constraint can
be satisfied only if the fifth largest occupation number
is equal to or larger than the fourth largest occupation
number. This is only possible if the fourth and the fifth
occupation in descending order is equal. This means for
both cases (ii) and (iii) that n3y = ny| which implies
for the coefficients that Ici31] = Ic122], which results in
nyt = np . Thus, both orderings (ii) and (iii) reduce to
the following one:

Il=nir2nmy=nr2>2npr=n >2n3 =0. (Al3)
The wave function now reads as

1S =1/2,8. = 1/2)
= c21| 1T2T1/l> +c122| 1T2T2/l>
+e ¢ 1731174 4+ ¢135] 1737274, (Al14)

where 6 is an arbitrary real number implying that the
phase of the coefficient c13; can be different from the
phase of the coefficient cy>. At this point, we need
to remember that we are using natural orbitals for the
single-particle orbitals; hence, the IRDM has to be diag-
onal in these orbitals. Calculating the IRDM of the
above wave function we get the following constraint
on the coefficients:

c12(eciar +c132) = 0, (A15)

in order to avoid off-diagonal elements formed by
the orbitals 27 and 3T or 1 and 2’*. Consequently,
either cjo0 = 0 or ¢33 = —€'?c2;. In the first case,
the wave function would consist of only two determi-
nants, 17271V} and [17372"4). In the second case, we
find four degenerate occupation numbers, i.e., ny| =naq
=n31 = np| = lci? + le1aal?. As a consequence of the
degenerate occupation numbers, a linear combination
of two natural orbitals with the same spin and the same
occupation number is again a natural orbital with that
occupation. Choosing the linear combinations
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(b)

T4 = V2[eim 1 + e1202'4,
3t = V2e[cipp1" = c1212M, (A16)

we can rewrite the wave function as [|172T1!)
+¢9)173121)]/4/2. As one can see, the four degenerate
occupation numbers are all equal to 1/2. The inequality
constraint is again satisfied as an equality in this case.
We also note that, due to the degeneracy, these two cases
could also be ordered as in (iv), i.e., the case that we
encounter numerically.

The cases (i), (iv), and (v), apart from the
nit+n3| = 1, have the following two additional equality
GPCs:

ny+n3r =1, npp+ny = 1. (A17)

Note that the ordering (iv) is the one we encounter
numerically in our calculations. Acting on the wave
function with these GPCs only the coefficients ¢y,
132, and ¢33 can be non-zero. In the ordering (i), ny|
> ny1 requires that ¢33 = 0, which means that n3| =0,
nyt = ny |, and n34 = ny|. The inequality GPC

n3r+n3 —ny >0 (A18)

is then satisfied as an equality. Due to the equalities for
the occupation numbers, this case can also be ordered
as in (iv) and be regarded as a special case there.
The wave function consists of the two Slater determi-
nants |[172717¢) and |17372’}). Again, the appearance
of degenerate occupation numbers makes the removal
of determinants due to the pinned GPCs questionable.
However, enforcing the degeneracy nyt = np at the
beginning, the ordering (i) can be seen as a special case
of either (ii) or (iii). Using the same arguments as for
these, in case (iv) the inequality reads as

npy +n3p —n3p >0 (A19)

is satisfied as an equality. Using the fact that np| + n3
=1 - n; |, we see that the inequality reduces to one of
the equality GPCs, thus is satisfied as equality. For the
ordering (v), the inequality reads

n2l+n3i—n1l20, (A20)

which implies thatn1 | < 0.5, taking into account that the
down occupation numbers sum up to 1. However, ny
being less or equal to 0.5 seems to be quite unlikely in
practice and explains why we never found such a case
in our numerical results. Note that in all systems that
we calculated the smallest ny| that we found is 0.98.
The wave function for both cases (iv) and (v) consists
of three Slater determinants, namely,

1S =1/2,8. = 1/2) = 121 1727174 + ¢35 1737274)
+c23312737374) (A21)

the inequality constraint is pinned for case (iv), which is
the one that we typically encounter while it is not pinned
in case (V).
n31 is the smallest occupation number.

We can immediately conclude that the second
smallest occupation number is n3| since, as we
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discussed before, the two smallest occupation num-
bers cannot belong both to spin up. The first GPC, nj¢
+ n3q = 1 implies that ny1 = 1 since the spin-up occupa-
tions sum up to two. From the ordering of occupations,
it follows that n11 = 1 and consequently n34 = 0. There
are then two options for the second largest occupation
number, ny¢ or ny| with the second GPC being given
by

(i) nyp+n3; =1, (A22)
(i) nyy +n3; =1, (A23)

respectively. For case (i), it follows that n3; = 0 and
only the coefficients cj2; and cq2» can be non-zero. The
ordering is given by

nyp 2 npp 2 Ny 2 Ny 2 Np| 2 N3p (A24)

and the inequality GPC reads n3| + n3y — ny; 2 0,
which can only be satisfied if n, | = 0. Hence, the total
wave function for this case is the single Slater deter-
minant |172714). For case (ii), we conclude from the
ordering that n;; = 1, which only leaves the single
Slater determinant |17271’%) to contribute to the wave
function.

To conclude, the structure of the wave function in
terms of natural orbitals in the 3-6 doublet case can
contain maximally three Slater determinants, namely,
the [172717}), [1737274), and [273737}). The only possi-
ble orderings of the occupation numbers, which do not
imply a single Slater determinant as the wave function,
read as

nip > npp > Ny > n3p > npp > n3p,  (A25)

nyp 2 oy 2 N3p 2 Ny = Np| 2 N3, (A26)

as all the others can be considered as special cases of the
above. The first one is the one we always found numer-
ically, while the second one requires that n | is smaller
than 0.5. The inequality constraint is pinned for the first
ordering while for the second one it is not pinned. The
list of equality GPCs in the 3-6 case, when written in
terms of spin occupation numbers, is unique,

n1T+n3¢=1, n2T+n2l=1,
niy+n3 =1 (A27)

as the two possible orderings differ only in the inter-
change between the third and the fourth occupation
numbers in descending order.

2. N=3,M=8

Contrary to the 3-6 case, where the ordering of the spin
occupation numbers that we encounter numerically is unique,
for the 3-8 case, we found three different orderings in our
CASSCEF calculations in the space of dimension 8. Theoret-
ically, of course, there are many more possible orderings for
this case. For the three cases which we found numerically, we
provide the full list of generalized Pauli constraints written
using spin indexed occupation numbers.



114108-10 Theophilou, Lathiotakis, and Helbig J. Chem. Phys. 148, 114108 (2018)
Case l:njy 2 npy 2 n1 ) 2031 2np) 2 N3] > N4p > N4y 15. 2-npp—nyy —2n3p+ny  +n3p—ngp =0
16. 2—n|T—n|l—2n3T+n21+n4T—n4l20
M Conditi 17. 2—n1T—2n2T+n11—n3T+n21—n4l20
ondition
18. 2—n1T—2n2T+n1l—n2l+n4T—n4l20
- - - - >
; g_an_nZT_nEXT_VMT;g 19. 0‘”1T‘"2T+2"11+"3T+”2120
: T TRt T L T = 20. 0—nyp+ngp+nyy —ngp+ 203, 20
3. 2—nyr—ny —n3p—nyy 20
4. 2—n1T—n1l—n3T—n3lZO 21. 0_”1T+”ll+”3T+”2l_”4LZO
22. O—nyp+npy+ny +n3y—ng >0
5. 1-nyp—nyp+nyp 20 " 2 ' 3 o
6. I —nyp—nyp+ngp 20 23. 1 =2n1y +na1 —n3p +2np) +ngy —ngyp 20
7. 1_”1T_”3l+"4T20 24. 1—nll—2n3T+2n2l+n3l+n4T—n4l20
8. 1-nyp—n3p+n3p 20 25. 1=2n11 +np +n3p —ngp +2n3  —ng) 20
9. I—nyp—n3p+ny 20 26. 1=2n1p —nap +2n1 ) +n3p +ngy —ngp 20
10. l—nll—n3T+n4T20 27. l—an—ZnZT+2n1l+n2l+n4T—n4l20
11. l—n1T—n4lZO 28. 0—2n1¢+n2T+nu+n3T—n4T+3n3l—n4L20
29. O+n1T—n1l—2n3T+3n2l+2n4T+n3l—n4l20
1? g_n2T+nll+n3l+n4TZg 30. O—2n1T—nZT+3nll+2n3T+n2l+n4T—n4l20
. Thaptng sty 2 31. 0—niy —2npr +3n1 +n3y +2np +ngp —ng; >0
T T l T l T l
14. 0—n1T+nu+n21+n4T20
15. 2—n2T—n11—2n3T+n2i+n4T—n4l20
16. 2—n1T—n1l—2n3T+n2l+n3l—n4lZO
17. 2=mq = 2mpq iy = nap +ngy —ngy 20 Case3:n1T2n112n2¢2n3TZn2l2n4T2n3l2n4l
18. 2—n1T—2n2T+n1i—nu+n3i—n4l20
19. 0- - 2 >0
T # Condition
20. O—n1T+n2T+nll—n3l+2n4T20
1. 2-nyp—ny —n3p—n3; =20
21. O—n1T+n1l+n3T+n2l—n4lZO 2 2 1 H 3 3i>0
22. O—nyr+nyp+ny +ngy—ng; =20 ’ I S
T T l T L= 3. 2—nyy —npy—n3p—ng 20
23. 1—2n|T+n2T—n3T+2n21+n3l—n4lZO 4. z_an_nZT_n3T_n4TZO
24. 1- —2n37 +2np + + - >0
"l 31 M2l T3 T N4 T4l 5. l—an—nll+n2T20
25. 1—2n1T+n27+n3T—n3l+2n4T—n4l20 6 Lenii—no 4021 >0
26. l—2n|T—n2T+2nll+n3T+n3l—n4lZO 7. 1 H 2 31;0
27 ]—I'l] —2n2 +2n1 +ny +n3; —ng >0 ’ R
i ! T ! ! ! L= 8. l—nll—n3T+n4T20
28. O—2n|T+2n2T+nll+n3T—n3l+3n4T—n4l20 9. 1_n1T_n3T+n2120
29. O+nyy—nyy —2n31 +3np) +2n3) +ngp —ngp 20 10. 1—H2T—H3T+l’l3l20
30. 0—2n11 —npp +3n1 +2n3p +ny +n3; —ngp 20 1 L mie—mat >0
31. O—an—2n2T+3n11+n3T+2n2l+n3l—n4l20 ) " 4=
12. O_”11+”2T+n31+n4T20
13. O—n3T+n2l+n3l+n4TZO
14. O—n|T+n2T+n2l+n3lZO
Case2:nip 2 npy 2 iy 2 n3p 2 npp 2 nayp 2 N3 2 N4y 15. 2—nyy —nyy —2n3p +nay 43y —ngy 20
16. 2—n|T—ngT—2n3T+n2l+n4T—n4l20
# Condition 17. Z—Vl]T —znu +npp —n3p+ny —nyg >0
18. 2—n1T—2nu+n2T—n2l+n4T—n4l20
1. 2—nyp—nyp—n3pr—n3; 20
2. 2_”IT_’12T_”2L_"4T20 19. O—an—nll+2n2T+n3T+n2120
3. 2_”2T_”1J,_"3T_”2L20 20. O—n1T+n1l+n2T—n4T+2n3l20
4. 2—n1T—n1i—n3T—n4TZO 21. 0—n1T+n2T+n3T+n2l—n4lZO
5. L—nip—nyp+ny =0 22. O—n1T+n1l+n2T+n3l—n4L20
6. l_nzT_n2l+n3lZO 23. 1—2n1T+nu—n3T+2n2l+n4T—n4l20
7. l_n]T_n4T+n3lZO 24, l—nZT—2n3T+2n2l+n3l+n4T—n4l20
8. l_nzT_n3T+n4T20 25. 1—2n1T+nu+n3T—n4T+2n3l—n4l20
9. l_an_n3T+n2lZO 26. 1—2n1T—nu+2n2T+n3T+n4T—n4l20
10. l_n]l_n3T+n3lZO 27. l—an—Znu+2n2T+n2l+n4T—n4l20
1. L-nip—nsy 20 28. 0—=2n11+2n1 +nop +n3p —ngy +3n3; —ngp 20
12. 0—”2T+nli+n31+n4T >0 29. 0+n1T—n2T—2n3T+3n2l+2n4T+n3l—n4l >0
13. O_"3T+”2l+”3l+”4TZO 30. 0—2n1¢—nu+3n2T+2n3T+n2l+n4T—n4l20
14. 0_”1T+"ll+"2i+”3izo 31. 0—nyp—2n1y +3na7 +n3p +2np) +ngp —ng) 20
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APPENDIX B: RELATIONS BETWEEN

THE EXPANSION COEFFICIENTS OF CI
AND THE SPIN NATURAL ORBITALS

In this Appendix, we discuss the conditions that need to
be satisfied in order for the CI expansion in the 3-6 case to
form a spin doublet eigenstate. As discussed in Sec. III, in
order to describe spin eigenstates of the many-electron wave
function, the spatial parts of the natural orbitals are in general
different for the up and down spin channels. However, they still
have to span the same space. This conclusion is derived from
the following example. For three electrons in M = 6 natural
orbitals, we choose three spatial orbitals for each spin channel.
Let us assume that the spatial parts of the down natural orbitals
j' are linear combinations of two up ones k, plus one basis
function y that does not belong to the space spanned by the
up orbitals

2
J' = G+ Gl (B1)
k=1

Using this expansion in the wave function with § = 1/2,
see Eq. (6), we find

IS =1/2,8, =1/2)
= cin (111271 + 121211711 1272Y)
+en(12)11713714) + e132(2129117372¢)
+0233(1130)12737T 1Y) + 2332137273724y
+em (N7t + cina(x 1211737 Y
+an(x131213T ).
Since our state has maximum S, acting with the operator S*
gives zero. In doing so, we find three linearly independent
Slater determinants, namely, the ones that contain the orbitals
11727 ™, 11737 ¢ 1Y, and [2737 y T) which can only be zero if
(xI1")=(x12")=(x13") =0, which s contrary to our assumption
(B1).
As aresult, one can expand one set of natural spin orbitals

in the orbitals of the opposite spin channel. Such an expansion
reads as

(B2)

M/2
J7 = ) TR, (B3)
k=1
where & denotes the opposite spin of o. Consequently, one
can use this expansion and transform the CI expansion in
Slater determinants of natural orbitals to an expansion in Slater
determinants of spin-independent orbitals. In the following, we
again use the example of three electrons and M = 6.
Asdiscussedin Sec. I1I, a CI expansion of a spin eigenstate
with S = 1/2 on the basis of the natural orbitals contains only
three Slater determinants, namely,

W) = cio 1727174 + 1321173727y + 02331273737y, (B4)

Using Eq. (B3) to expand the orbitals of the down channel, we
obtain for ¥

3
W) = Z (craa kIITT2TKY) + c13p(K127) 1737k
k=1

+ca33(k3))1237kY)) (BS)
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As the orbitals in Eq. (BS) have the same spatial parts in both
spin channels, any Slater determinant with a doubly occupied
orbital is a spin eigenstate with S = 1/2. The only contributions
which are not eigenstates by themselves are therefore given by

i GI)IT273Y) + 1322129173724 + 2331137127314,
(B6)

In order for this part of the wave function to form a spin
eigenstate with S = S, = 1/2, the following condition should
hold

c123311") = €132(212) + ¢233(113") = 0, B7

which can be derived by acting on Eq. (B6) with S* and requir-
ing thatit gives zero. As one can see, the overlaps (klj”) between
the spatial parts of the spin up and the spin down orbitals
enter this equation. Hence, the condition on the CI coefficients
so that the corresponding wave function is a spin eigenstate
depends on the specific relation between the natural orbitals
in the two spin channels.

We emphasize that the expansion Eq. (B3) can be done
for any M. However, due to the increasing number of orbitals
in Eq. (B3) and an increasing number of Slater determinants in
the CI expansion of 'V, the relations between the CI coefficients
become more complicated. Also, since only three orbitals enter

the Slater determinants, one obtains more than one relation

for %” > 3. For example, for M = 8 one finds four different

relations, one for each set of determinants that have a specific
orbital missing.
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