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Every couple of weeks, the media proclaim the discov-
ery of a new tumor marker that promises to improve 
personalized diagnosis or even treatment of cancer. As 
swift a pace as this seems, tumor research in fact pro-
duces many more discoveries. On average, four or five 
studies on cancer markers are published daily, almost 
all of them reporting at least one statistically significant 
prognostic marker (Ioannidis et al., 2014). Nonetheless, 
few of these results have been replicated and translated 
into clinical practice. When a team of 100 scientists at 
biotech company Amgen tried to replicate the findings 
of 53 “landmark” articles, they succeeded for only 6. 
Similarly, when the pharmaceutical company Bayer 
examined 67 projects on oncology, women’s health, and 
cardiovascular medicine, they were able to replicate the 
results in only 14 cases (Mullard, 2011; Prinz, Schlange, 
& Asadullah, 2011).1 In the United States alone, irrepro-
ducible preclinical research slowing down the discovery 
of life-saving therapies and cures has been estimated as 

costing $28 billion annually (Freedman, Cockburn, & 
Simcoe, 2015). The recently discovered fact that so many 
published results are apparently false alarms has been 
baptized the “replication crisis.”

In the social sciences, replication studies were rarely 
published until recently, so the problem has lurked 
below the surface for many decades. An early analysis 
of 362 articles in psychology found no attempted single 
replication study for any of them (Sterling, 1959), a 
subsequent analysis found replications for fewer than 
1% of more than 1,000 articles (Bozarth & Roberts, 
1972), and a 2012 analysis found replications for 1% of 
original articles (Makel, Plucker, & Hegarty, 2012). By 
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Abstract
The “replication crisis” has been attributed to misguided external incentives gamed by researchers (the strategic-game 
hypothesis). Here, I want to draw attention to a complementary internal factor, namely, researchers’ widespread faith 
in a statistical ritual and associated delusions (the statistical-ritual hypothesis). The “null ritual,” unknown in statistics 
proper, eliminates judgment precisely at points where statistical theories demand it. The crucial delusion is that the 
p value specifies the probability of a successful replication (i.e., 1 – p), which makes replication studies appear to 
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and 66% of the students. Two further beliefs, the illusion of certainty (e.g., that statistical significance proves that an 
effect exists) and Bayesian wishful thinking (e.g., that the probability of the alternative hypothesis being true is 1 – 
p), also make successful replication appear to be certain or almost certain, respectively. In every study reviewed, the 
majority of researchers (56%–97%) exhibited one or more of these delusions. Psychology departments need to begin 
teaching statistical thinking, not rituals, and journal editors should no longer accept manuscripts that report results as 
“significant” or “not significant.”
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2010, the crisis began to shake up the social sciences, 
after it was reported that highly publicized results could 
not be replicated (e.g., Open Science Collaboration, 
2015; Pashler, Coburn, & Harris, 2012; Scheibehenne, 
Greifeneder, & Todd, 2010). At the beginning of the 
21st century, one of the most cited claims in the social 
and biomedical sciences was that most scientific results 
are false (Ioannidis, 2005; Szucs & Ioannidis, 2017). Is 
science on its last legs? Its detractors certainly appear 
keen to cash in on the crisis. On March 29, 2017, the 
news Web site Breitbart.com headlined a claim by 
Wharton School professor Scott Armstrong that “fewer 
than 1 percent of papers in scientific journals follow 
scientific method” (Bokhari, 2017), which was widely 
spread across other conservative opinion and news 
Web sites. For politicians and citizens skeptical of sci-
ence, such messages provide a perfect reason to justify 
cuts in funding for research that conflicts with their 
beliefs and values.

Only a Matter of Incentives?

The replication crisis has led to heated debates on how 
much waste is produced, in what fields this occurs, and 
what exactly counts as a replication in the first place 
(e.g., Pashler & Wagenmakers, 2012; Stroebe & Strack, 
2014). In this article, I do not deal with these highly 
debated issues but rather consider the question of how 
we got here. Little is known about the causes of the 
problem. Some people have suggested that truth simply 
wears off, as when the efficacy of antidepressants plum-
meted drastically from study to study. In the 1930s, 
Joseph B. Rhine concluded that the extrasensory per-
ception of his students declined over the years. And 
one cognitive psychologist, sincerely puzzled by how 
a much-publicized effect that he discovered could have 
faded away, invoked the concept of “cosmic habitua-
tion,” a natural law postulating that once a claim for an 
effect is published, the world habituates to it so that it 
begins shrinking away (Lehrer, 2010; see also Schooler, 
2011).

More seriously, the general approach has been to 
explain the replication crisis by blaming wrong eco-
nomic and reputational incentives in the academic 
career system. Specifically, the blame has been laid on 
the “publish or perish” culture, which values quantity 
over quality, and on the practice of evaluating research-
ers by impact measures such as h-index and, more 
recently, “altmetrics” such as the number of tweets and 
mentions in blogs (Colquhoun, 2014). Richard Horton 
(2016), editor-in-chief of The Lancet, complained: “No-
one is incentivized to be right” (p. 1380). In this view, 
powerful incentives for career advancement actively 
encourage, reward, and propagate poor research meth-
ods and abuse of statistics (e.g., Smaldino & McElreath, 

2016). The various symptoms of wrong incentives 
include hyped-up press releases and misleading 
abstracts that claim discoveries even when they are not 
supported by the data; publication bias, that is, the 
reluctance of journals and authors to publish negative 
results; lack of willingness to share data; financial con-
flicts of interest (particularly in clinical research; 
Schünemann, Ghersi, Kreis, Antes, & Bousquet, 2011); 
and commodification and privatization of research 
(Mirowski, 2011). Following Smaldino and McElreath 
(2016), I refer to these explanations as the strategic-
game hypothesis, according to which science is consid-
ered a game that scientists play strategically to maximize 
their chances of acquiring publications and other tro-
phies (Bakker, van Dijk, & Wicherts, 2012). To counter 
gaming, preregistration and data sharing are now 
encouraged or required by several journals, and radical 
changes to the reward system have been proposed. One 
drastic proposal to revamp the current system is that 
only publications whose findings are replicated, not 
publication per se, should count in the future and that 
large grants should count not positively but negatively, 
unless the recipient delivers proportionally high-quality 
science (Ioannidis, 2014).

In this article, I present an analysis that goes beyond 
the important role of external incentives, be they eco-
nomic or reputational. I discuss the hypothesis that the 
replication crisis is also fueled by an internal factor: the 
replacement of good scientific practice by a statistical 
ritual that researchers perform not simply on the 
grounds of opportunism or incentives but because they 
have internalized the ritual and genuinely believe in it. 
I refer to this hypothesis as the statistical-ritual hypoth-
esis. As is the case with many social rituals, devotion 
entails delusions, which in the present case block judg-
ment about how to conduct good research, that is, 
inhibit researchers’ common sense. I use the term com-
mon sense because the delusions in question here do 
not concern sophisticated statistical technicalities but 
instead concern the very basics. If the cause were 
merely strategic behavior, common sense would not 
likely be sacrificed.

This article comprises two main parts. In the first, I 
show how textbook writers created the null ritual as 
an apparently objective procedure to distinguish a true 
cause from mere chance. This procedure is aimed at 
yes/no conclusions from single studies, neglects repli-
cation and other principles of good scientific practice, 
and has become dominant in precisely those sciences 
involved in the replication crisis. It is worth noting that 
editors in the natural sciences, which do not practice 
the ritual, generally endorse replication and do not 
separate it from original research (Madden, Easley, & 
Dunn, 1995). In the second part of this article, I review 
studies on four phenomena that are implied by the 



200 Gigerenzer

statistical-ritual hypothesis but are not explained (or, 
in one case, are only partially explained) by the 
strategic-game hypothesis. In general, the strategic-
game hypothesis implies that researchers play the game 
without necessarily being in the grip of systematic delu-
sions or acting against their own interests. The statisti-
cal-ritual hypothesis, in contrast, implies that researchers 
engage in delusions about the meaning of the null 
ritual, and above all about its sacred number, the  
p value. Otherwise, they would realize that the p value 
does not answer their research questions and would 
abandon its pursuit. The first phenomenon is the rep-
lication delusion, which makes replication appear virtu-
ally certain and further studies superfluous. The second 
concerns the illusion of certainty, and the third Bayesian 
wishful thinking; both of these lead to the same conclu-
sions about replication. A review of studies with 839 
academic psychologists shows that the majority believed 
in one or more of these three fallacies. Finally, there is 
the phenomenon of low statistical power. According to 
the strategic-game hypothesis, researchers should be 
careful to design experiments that have a good chance 
of detecting an effect and thus lead to the desired 
result, statistical significance. The statistical-ritual 
hypothesis, however, implies that researchers pay little 
attention to statistical power because it is not part of 
the null ritual. Consistent with the latter prediction, 
studies of the psychological literature show that the 
median statistical power for detecting a medium effect 
size is generally low and has not improved in the past 
50 years. The statistical-ritual hypothesis also accounts 
for why the specific incentives that strategic behavior 
exploits were set in the first place.

The Idol of Automatic Inference and 
the Elimination of Judgment

Statistical methods are not simply applied to a disci-
pline but can transform it entirely. Consider medicine. 
For centuries, its lifeblood was physicians’ “medical 
tact” and the search for deterministic causes. All that 
changed when, in the second half of the 20th century, 
probabilities from randomized trials and p values 
replaced causes with chances. Or think of parapsychol-
ogy, in which statistical tests became common half a 
century earlier. Once the study of unique messages 
from the dear departed, extrasensory perception is now 
the study of repetitive card guessing; marvels have been 
replaced with statistical significance (Gigerenzer et al., 
1989).

Psychology has also been transformed by the proba-
bilistic revolution (Gigerenzer, 1987). For the present 
topic, two aspects of this remarkable event are of rel-
evance. First, as in medicine, the probabilistic revolution 

forged an unexpected marriage between two previously 
antagonistic tribes: experimenters and statisticians. In 
fact, statistical inference became the hallmark of experi-
mentation, and experiments without statistical inference 
were soon virtually unthinkable. This change was so 
profound that quite a few social scientists today would 
be surprised to learn that Isaac Newton, for instance, 
used no statistical tests in his experiments. You might 
object that Newton was not familiar with statistical infer-
ence, but in fact, he was: In his role as the master of 
the London Royal Mint, he used statistical tests to make 
sure that the amount of gold in the coins was neither 
too small nor too large (Stigler, 1999). The Trial of the 
Pyx involved random samples of coins, a null hypothesis 
to be tested (that the tested coin conformed to the stan-
dard coin), a two-sided alternative hypothesis, and a 
test statistic. In Newton’s view, statistical tests were use-
ful for quality control, but not for science. Similarly, 
19th-century medicine saw professional rivalry between 
experimenters, who looked for causes, and statisticians, 
who looked for chances. For instance, physiologist 
Claude Bernard, one of the first to suggest blind experi-
ments, opposed the use of averages or proportions as 
unscientific. For him, averages were no substitutes for 
a complete investigation of the conditions that cause 
variability (Gigerenzer et al., 1989, pp. 126–130). The 
British biologist and statistician Sir Ronald A. Fisher 
(1890–1962) was highly influential in ending this antago-
nism and forging a marriage between experimenters and 
statisticians.

Second, and most relevant for this article, psycholo-
gists reinterpreted this marriage in their own way. Early 
textbook writers struggled to create a supposedly objec-
tive method of statistical inference that would distin-
guish a cause from a chance in a mechanical way, 
eliminating judgment. The result was a shotgun wedding 
between some of Fisher’s ideas and those of his intellec-
tual opponents, the Polish statistician Jerzy Neyman 
(1894–1981) and the British statistician Egon S. Pearson 
(1895–1980). The essence of this hybrid theory (Gigerenzer, 
1993) is the null ritual. The null ritual does not exist in 
statistics proper, although researchers have been made 
to believe so.

The inference revolution

The term inference revolution refers to a change in 
scientific practice that happened in psychology between 
1940 and 1955 and subsequently in other social sci-
ences and biomedical research (Gigerenzer & Murray, 
1987). The inference from sample to population came 
to be considered the sine qua non of good research, 
and statistical significance came to be considered the 
means of distinguishing between true cause and mere 
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chance. Common scientific standards such as minimiz-
ing measurement error, conducting double-blind exper-
iments, replicating experiments, providing detailed 
descriptive statistics, and formulating bold hypotheses 
in the first place were pushed into the background 
(Danziger, 1990; Gigerenzer, 1993). The focus on infer-
ence from sample to population is remarkable or even 
perplexing given that in most psychological experi-
ments, researchers do not draw random samples from 
a population or define a population in the first place. 
Thus, the assumptions for the procedure are not met 
in most cases, and one does not know the population 
to which an inference such as µ1 ≠ µ2 actually refers.

The term revolution underscores the dramatic impact 
of this change. In the earlier experimental tradition, the 
unit of analysis was the individual, who was well 
trained and often held a Ph.D. After the revolution, the 
unit became the aggregate, often consisting of minors 
or undergraduates. In the United States, this change 
was already under way during the 1930s, when psy-
chologists tried to promote their field as socially rele-
vant, and educational administrators were the key 
source of funding. For administrators, the relevant ques-
tion was whether a new teaching method led to better 
performance on average; to that end, psychologists cre-
ated a new unit, the treatment group (Danziger, 1987). 
But when a mean difference between two groups was 
observed, they had to use their judgment about whether 
it was “real.” When psychologists learned about Fisher’s 
method of statistical inference (see the section on the 
null ritual), it seemed like a dream come true: an appar-
ently objective method to tell a cause from a chance.

Accordingly, early adopters of significance testing were 
concentrated in educational psychology and parapsychol-
ogy, while the core scientific disciplines, such as percep-
tual psychology, resisted the movement for years and 
continued to focus on individuals. It is instructive that 
the situation in Germany was different (Danziger, 1990). 
German professors did not feel pressured to prove the 
usefulness of their research for education but instead 
considered themselves scientists responsible for unravel-
ing the laws of the individual mind. Accordingly, the 
inference revolution happened much later in German 
psychology, in its post–World War II assimilation into U.S. 
psychology. The changes in research practice spawned 
by the inference revolution were so fundamental that 
psychologists trained in its wake can hardly imagine that 
research could entail anything other than analyzing 
means of aggregates for statistical significance.

What did psychologists do before the 
inference revolution?

A typical article in the Journal of Experimental Psychol-
ogy around 1925 would report single-case data in detail, 

using means, standard deviations, correlations, and 
various descriptive statistics tailored to the problem. 
The participants were trained staff members with Ph.D.s 
or graduate students (Danziger, 1990). In the tradition 
of Wilhelm Wundt’s Leipzig laboratory, the researcher 
who ran the experiment was typically a technician, 
which is why it could happen that the participant, not 
the researcher, published the article. When a larger num-
ber of individuals were studied, as in Jean Piaget’s work 
on the development of cognition, results were typically 
presented individually rather than as aggregates—you 
would not have caught Piaget calculating a t test. The 
overall picture is that past researchers knew their raw 
data well, reported descriptive statistics in detail, and 
had a comparatively flexible attitude toward the issue of 
statistical inference from sample to population, which 
was considered to be incidental rather than central.

When treatment groups began to be used in the applied 
research of the 1930s in the United States, the term sig-
nificant was already widely in use, but the evaluation 
of whether two means differed was based on judgment—
taking the error, the size of the effect, and previous 
studies into account—rather than on a mechanical rule, 
except for the use of critical ratios (the ratio of the 
obtained difference to its standard deviation; Gigerenzer 
& Murray, 1987, chap. 1). This practice led to virtually 
all of the classical discoveries in psychology. Without 
calculating p values or Bayes factors, Wolfgang Köhler 
developed the Gestalt laws of perception, Ivan P. Pavlov 
the principles of classical conditioning, B. F. Skinner 
those of operant conditioning, George Miller his magi-
cal number seven plus or minus two, and Herbert A. 
Simon his Nobel Prize–winning work on bounded 
rationality.

The null ritual

In the 1920s, Fisher had forged the marriage between 
experiments and inferential statistics in agriculture and 
genetics, an event that went largely unnoticed by psy-
chologists (for a discussion of Fisher’s antecedents, see 
Gigerenzer et al., 1989, pp. 70–90). Through statisticians 
George W. Snedecor at Iowa State College and Harold 
Hotelling at Columbia University, among others, Fisher’s 
theory of null-hypothesis testing soon spread in the 
United States. By 1961, Snedecor’s (1937) Statistical 
Methods became the most cited book according to the 
Science Citation Index (Gigerenzer & Murray, 1987,  
p. 21). Psychologists began to cleanse Fisher’s message 
of its agricultural odor—the effect of manure, soil fertil-
ity, and the weight of pigs—as well as of its mathemati-
cal sophistication, and wrote a new genre of textbooks. 
The most widely read of these was probably Funda-
mental Statistics in Psychology and Education, which 
was published in 1942 and written by J. P. Guilford, a 
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psychologist at the University of Southern California 
and later president of the American Psychological 
Association. Like Guilford, authors of best-selling 
statistical textbooks in psychology have typically been 
nonstatisticians.

Soon things got complicated, however. The statistical 
theory of Neyman and Pearson also became known, 
particularly after World War II. The essential differences 
relevant for our purpose are threefold: First, whereas 
Fisher proposed testing a single specified hypothesis, 
the null, against an unspecified alternative, Neyman 
and Pearson questioned this logic and called for testing 
against a second specified hypothesis. Second, with 
only a null and no specified alternative, Fisher had no 
measure of statistical power. Moreover, he believed that 
calculating power made sense in quality control but not 
in science—according to him, there is no place for 
cost-benefit trade-offs such as between power and 
alpha when one is seeking the truth. (Alpha is the prob-
ability that the null hypothesis is rejected if it is true, 
and beta, calculated as 1 – power, is the probability 
that the alternative hypothesis is rejected if it is true. 
Alpha and beta are also called Type I and Type II error 
rates, respectively.) Neyman and Pearson, in contrast, 
required power and alpha to be balanced and set before 
the experiment so that the probability of Type I and 
Type II errors would be known. Third, Fisher inter-
preted a significant effect in terms of subjective confi-
dence in the result, whereas Neyman (albeit not 
Pearson) interpreted significance in strictly behavioristic 
terms as a decision, not a belief. For example, in quality 
control, misses matter, and a significant result can lead 
to the decision to stop production and look for a pos-
sible error, even when one believes that most likely 
nothing is wrong. Neyman regarded his theory as an 
improvement of null-hypothesis testing, but Fisher dis-
agreed. The conceptual differences between these two 
systems of statistical inference were amplified by a 
fierce personal debate. Fisher branded Neyman’s theory 
as “childish” and “horrifying [for] the intellectual free-
dom of the west,” while Neyman countered that some 
of Fisher’s tests were “worse than useless” because their 
power was smaller than their alpha level (see Gigerenzer 
et al., 1989, chap, 3). How should textbook writers have 
coped with the fundamental disagreement between 
these two camps? The obvious solution would have 
been to present both approaches and discuss the situ-
ations in which each might be more appropriate.

But such a toolbox approach would have required 
relinquishing dearly coveted objectivity and opened the 
door to researchers’ judgment. Although a few text-
books did take this approach and taught both theories 
(e.g., R. L. Anderson & Bancroft, 1952), the great major-
ity fused the two antagonistic theories into a hybrid 

theory, of which neither Fisher nor Neyman and Pear-
son would have approved. In addition to the idol of 
automatic inference, another decisive factor appears to 
have been the commercialization of textbooks, accom-
panied by publishers’ requests for single-recipe cook-
books instead of a toolbox (Gigerenzer, 2004, pp. 
587–588). To this end, virtually all textbooks presented 
the hybrid theory anonymously, without mentioning 
that its concepts stem from different theories, detailing 
the conflicting ideas of the theories’ authors, or even 
disclosing their identities. For instance, although the 
1965 edition of Guilford’s best-selling Fundamental 
Statistics in Psychology and Education cites some 100 
authors in its index, the names of Neyman and Pearson 
are left out.

The essence of this hybrid theory is the null ritual 
(Gigerenzer, 2004):

1. Set up a null hypothesis of “no mean difference” 
or “zero correlation.” Do not specify the predic-
tions of your own research hypothesis.

2. Use 5% as a convention for rejecting the null 
hypothesis. If the test is significant, accept your 
research hypothesis. Report the test result as p < 
.05, p < .01, or p < .001, whichever level is met 
by the obtained p value.

3. Always perform this procedure.

The null ritual does not exist in statistics proper. This 
point is not always understood; even its critics some-
times confuse it with Fisher’s theory of null-hypothesis 
testing and call it “null-hypothesis significance testing.” 
In fact, the ritual is an incoherent mishmash of ideas 
from Fisher on the one hand and Neyman and Pearson 
on the other, spiked with a characteristically novel con-
tribution: the elimination of researchers’ judgment.

Elimination of judgment

Consider Step 1 of the null ritual. To specify the null 
hypothesis but not an alternative hypothesis follows 
Fisher’s logic but violates that of Neyman and Pearson, 
which necessitates specifying both (this is one of the 
reasons why they thought of their theory as an improve-
ment over Fisher’s). Yet Step 1 follows Fisher only to a 
point, because Fisher at least thought that judgment 
would be necessary for choosing a proper null hypoth-
esis. As Fisher emphasized, his intent was to test 
whether a hypothesis should be nullified, and he did 
not mean to imply that this hypothesis postulates a nil 
difference (Fisher, 1955, 1956). In his approach, 
researchers should use their judgment to select a proper 
null hypothesis, which could be a nonzero difference 
or correlation. In the hands of the textbook writers in 
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psychology, however, null grew to mean “no differ-
ence,” period. No judgment was required.

Step 2 blatantly contradicts Fisher, who in the 1950s 
advised researchers against using 5% in a mechanical 
way:

No scientific worker has a fixed level of significance 
at which from year to year, and in all circumstances, 
he rejects hypotheses; he rather gives his mind to 
each particular case in the light of his evidence 
and his ideas. (Fisher, 1956, p. 42)2

Using a conventional 5% level of significance is also 
alien to Neyman and Pearson, who in their earliest 
writings already emphasized that their tests should be 
“used with discretion and understanding,” depending 
on the context (Neyman & Pearson, 1933, p. 296). 
Understanding includes making a judgment about the 
balance between Type I and Type II errors; this judg-
ment was also omitted in the null ritual.

The practice of rounding up p values to the next 
convenient “significance level” (p < .05, p < .01, or p < 
.001) is supported neither by Fisher nor by Neyman 
and Pearson. In their approaches, a level of significance 
is set before the experiment, not calculated post hoc 
from data, and p values calculated from data should be 
reported as exact values (e.g., p = .004, not p < .01) so 
that they are not confused with significance levels. Step 
2 is also inconsistent with Fisher’s (1955) argument 
against making binary reject/not-reject decisions, and 
appears to follow Neyman and Pearson. Yet it does so 
only partially and neglects the rest of their theory, 
which requires two precise hypotheses and a judgment 
about the balance between alpha and beta for deter-
mining the decision criterion. In the null ritual, there 
is no concern with beta and consequently no concern 
with the statistical power of a test, which is the comple-
ment of beta.

Finally, Step 3 embodies the idol of automatic infer-
ence that does not require a judgment about the validity 
of the assumptions underlying each statistical test. This 
is alien to both camps, and to statistical science in 
general. Fisher (1955, 1956) asserted that constructive 
imagination and much experience are prerequisites of 
good statistics, such as for deciding which null hypoth-
eses are worth testing and which test statistic to choose. 
Neyman and Pearson emphasized that the statistical 
part of inference has to be supplemented by a subjec-
tive part. In Pearson’s (1962) words:

We left in our mathematical model a gap for the 
exercise of a more intuitive process of personal 
judgment in such matters—to use our terminology—
as the choice of the most likely class of admissible 

hypotheses, the appropriate significance level, the 
magnitude of worthwhile effects and the balance 
of utilities. (pp. 395–396)

Throughout their heated personal debates, each side 
accused the other of advocating mechanical statistical 
inference. At least here, they saw eye to eye: Statistical 
inference should not be automatic. Yet it has become 
not only automatic but also what I call ritualistic, 
embodying social emotions, including fear, wishful 
thinking, and delusions, along with mechanical 
repetition.

I use the term ritual for the core of the hybrid theory 
to highlight its similarity to social rites (Dulaney & 
Fiske, 1994). A ritual is a collective or solemn ceremony 
consisting of actions performed in a prescribed order. 
It typically includes the following elements:

•• sacred numbers or colors,
•• repetition of the same action,
•• fear about being punished when one stops per-

forming these actions, and
•• wishful thinking and delusions.

The null ritual contains all these features: a fixation on 
the 5% number (or on colors, as in functional MRI 
images), repetitive behavior resembling compulsive 
hand washing, fear of sanctions by editors or advisors, 
and delusions about the meaning of the p value (as I 
discuss in the next section). It spread fast. Before 1940, 
few articles reported t tests, analyses of variance, or 
other significance tests. By 1955 and 1956, more than 
80% of articles in four leading journals were doing so, 
and almost all reported a significant effect (Sterling, 
1959). Today, the figure is close to 100%.

Systematic Delusions About Replication

In this section, I put forward the hypothesis that the 
null ritual is key to understanding the replication crisis 
in the social and biomedical sciences. As I mentioned 
earlier, one explanation of this crisis has been that 
researchers are given the wrong incentives. These do, 
of course, exist, creating the fear of being punished for 
not conforming, the third aspect of a social ritual. Yet 
incentives are only part of the explanation, as is dem-
onstrated by a rare case in which an editor actually 
eliminated them. When Geoffrey Loftus became editor-
elect of Memory & Cognition, he made it clear in his 
introductory editorial that he did not want authors to 
submit manuscripts with routine calculations of p values, 
but instead wanted adequate figures with descriptive 
statistics and confidence intervals (Loftus, 1993). During 
his editorship, I asked him how his campaign was 
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going. Loftus bitterly complained that many researchers 
stubbornly refused the opportunity, experienced deep 
anxiety at the prospect of abandoning p values, and 
insisted on their p values and yes/no significance deci-
sions (Gigerenzer, 2004, pp. 598–599). Similarly, after 
the Task Force for Statistical Inference’s recommenda-
tions calling for various alternatives to the null ritual 
were incorporated in the fifth edition of the American 
Psychological Association’s (2001) publication manual, 
a study found little change in researchers’ behavior 
(Hoekstra, Finch, Kiers, & Johnson, 2006).

My hypothesis is that, beyond incentives, the key 
issue is researchers’ internalized belief in the ritual. If 
researchers only opportunistically adapt their behavior 
to the incentives in order to get published and pro-
moted, then their common sense with regard to statisti-
cal thinking should remain intact. If, however, 
researchers have internalized the ritual and believe in 
it, conflicting common sense should be repressed. The 
most basic and crucial test of the statistical-ritual 
hypothesis is whether researchers actually understand 
the desired product: a significant p value.

Probability of replication = 1 – p

A p value is a statement about the probability of data, 
assuming the null hypothesis is true. More precisely, 
the term data refers to a test statistic (a statistical sum-
mary of data, such as a t statistic), and the term null 
hypothesis refers to a statistical model. For instance, a 
result with a p value of .05 means that if the null 
hypothesis—including all assumptions made by the 
underlying model—is true, the probability of obtaining 
such a result or a more extreme one is 5%. The p value 
does not tell us much else. Specifically, a p value of .05 
does not imply that the probability that the result can 
be replicated is 95%.

Consider a simple example: A researcher designs an 
experiment with 50% power to detect an effect of a 
medium size (50% power or below is a typical figure, 
as I discuss later) and obtains a significant difference 
between means, p < .05. Does this imply that one can 
expect to find a significant result in 95% (or more) of exact 
replications of this experiment? No, and the reason why 
not can be easily understood. If the alternative hypoth-
esis is true, then the probability of getting another 
significant result equals the statistical power of the test, 
that is, 50%. If, however, the null hypothesis is true, the 
probability of getting another significant result would 
still be only 5%. Or consider an even simpler illustra-
tion: A die, which could be fair or loaded, is thrown 
twice and shows a “six” both times, which results in a 
p value of .03 (1/36) under the null hypothesis of a fair 
die. Yet this does not imply that one can expect two 

sixes in 97% of all further throws. In general, the chance 
of replicating a finding depends on many factors (e.g., 
Cumming, 2008, 2014; Greenwald, Gonzalez, Harris, & 
Guthrie, 1996), most of which the researcher cannot 
know for sure, such as whether the null or the alterna-
tive hypothesis is true. The belief that an obtained  
p value implies a probability of 1 – p that an exact 
replication of the same experiment would lead to a 
significant result is known as the replication delusion 
or replication fallacy (Rosenthal, 1993).

Note that this delusion is easy to see through, and 
experienced researchers should not hold this belief 
even if they follow the null ritual for opportunistic 
motives. In contrast, if they believe in the ritual, they 
are likely to exhibit the replication delusion because it 
provides a justification for performing the ritual, even 
if it amounts to wishful thinking. Thus, the empirical 
question is, do experienced researchers actually suffer 
from the replication delusion?

The first study to answer this question appears to have 
been conducted by Oakes (1986). He asked 70 British 
lecturers, research fellows, and postgraduate students 
with at least 2 years of research experience whether the 
following statement is true or false, that is, whether it 
logically follows from a significant result (p = .01):

You have a reliable experimental finding in the 
sense that if, hypothetically, the experiment were 
repeated a great number of times, you would obtain 
a significant result on 99% of occasions. (p. 80)

Sixty percent of the psychologists answered “true.” 
Table 1 shows that this replication delusion is also 
endemic beyond academic psychologists in the United 
Kingdom. Aggregating across all the studies listed in 
Table 1 leads to the following general picture: Among 
psychologists who taught statistics or methodology, 20% 
(23 of 115) believed in the replication delusion; among 
academic psychologists whose special field was not 
statistics, this number was larger, 39% (282 of 724); and 
among students, it was even larger, 66% (659 of 991).

The existence of the replication delusion is consis-
tent with the hypothesis that a substantial number of 
researchers follow the null ritual not simply for strategic 
reasons but also because they believe in the ritual and 
its associated delusions. According to the replication 
delusion, given p = .01, a study’s results can be repli-
cated in 99% of all trials, which means that replication 
studies are superfluous.

The limits of the present analysis are the small number 
of studies that have been conducted and the low 
response rates reported in some of the studies. Badenes-
Ribera, Frias-Navarro, Monterde-i-Bort, and Pascual-Soler 
(2015) sent their survey to 4,066 academic psychologists 
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Table 1. Studies on the Replication Delusion

Study Description of group Country N
Statistic 
tested

Respondents 
exhibiting the 

replication 
delusion (%)

Professional samples

Oakes (1986) Academic psychologists United Kingdom 70 p = .01 60
Haller & Krauss (2002) Statistics teachers in 

psychology
Germany 30 p = .01 37

Haller & Krauss (2002) Professors of psychology Germany 39 p = .01 49
Badenes-Ribera, Frias-Navarro, 

Monterde-i-Bort, &  
Pascual-Soler (2015)

Academic psychologists: 
personality, evaluation, 
psychological treatments

Spain 98 p = .001 35

Badenes-Ribera et al. (2015) Academic psychologists: 
methodology

Spain 67 p = .001 16

Badenes-Ribera et al. (2015) Academic psychologists: basic 
psychology

Spain 56 p = .001 36

Badenes-Ribera et al. (2015) Academic psychologists: social 
psychology

Spain 74 p = .001 39

Badenes-Ribera et al. (2015) Academic psychologists: 
psychobiology

Spain 29 p = .001 28

Badenes-Ribera et al. (2015) Academic psychologists: 
developmental and 
educational psychology

Spain 94 p = .001 46

Badenes-Ribera, Frias-Navarro, 
Iotti, Bonilla-Campos, & 
Longobardi (2016)

Academic psychologists: 
methodology

Italy, Chile 18 p = .001 6

Badenes-Ribera et al. (2016) Academic psychologists: other 
areas

Italy, Chile 146 p = .001 13

Hoekstra, Morey, Rouder, & 
Wagenmakers (2014)

Researchers in psychology 
(Ph.D. students and faculty)

Netherlands 118 95% CI 58

Student samples

Haller & Krauss (2002) German psychology students 
who had passed two 
statistics courses

Germany 44 p = .01 41

Hoekstra et al. (2014) First-year psychology students 
who had not taken an 
inferential-statistics course

Netherlands 442 95% CI 66

Hoekstra et al. (2014) Master’s psychology students 
who had taken an 
inferential-statistics course

Netherlands 34 95% CI 79

Garcia-Pérez &  
Alcalá-Quintana (2016)

First-year psychology students 
who had not taken an 
inferential-statistics course

Spain 313 95% CI 71

Garcia-Pérez &  
Alcalá-Quintana (2016)

Master’s psychology students 
who had taken an 
inferential-statistics coursea

Spain 158 95% CI 63

Note: For the studies in which the replication delusion was tested with respect to p values, the numbers in the last column indicate the percentage 
of respondents who erroneously believed that p = .01 or p = .001 implies that the probability of a significant result in a replication study is .99 or 
.999, respectively. Haller and Krauss (2002) used the same question used by Oakes (1986; see the text). The problem posed by Badenes-Ribera 
et al. (2015, 2016) read: “Let’s suppose that a research article indicates a value of p = 0.001 in the results section (alpha = 0.05). Mark which of the 
following statements are true (T) or false (F)” (Badenes-Ribera et al., 2015, p. 291). The statement expressing the replication fallacy read: “A later 
replication would have a probability of 0.999 (1 – 0.001) of being significant” (p. 291). For the studies in which the replication delusion was tested 
with respect to confidence intervals (CIs), the numbers in the last column indicate the percentage of respondents who wrongly believed that a 
95% CI ranging from x to y would imply that if the experiment were repeated over and over, the true mean would fall between x and y 95% of 
the time.
aA subsample of 88 of these students were considered by the authors to have provided “informed responses” (p. 10). Of that subsample, 72% 
exhibited the replication delusion.
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in Spain and had a response rate of 10.3%; the study 
finding the lowest rate of the replication delusion, con-
ducted by Badenes-Ribera, Frias-Navarro, Iotti, Bonilla-
Campos, and Longobardi (2016), also had the lowest 
response rate, 7% (164 out of 2,321 academic psycholo-
gists in Italy and Chile); response rates for the other 
studies were not reported. Thus, the results may be sub-
ject to a selection bias: Assuming that individuals with 
better training in statistics were more likely to respond, 
the numbers in Table 1 are probably underestimates of 
the true frequency of the replication delusion.

A study with members of the Mathematical Psychol-
ogy Group and the American Psychological Association 
(not included in Table 1 because the survey asked dif-
ferent kinds of questions) also found that most of them 
trusted in small samples and had high expectations 
about the replicability of significant results (Tversky & 
Kahneman, 1971). A glance into textbooks and editori-
als reveals that the delusion was already promoted as 
early as the 1950s. For instance, in her textbook Dif-
ferential Psychology, Anastasi (1958) wrote: “The ques-
tion of statistical significance refers primarily to the 
extent to which similar results would be expected if an 
investigation were to be repeated” (p. 9). In his Intro-
duction to Statistics for Psychology and Education, 
Nunnally (1975) stated: “If the statistical significance is 
at the 0.05 level . . . the investigator can be confident 
with odds of 95 out of 100 that the observed difference 
will hold up in future investigations” (p. 195). Similarly, 
former editor of the Journal of Experimental Psychology 
A. W. Melton (1962) explained that he took the level of 
significance as a measure of the “confidence that the 
results of the experiment would be repeatable under 
the conditions described” (p. 553).

The illusion of certainty and Bayesian 
wishful thinking

As I have mentioned, a p value is a statement about the 
probability of a statistical summary of data, assuming 
that the null hypothesis is true. It delivers probability, 
not certainty. It does not tell us the probability that a 
hypothesis—whether the null or the alternative—is 
true; it is not a Bayesian posterior probability. I refer 
to the belief that statistical significance delivers cer-
tainty as the illusion of certainty and to the belief that 
p is the probability that the null hypothesis is true or 
that 1 – p is the probability that the alternative hypoth-
esis is true as Bayesian wishful thinking (also known 
as inverse probability error). After a few hours of sta-
tistical training at a major university, any person of 
average intelligence should understand that these 
beliefs are incorrect. By contrast, if the statistical-ritual 
hypothesis is true, researchers’ thinking should be 

partly blocked and they should endorse these beliefs 
about the importance of significant results.

Table 2 reviews the relevant studies that have been 
conducted. In the British study mentioned earlier, 
Oakes (1986, p. 80) asked academic psychologists what 
a significant result (p = .01) means:

Suppose you have a treatment that you suspect 
may alter performance on a certain task. You 
compare the means of your control and 
experimental groups (say, 20 subjects in each 
sample). Furthermore, suppose you use a simple 
independent means t-test and your result is 
significant (t = 2.7, df = 18, p = .01). Please mark 
each of the statements below as “true” or “false.” 
“False” means that the statement does not follow 
logically from the above premises. Also note that 
several or none of the statements may be correct.

(1)  You have absolutely disproved the null 
hypothesis (i.e., there is no difference 
between the population means).

(2)  You have found the probability of the null 
hypothesis being true.

(3)  You have absolutely proved your experi-
mental hypothesis (that there is a difference 
between the population means).

(4)  You can deduce the probability of the 
experimental hypothesis being true.

(5)  You know, if you decide to reject the null 
hypothesis, the probability that you are 
making the wrong decision.

(6)  You have a reliable experimental finding in 
the sense that if, hypothetically, the experi-
ment were repeated a great number of 
times, you would obtain a significant result 
on 99% of occasions.

Each of the six beliefs is false, a possibility explicitly 
stated in the instruction. Beliefs 1 and 3 are illusions 
of certainty: significance tests provide probabilities, not 
certainties. Beliefs 2, 4, and 5 are versions of Bayesian 
wishful thinking. Belief 2 is incorrect because a p value 
is not the probability that the null hypothesis is true 
but rather the probability of the given data (or more 
extreme data), assuming the truth of the null hypothesis. 
For the same reason, one cannot deduce the probability 
that the experimental (alternative) hypothesis is true, 
as stated in Belief 4. Belief 5 makes essentially the same 
claim as Belief 2 because a wrong decision to reject the 
null hypothesis amounts to the null hypothesis actually 
being true, and again, the p value does not specify the 
probability that the null is true. Belief 6 has been dealt 
with in the previous section. Note that all six delusions 
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err in the same direction of wishful thinking: They 
overestimate what can be concluded from a p value.

What is most important for the topic of replication 
is that each of these beliefs makes replication appear 
to be superfluous. Consider the illusion of certainty 
(Beliefs 1 and 3): If one concludes that the experimental 
hypothesis has been absolutely proven to be true or 
that the null hypothesis has been absolutely disproven, 
then replicating the study appears to be a waste of time. 
Similarly, if one incorrectly believes that the p value 
specifies the probability that the null hypothesis is true 
(Beliefs 2 and 5) or that the alternative hypothesis is 
true (Belief 4), then one presumably already knows the 
Bayesian posterior probability. For instance, if p = .01, 
then someone with these beliefs would misperceive the 
probability of the alternative hypothesis being true as 
99%, which would make further replication attempts 
appear to be unnecessary. All six delusions lead to a 
vast overestimation of the probability of successful 
replications.

Do trained academic psychologists believe in the 
illusion of certainty and engage in Bayesian wishful 
thinking? The studies indicate that they do, to varying 
extents:

•• Belief 1. The null hypothesis has been shown 
to be false: Table 2 shows that in every study 
and subgroup, some professionals held this ele-
mentary illusion of certainty. The highest percent-
ages were obtained among Spanish academic 
psychologists (55%–66%), and the lowest percent-
age was found among British academic psycholo-
gists (1%). Even among professionals teaching 
statistics or methodology, 10% of German, 28% 
of Italian and Chilean, and 36% of Spanish experts 
shared this illusion of certainty.

•• Belief 2. The probability of the null hypothesis 
being true is known: Among psychologists who 
taught methods or statistics, 17% to 58% believed 
that this conclusion was correct. Among the other 
professionals, the range was slightly higher, from 
a minimum of 23% to a maximum of 68%.

•• Belief 3. The alternative hypothesis has been 
shown to be true: This second illusion of cer-
tainty was included in only a few studies. In all 
of these cases, it was endorsed by a small per-
centage of psychologists, including 10% of those 
who taught statistics.

•• Belief 4. The probability of the alternative 
hypothesis being true is known: In every 
study, some academic psychologists shared this 
delusion. The percentage who endorsed this 
belief ranged from 6% to 33% among those who 

taught methodology and from 12% to 66% among 
those who did not.

•• Belief 5. The probability of incorrectly reject-
ing the null hypothesis is known: Presented 
in only a few studies, this statement received the 
highest percentage of endorsements when it was 
included. The percentage of respondents who 
agreed with this statement ranged from 67% to 
86%, and even a majority (73%) of statistics teach-
ers endorsed it.

Belief 6 (the replication delusion; see Table 1) is 
included in Table 2 to provide a summary of the results 
for all six delusions. The last row of the table shows 
the percentage of respondents who were in the grip of 
at least one of the delusions: 97% of the British aca-
demic psychologists, 80% of the German statistics 
teachers, 90% of the German psychology professors and 
lecturers who did not teach statistics, and 100% of the 
German students who had successfully passed two sta-
tistics courses (Table 2, last row). The students appear 
to have inherited the delusions from their teachers. 
Among the Spanish academic psychologists, 94% 
endorsed at least one of the delusions, whereas 56% 
and 74%, respectively, of the methodology instructors 
and other academic researchers in Italy and Chile did 
the same. For the German study, Haller and Krauss 
(2002) also reported the average number of delusions 
in each group: 1.9 among statistics teachers, 2.0 among 
other academic psychologists, and 2.5 among psychol-
ogy students.

Hoekstra, Morey, Rouder, and Wagenmakers (2014) 
adapted Oakes’s (1986) six-item questionnaire to exam-
ine delusions regarding confidence intervals. They 
reported that the majority of 118 researchers, 34 mas-
ter’s students, and 442 first-year students in psychology 
relied on similar wishful thinking about confidence 
intervals; in all three groups, the median of number of 
delusions endorsed was 3 to 4. Only 3% of the research-
ers were able to identify all the statements as 
delusions.

Similarly, Falk and Greenbaum (1995) reported that 
87% of 53 Israeli psychology students believed in at 
least one of the first four delusions listed in Table 2, 
even though the correct alternative (“None of the 
answers 1–4 is correct”) was added to the response 
options.

In a study in France, Lecoutre, Poitevineau, and 
Lecoutre (2003) presented participants with a vignette 
about a drug that had a significant effect of a small size 
and found that psychological researchers were more 
impressed about the efficacy of the drug than were 
statisticians from pharmaceutical companies. Thus, the 



Statistical Rituals 209

psychological researchers confused statistical signifi-
cance with substantial significance.

Delusions about significance among 
medical doctors and researchers

One could argue that delusions about statistical infer-
ences and replicability are embarrassing but largely 
inconsequential in many areas of psychology: These 
delusions do not harm the general public’s health or 
wealth. The situation is different in medicine, where 
manipulating statistics and lack of understanding can 
lead to death, morbidity, and waste of resources (Welch, 
2011). Medical professionals are expected to read medi-
cal journals and understand the statistics in order to 
provide the best treatments to patients.

Do medical doctors and researchers exhibit the same 
misconceptions, despite these possible adverse conse-
quences? A literature search revealed very few studies 
on the topic of physicians’ understanding of statistical 
significance. I begin with the one that is closest to those 
listed in Table 2.

At three major academic U.S. hospitals—the Barnes 
Jewish Hospital, Brigham & Women’s Hospital, and 
Massachusetts General Hospital—a total of 246 physi-
cians were given the following problem (Westover, 
Westover, & Bianchi, 2011, p. 1):

Consider a typical medical research study, for 
example designed to test the efficacy of a drug, 
in which a null hypothesis H0 (‘no effect’) is tested 
against an alternative hypothesis H1 (‘some 
effect’). Suppose that the study results pass a test 
of statistical significance (that is P-value <0.05) in 
favor of H1. What has been shown?

1. H0 is false.
2. H0 is probably false.
3. H1 is true.
4. H1 is probably true.
5. Both (1) and (3)
6. Both (2) and (4)
7. None of the above.

Note that the first four statements correspond to the 
first four beliefs in Table 2, though the wording differs 
and no precise probability is attached to the null or 
alternative hypothesis; in addition, a correct answer (7) 
is offered. Nevertheless, only 6% of the physicians rec-
ognized the correct answer, and the remaining 94% 
believed that a p value less than .05 meant that the null 
hypothesis was false or probably false, or that the alter-
native hypothesis was true or probably true. Specifi-
cally, 4% endorsed the first response option, 31% 

endorsed the second, none endorsed the third, 20% 
endorsed the fourth, 3% endorsed the fifth, and 36% 
endorsed the sixth.

B. L. Anderson, Williams, and Schulkin (2013) tested 
U.S. obstetrics-gynecology residents (i.e., beginning 
doctors) participating in the Council for Resident Edu-
cation in Obstetrics and Gynecology In-Training Exami-
nation. Obstetrics-gynecology is a prestigious specialty 
that attracts students with very good grades in medical 
school. The response rate to the survey was 95% (4,713 
out of 4,961 residents). The delusion question Anderson 
et al. presented to the residents was similar to Belief 2 
in Table 2: “True or False: The P value is the probability 
that the null hypothesis is correct” (p. 273). Forty-two 
percent of the respondents correctly answered “false,” 
12% did not answer, and 46% incorrectly said “true.” 
Nevertheless, 63% of the respondents rated their statisti-
cal literacy as adequate, 8% rated it as excellent, and 
only 22% rated it as inadequate (7% did not respond).

Wulff, Andersen, Brandenhoff, and Guttler (1987) 
tested 148 Danish doctors (randomly sampled) and 97 
participants in a postgraduate course in research meth-
ods, mainly junior hospital doctors. When asked what 
it means if a controlled trial shows that a new treatment 
is significantly better than placebo (p < .05), 20% of the 
doctors in the random sample and 6% of the partici-
pants in the postgraduate course) said that “it has been 
proved that the treatment is better than placebo”; 51% 
and 54%, respectively, believed that the probability of 
the null hypothesis being true is less than .05 (Bayesian 
wishful thinking); and 18% and 2%, respectively, said 
that they did not know what p values mean. Only 13% 
of the doctors in the random sample and 39% of the 
participants in the course could identify the correct 
answer (“If the treatment is not effective, there is less 
than a 5 per cent chance of obtaining such results,”  
p. 5).

These few available studies suggest that in medicine, 
where decisions are consequential, the same delusions 
regarding the null ritual appear to persist. This inter-
pretation is supported by other tests of physicians’ sta-
tistical literacy (Gigerenzer, Gaissmaier, Kurz-Milcke, 
Schwartz, & Woloshin, 2007; Wegwarth, Schwartz, 
Woloshin, Gaissmaier, & Gigerenzer, 2012). The sys-
tematic errors “have been encouraged if not licensed 
by unjustified, lax, or erroneous traditions and training 
in the field at large” (Greenland, 2011, p. 228).

Discussion

Taken together, the studies indicate that a substantial 
proportion of academic researchers wrongly believe 
that the p value obtained in a study implies that the 
probability of finding another significant effect in a 
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replication is 1 – p. In the view of researchers who 
share the other delusions I have been discussing, rep-
lication studies are superfluous because the p value 
already provides certainty or at least high probability 
of a successful replication. Thus, for these researchers, 
a failed replication may come as a total surprise.

If a problem of incentives only were at the heart of 
the replication crisis, these delusions would not likely 
exist. Conversely, the thesis that many researchers have 
internalized a statistical ritual implies the existence of 
delusions that maintain the ritual.

The results in Tables 1 and 2 are supported by stud-
ies of how significant results are interpreted in pub-
lished articles. Finch, Cumming, and Thomason (2001) 
reviewed the articles published in the Journal of 
Applied Psychology over 60 years and concluded that 
in 38% of these articles, nonsignificance was inter-
preted as demonstrating that the null hypothesis was 
true (illusion of certainty). Similarly, an analysis of 259 
articles in the Psychonomic Bulletin & Review revealed 
that in 19% of the articles, the authors presented sta-
tistical significance as certainty (Hoekstra et al., 2006). 
These values are consistent with those in Table 2.

Statistical power and replication

In order to investigate whether an effect exists, one 
should design an experiment that has a reasonable 
chance of detecting it. I take this insight as common 
sense. In statistical language, an experiment should 
have sufficient statistical power.

Yet the null ritual knows no statistical power. Early 
textbook writers such as Guilford declared that the 
concept of power was “too difficult to discuss” (1956, 
p. 217). The fourth edition of the Publication Manual 
of the American Psychological Association was the first 
to mention that power should be taken seriously (Amer-
ican Psychological Association, 1994), but no practical 
guidelines were given. Nor did the subsequent fifth and 
sixth editions provide guidelines (American Psychologi-
cal Association, 2001, 2010), which is odd in a manual 
that instructs authors on minute details such as how to 
format variables and when to use a semicolon.

Statistical power is a concept from Neyman-Pearson 
theory: Power is the probability of accepting the alter-
native hypothesis if it is true. For instance, if the alter-
native hypothesis is true and the power is 90%, and if 
the experiment is repeated many times, one will cor-
rectly conclude in 90% of the cases that this hypothesis 
is true. Power is directly relevant for the probability of 
a successful replication in two respects. First, if the 
alternative hypothesis is correct but the power is low, 
then the chances of replicating a significant finding are 
low. Second, if the power is low, then significant 

findings overestimate the size of the effect, which is 
one of the reasons why effects—even those that exist—
tend to “fade away” (Button et al., 2013).

Statistical power provides another test of whether 
the incentive structure of “publish or perish” is suffi-
cient to explain the replication crisis or whether a sub-
stantial part of this crisis is due to the null ritual and 
its associated delusions. Given the incentive structure 
for producing statistically significant results, it should 
be in the interest of every researcher to design experi-
ments that have a reasonable chance of detecting an 
effect. Thus, according to the strategic-game hypothe-
sis, we would expect researchers to strategically design 
experiments with high or at least reasonable power 
(with the exception of experiments for which the effect 
size is expected to be small; see the Discussion sec-
tion). A minimal criterion for “reasonable” would be 
“substantially better than a coin toss.” That is, if one 
performs a chance experiment by tossing a coin and 
accepts the alternative hypothesis if “heads” comes up, 
this “experiment” has power of 50% to correctly “detect” 
an effect if there is one. Any psychological experiment 
should be designed to have a better power. However, 
to the degree that researchers have internalized the null 
ritual, which does not know power, we would expect 
both inattention to power, which results in small power, 
and unawareness of this problem. Thus, the statistical-
ritual hypothesis predicts that researchers act against 
their own best interest.

Better than a coin flip?. Cohen (1962) estimated the 
power of studies published in the Journal of Abnormal 
and Social Psychology for detecting what he called small, 
medium, and large effect sizes (corresponding to Pearson 
correlations of .2, .4, and .6, respectively). He reported 
that the median power to detect a medium-sized effect 
was only 46%. A quarter of a century later, Sedlmeier and 
I checked whether Cohen’s study on power had had an 
effect on the power of studies in the Journal of Abnormal 
Psychology (Sedlmeier & Gigerenzer, 1989). It had not; 
the median power to detect a medium-sized effect had 
decreased to 37%.3 The decline was a result of the intro-
duction of alpha-adjustment procedures, reflecting the 
focus of the null ritual on the p value. Low power 
appeared to go unnoticed: Only 2 of 64 reports men-
tioned power at all. Subsequently, we checked the years 
2000 through 2002 of the same journal and found that 
just 9 out of 220 empirical articles included statements 
about how the researchers determined the power of 
their tests (Gigerenzer, Krauss, & Vitouch, 2004). Bakker, 
Hartgerink, Wicherts, and van der Maas (2016) reported 
that 89% of 214 authors overestimated the power of 
research designs. Other analyses showed that only 3% of 
271 psychological articles reporting significance tests 
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explicitly discussed power as a consideration for design-
ing an experiment (Bakker & Wicherts, 2011), and only 
2% of 436 articles in the Journal of Speech, Language, 
and Hearing Research in 2009 through 2012 reported sta-
tistical power (Rami, 2014). A meta-analysis of 44 reviews 
published in the social and behavioral sciences, begin-
ning with Cohen’s 1962 study, found that power had not 
increased over half a century (Smaldino & McElreath, 
2016). Instead, the average power had remained consis-
tently low, and the mean power for detecting a small-
sized effect (Cohen’s d = 0.2) was 24%, assuming α = .05. 
An analysis of 3,801 cognitive neuroscience and psychol-
ogy articles published between 2011 and 2014 found that 
the median power to detect small, medium, and large 
effects was 12%, 44%, and 73%, respectively; in other 
words, there had been no improvement since the first 
power studies were conducted (Szucs & Ioannidis, 2017).

To estimate the power of experiments, an alternative 
route is to estimate the main factors that affect power: 
sample size and effect size. Given the median total 
sample size of 40 in four representative journals (Jour-
nal of Abnormal Psychology, Journal of Applied Psychol-
ogy, Journal of Experimental Psychology: Human 
Perception and Performance, and Developmental Psy-
chology; Marszalek, Barber, Kohlhart, & Holmes, 2011) 
and the average meta-analytic effect size (d) of 0.50, 
Bakker et al. (2012) estimated that the typical power of 
psychology studies is around 35%.

In the neurosciences, power appears to be excep-
tionally low. An analysis of meta-analyses that included 
730 individual neuroscience studies—on the genetics 
of Alzheimer’s disease, brain-volume abnormalities, 
cancer biomarkers, and other topics—revealed that the 
median statistical power of the individual studies to be 
able to detect an effect of the summary effect size 
reported in their corresponding meta-analyses was 21% 
(Button et  al., 2013). The distribution of power was 
bimodal. A few, mostly with a neurological focus, had 
a power greater than 90%, whereas the power of the 
461 structural and volumetric MRI studies was strikingly 
low, 8%. Among the animal-model studies included in 
this analysis, the average power was 20% to 30%. This 
suggests the possibility that animals’ lives are typically 
sacrificed in poorly designed experiments that have low 
chances of finding an effect. Simply flipping a coin 
would be a better strategy, sparing both the animals 
and the resources involved.

Discussion. If statistical significance is so devoutly 
desired by behavioral scientists, why do they design 
experiments that typically have such low chances of find-
ing a significant result? Consistently low power over some 
50 years is not expected under the hypothesis that 
researchers strategically aim at achieving statistically sig-
nificant results. But it is consistent with the hypothesis 

that they are following the null ritual, which knows no 
power.

However, there may be a strategic element in design-
ing low-power studies if the expected effect size is 
small and one runs multiple studies. In this situation, 
the chance of at least one significant result in N low-
powered studies with sample size n/N can be higher 
than the chance of a significant result in one high-
powered study with sample size n (Bakker et al., 2012). 
Although it is unlikely that most researchers strategi-
cally reason this way, given the general lack of thinking 
about power, positive experience could well reinforce 
such behavior. There is also the possibility that research-
ers sometimes design a single low-powered study so 
as to engineer nonsignificance, such as when they want 
to “demonstrate” the absence of adverse side effects of 
drugs (Greenland, 2012). Thus, the typical lack of sta-
tistical power is implied by the statistical-ritual hypoth-
esis, but it may also have a strategic element.

At the same time, analyses showing that studies are 
frequently low powered raise a new question. Why do 
more than 90% of published articles in major psycho-
logical journals report significant results, despite noto-
riously low power (Sterling, Rosenbaum, & Weinkam, 
1995)? The answer appears to be that many researchers 
compensate for their blind spot regarding power by 
violating good scientific practice in order to neverthe-
less produce significant results. In one study, 2,155 
academic psychologists at major U.S. universities 
agreed to report anonymously whether they had per-
sonally engaged in questionable research practices; 
half of the psychologists received incentives to answer 
honestly ( John, Loewenstein, & Prelec, 2012). To con-
trol for reporting bias and estimate the true prevalence, 
the researchers also asked all the psychologists to esti-
mate the percentage of other psychologists who had 
engaged in the same questionable behaviors and, 
among those who had, the percentage who would 
actually admit to having done so. For the group with 
incentives to report honestly, the seven most frequent 
questionable practices were as follows (each practice 
is followed by the percentage of the group who admit-
ted to engaging in it and, in parentheses, the estimated 
true prevalence):

1. Failing to report all dependent measures: 67% 
(78%)

2. Collecting more data after seeing whether results 
were significant: 58% (72%)

3. Selectively reporting studies that “worked”: 50% 
(67%)

4. Excluding data after looking at the impact of 
doing so on the results: 43% (62%)

5. Reporting an unexpected finding as having been 
predicted from the start: 35% (54%)
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6. Failing to report all of a study’s conditions: 27% 
(42%)

7. Rounding down a p value (e.g., reporting .054 
as less than .05): 23% (39%)

By violating the statistical model on which the p value 
depends, each of these practices makes a significant 
result noninterpretable. The first practice increases the 
chance of a significant result from the nominal 5% if 
the null hypothesis is correct to a larger value, depend-
ing on the number of dependent variables (Simmons, 
Nelson, & Simonsohn, 2011). Among the 2,155 psy-
chologists, 67% admitted that they had not reported all 
the measures they had used, and the estimated true 
value was higher. The other practices serve the same 
goal: to inflate the production of significant results. The 
last practice, rounding down p values to make them 
appear significant, is clearly cheating. It can be inde-
pendently uncovered because it produces a systematic 
gap in the distribution of p values: too few just above 
.05 and too many just under .05. This pattern was 
found, for instance, in reports concluding that food 
ingredients cause cancer (Schoenfeld & Ioannidis, 
2013). The practice of rounding down p values can also 
be detected from inconsistencies between reported  
p values and reported test statistics. Among articles 
published in 2001 in the British Medical Journal and in 
Nature, 25% and 38%, respectively, reported that results 
were statistically significant even though the test statis-
tics revealed that they were not (García-Berthou & 
Alcaraz, 2004). Among the psychologists in the study 
by John et al. (2012), a similar percentage admitted to 
rounding down p values. The R package statcheck can 
help detect inconsistent p values (Nuijten, Hartgerink, 
van Assen, Epskamp, & Wicherts, 2016).

The percentages reported by John et al. (2012) are 
likely conservative, given that out of some 6,000 psy-
chologists originally contacted by the authors, only 36% 
responded. The low response rate could reflect a self-
selection bias that resulted in more honest researchers 
being more likely to participate in the survey. Despite 
this possibility, a total of 94% of the researchers admit-
ted that they had engaged in at least one questionable 
research practice.

General Discussion

The argument

I have argued that the replication crisis in psychology 
and the biomedical sciences is not only a matter of 
wrong incentives that are gamed by researchers (the 
strategic-game hypothesis) but also a consequence of 
researchers’ belief in the null ritual and its associated 
delusions (the statistical-ritual hypothesis). In the first 

section of this article, I reconstructed the creation of 
the “null ritual” by textbook writers who merged two 
competing statistical theories into one hybrid theory, 
whose core is the null ritual and whose desired product 
is statistical significance. This ritual eventually replaced 
good standards of scientific practice with a single con-
venient surrogate: the p value.

In the second section, I tested four predictions of 
the statistical-ritual hypothesis. The first of these is that 
a substantial proportion of academic researchers should 
share the replication delusion. A review of the available 
studies with 839 academic psychologists and 991 psy-
chology students showed that 20% of the faculty teach-
ing statistics in psychology, 39% of the professors and 
lecturers, and 66% of the students did so.

The second and third predictions are that a substan-
tial proportion of researchers should share the illusion 
of certainty and Bayesian wishful thinking, respectively. 
In the studies I reviewed, between 56% and 80% of 
statistics and methodology instructors in psychology 
departments believed in one or more of these three 
delusions; this range increased to 74% to 97% for pro-
fessors and lecturers who were not methodology spe-
cialists. To see through these delusions does not require 
understanding of high-level statistics; in other contexts, 
researchers themselves study whether their participants 
are subject to the illusion of certainty or the inverse 
probability error (e.g., Hafenbrädl & Hoffrage, 2015).

The fourth prediction of the statistical-ritual hypoth-
esis is that researchers should be largely blind to sta-
tistical power because it is not part of the ritual. The 
available meta-analyses in psychology show that the 
median power to detect a medium-sized effect is around 
50% or below, which amounts to the power of tossing 
a coin. There has been no noticeable improvement 
since the first power analysis in the 1960s.

The statistical-ritual hypothesis also explains why an 
estimated 94% of academic psychologists engage in 
questionable research practices to obtain significant 
results ( John et al., 2012). Significance, that is, rejection 
of the null hypothesis, is the primary goal of the null 
ritual, relegating good scientific practice to a secondary 
role. Researchers do not engage in questionable prac-
tices to minimize measurement error or to derive pre-
cise predictions from competitive theories; they engage 
in these practices solely in order to achieve statistical 
significance.

What to do

Various proposals have been made to prevent question-
able practices by changing the incentive structure and 
introducing measures such as preregistration of studies 
(e.g., Gigerenzer & Muir Gray, 2011; Ioannidis, 2014). 
Trust in science could be improved by preregistration, 
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but given the fixation on significance, this important 
measure has been already gamed: In medicine, system-
atic discrepancies between registered and published 
experiments are common, registration often occurs after 
the data have been obtained, reviewers do not take the 
time to compare the registered protocol with the submit-
ted article, and, despite preregistration, selective report-
ing of outcomes to achieve significance is frequent  
(C. W. Jones, Keil, Holland, Caughey, & Platts-Mills, 
2015; Walker, Stevenson, & Thornton, 2014). As an alter-
native measure, a group of 72 researchers proposed 
redefining the criterion for statistical significance as  
p < .005 rather than p < .05 (Benjamin et al., 2017). The 
authors concluded: “The new significance threshold 
will help researchers and readers to understand and 
communicate evidence more accurately” (p. 11). 
Although this measure would be useful for reducing 
false positives, I do not see how it would improve 
understanding and eradicate the delusions documented 
in Tables 1 and 2. For researchers who believe in the 
replication fallacy, a p value less than .005 means that 
the results can be replicated with a probability of 99.5%.

I now provide a complementary proposal that fol-
lows from the present analysis. This proposal consists 
of four steps, the first of which would serve as a mini-
mal solution by eliminating the surrogate goal. The 
second through fourth steps would extend this solution 
by refocusing research on good scientific method. The 
ultimate goal of this proposal is to support statistical 
thinking instead of statistical rituals.

Step 1: editors should no longer accept manuscripts 
that report results as “significant” or “not signifi-
cant.” If p values are reported, they should be reported 
as exact p values—for example, p = .04 or .06—as are 
other continuous measures, such as effect sizes. Deci-
sions about accepting or rejecting an article should be 
based solely on its theoretical and methodological quali-
ties, regardless of the p values.

This measure would eliminate the surrogate goal of 
reaching “significance” and the associated pressure to 
sacrifice proper scientific method in order to get a sig-
nificant result. Science is a cumulative endeavor, not a 
yes/no decision based on a single empirical study. This 
step is a minimal proposal because it is easy to imple-
ment, but more radical than the alternative proposal to 
lower the level of significance (Benjamin et al., 2017). 
Lowering p values does not eliminate the surrogate goal 
but only makes it more difficult to attain. Although this 
increased difficulty might make some forms of p-hacking 
less effective, it may encourage even more concentra-
tion on the p value and increase questionable research 
practices used to attain significant results, thereby 
diverting attention from good scientific practice.

Step 2: editors should make a distinction between 
research aimed at developing hypotheses and re - 
search aimed at testing hypotheses. Editors should 
require that researchers clearly distinguish between 
developing hypotheses (e.g., looking through a correla-
tion matrix to find large correlations) and testing hypoth-
eses (e.g., running a second experiment in which this 
large correlation is stated as a hypothesis and subse-
quently tested). This distinction is also known as the dis-
tinction between exploratory and confirmatory research 
(Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 
2012). In order to make the distinction transparent, authors 
should not report any p values or similar inferential statis-
tics when they report research aimed at developing hypoth-
eses. Editors should encourage researchers to report on 
both hypothesis development and hypothesis testing.

A clear distinction between these two types of 
research would encourage direct replication attempts 
(i.e., independent tests of interesting observations made 
in prior experiments). It would also relieve researchers 
from the pressure to present unexpected findings as 
having been predicted from the start (see John et al., 
2012).

Step 3: editors should require competitive-hypothe-
sis testing, not null-hypothesis testing. Editors 
should require that a new research hypothesis is tested 
against the best competitors available. Null-hypothesis 
testing, in contrast, is noncompetitive: Typically, the pre-
diction of the research hypothesis remains unspecified 
and is tested against a null effect only.

Competitive testing requires precise research hypoth-
eses and thus encourages building mathematical mod-
els of psychological processes. Competition would 
make null-hypothesis testing obsolete. It could also 
improve the impoverished approach to theory in psy-
chology, which is partly due to the focus on null-
hypothesis testing (Gigerenzer, 1998). If the competing 
models use free parameters, these need to be tested in 
prediction (e.g., out-of-sample prediction, such as 
cross-validation), never by data fitting alone (e.g., 
Brandstätter, Gigerenzer, & Hertwig, 2008).

Step 4: psychology departments should teach the 
statistical toolbox, not a statistical ritual. Psychol-
ogy departments need to begin teaching the statistical 
toolbox. This toolbox includes techniques to visualize 
the descriptive statistics of the sample, Tukey’s explor-
atory data analysis, meta-analysis, estimation, Fisher’s 
null-hypothesis testing (which is not the same as the null 
ritual), Neyman-Pearson decision theory, and Bayesian 
inference. Most important, the toolbox approach requires 
using informed judgment to select the appropriate tool 
for a given problem.
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The emphasis on judgment would mean taking the 
assumptions of statistical models seriously. Editors 
should not require routine statistical inference in situ-
ations in which it is unclear whether the assumptions 
of a statistical model actually hold but rather should 
encourage proper use of descriptive statistics or explor-
atory data analysis. The toolbox approach replaces sta-
tistical rituals with statistical thinking and includes 
principles of good scientific method, such as minimiz-
ing measurement error and conducting double-blind 
studies.

The key challenge in the toolbox approach is to 
develop informed judgment about the kind of problems 
that each tool can handle best—a process similar to 
learning that hammers are for nails and screwdrivers 
are for screws. Fisher’s null-hypothesis testing is useful 
(if at all) solely for new problems for which little infor-
mation is available and one does not even have a pre-
cise alternative hypothesis. If two competing hypotheses 
are known, Neyman-Pearson theory is the better choice. 
If, in addition, priors are known, as in cancer screening, 
Bayes rule is likely the preferred method; of the three 
tools, it is also the only one designed to estimate prob-
abilities that hypotheses are true. Most important, how-
ever, high-quality descriptive statistics and exploratory 
data analysis (Breiman, 2001; L. V. Jones & Tukey, 2000) 
are good candidates for the scores of situations in 
which no random samples have been drawn from 
defined populations and the assumptions of the statisti-
cal models are not in place (Greenland, 1990). Such a 
toolbox approach is the opposite of an automatic infer-
ence procedure. It requires good judgment about when 
to use each tool, which is exactly what Fisher, Neyman 
and Pearson, and Jones and Tukey emphasized.

The toolbox approach can correct the historical error 
of considering statistical inference from sample to pop-
ulation as the sine qua non of good scientific practice. 
This has been an extraordinary blunder, and for two 
reasons. First, as mentioned before, the assumptions 
underlying the model of statistical inference are typi-
cally not met. For instance, typically no population has 
been defined, and no random samples have been 
drawn. Thus, unlike in quality control or polling, 
nobody knows the population to which a significant 
result actually refers, which makes the entire p-value 
procedure a nebulous exercise. Second, and most 
important, obtaining statistical significance has become 
a surrogate for good scientific practice, pushing prin-
ciples such as formulating precise theories, conducting 
double-blind experiments, minimizing measurement 
error, and replicating findings into the sidelines. These 
principles have often not even been mentioned in 
reports on phenomena that later proved difficult to 
replicate, including reports on priming and too-much-
choice experiments. W. S. Gosset, who published an 

article on the t test in 1908, recognized this long ago 
with respect to measurement error: “Obviously the 
important thing . . . is to have a low real error, not to 
have a ‘significant’ result at a particular station [level]. 
The latter seems to me to be nearly valueless in itself ” 
(quoted in Pearson, 1939, p. 247).

Incentives

Finally, the established incentives themselves need 
explanation. Why do they arbitrarily focus on statistical 
significance, which by itself is one of the least impor-
tant signs of good scientific research? In theory, 
researchers could be rewarded for quite a number of 
practices, including demonstrating the stability of 
effects through replications and designing clever exper-
iments that discriminate between two or more compet-
ing hypotheses. For instance, physicists are rewarded 
for designing tools that minimize measurement error, 
and neoclassical economists are rewarded for develop-
ing mathematical models, theorems, and proofs. 
Whereas the strategic-game hypothesis takes the incen-
tives as given, the statistical-ritual hypothesis provides 
a deeper explanation of the roots of the replication 
crisis. Researchers are incentivized to aim for the prod-
uct of the null ritual, statistical significance, not for 
goals that are ignored by it, such as high power, repli-
cation, and precise competing theories and proofs. The 
statistical-ritual hypothesis provides the rationale for 
the very incentives chosen by editors, administrators, 
and committees. Obtaining significant results became 
the surrogate for good science.

Surrogate science: the elimination of 
scientific judgment

The null ritual can be seen as an instance of a broader 
movement toward replacing judgment about the quality 
of research with quantitative surrogates. Search com-
mittees increasingly tend to look at applicants’ h-indices, 
citation counts, and numbers of articles published as 
opposed to actually reading and judging the arguments 
and evidence provided in these articles. Assessment of 
research is also increasingly left to administrators who 
do not understand the content of the research, a prac-
tice encouraged by the rising commercialization of uni-
versities and of academic publishing.

One positive aspect of the replication crisis is that it 
has increased awareness that we need to take action 
and protect science from being transformed into a mass 
production of studies that pursue surrogate goals. What 
we need are not more but fewer and better publica-
tions. In order to ensure that future generations of 
scientists remain innovative risk takers, educators, jour-
nal editors, and researchers themselves need to revert 
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to the original goals of science. It is time to combat the 
present system of false incentives and eliminate the null 
ritual from scientific practice.
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Notes

1. Reporting replication results in yes/no terms can be just as 
problematic as reporting significance in yes/no terms. If an 
original conclusion that an effect exists was based on statisti-
cal significance alone and the replicability of the effect is again 
determined by significance, then the flaws of relying on p val-
ues alone carry over to the replication studies.
2. During his career, Fisher changed his ideas on this and other 
questions, in part motivated by his controversy with Neyman 
and Pearson. Earlier, he had proposed .05 as a convenient level 
of significance, but in the 1950s he rejected the routine use 
of such a constant level. Thus, Fisher himself may have con-
tributed to the confusion. Similarly, from reading his Design 
of Experiments (Fisher, 1935), one might gain the impression 
that null-hypothesis testing is fairly mechanical, but Fisher 
later made it quite clear that this was not his intention (see 
Gigerenzer et al., 1989, chap. 3).
3. In this replication study, we used Cohen’s original defini-
tion of a medium effect size to facilitate comparison with his 
original study, although Cohen (1969) later changed his defi-
nition of small, medium, and large effect sizes to correspond 
to Pearson correlations of .1, .3, and .5, respectively. This sys-
tematic lowering of the effect-size convention has the effect of 
slightly lowering the power, too. These assumed effect sizes 
may still be larger than those typical in some fields. In applied 
psychology, tertile effect sizes (calculated by dividing the distri-
bution of effect sizes into three equal parts) have been reported 
to be only half or a third as large as Cohen’s revised values 
(Bosco, Aguinis, Singh, Field, & Pierce, 2015). In what follows, 
I report power estimates as published without discussing the 
details, which would go beyond the focus of this article (for 

a discussion of counterintuitive issues involving power, see 
Greenland, 2012). But a word of caution is necessary. Not all 
estimated power values can be directly compared because they 
may be based on differing assumptions.
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