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We review empirical evidence from practice and general theoretical conditions, under which

simple rules of thumb can help to make operations flexible and robust. An operation is flexible

when it responds adaptively to adverse events such as natural disasters; an operation is robust when

it is less affected by adverse events in the first place. We illustrate the relationship between

flexibility and robustness in the context of supply chain risk. In addition to increasing flexibility

and robustness, simple rules simultaneously reduce the need for resources such as time, money,

information, and computation. We illustrate the simple-rules approach with an easy-to-use graphi-

cal aid for diagnosing and managing supply chain risk. More generally, we recommend a four-step

process for determining the amount of resources that decision makers should invest in so as to

increase flexibility and robustness. Published by AIP Publishing. https://doi.org/10.1063/1.5024259

In March 2011 a tsunami hit Japan. The production facil-

ity of Kureha, a company responsible for meeting

approximately 70% of the worldwide demand of a poly-

mer for manufacturing mobile-device batteries, was

badly affected and could not deliver. As a consequence,

Apple, Samsung, and others could not deliver either.

With the benefit of hindsight, Apple and other original

equipment manufacturers should have had more than

one source for the polymer. So, how many suppliers

should a manufacturer have? Two, three? The more the

better? And how should they be chosen? The traditional

approach to answering such questions is to set up and

solve analytical models (e.g., models of optimization

under constraints). But in global supply chains, the

resources necessary for solving such models—such as

adequate time and high-quality information—are often

unattainable. Is there an alternative to complex models?

The answer is yes. Simple rules of thumb can, under some

conditions, provide better solutions than complex models

to supply chain disruptions and a host of other challeng-

ing problems such as the allocation of wealth to financial

assets, the analysis of customer base in order to target

future advertising, or the prediction of bank failure, while

simultaneously reducing the need for resources such as

time, money, information, and computation. Simple rules

can make operations more flexible as well as more robust.
An operation is flexible when it responds adaptively to

adverse events such as the Japanese tsunami. An opera-

tion is robust when it is little affected by adverse events in

the first place. The concept of flexibility is known by man-

agers, whereas the concept of robustness less so, and the

two have not been related to each other. In sum, against

the recent trend of focusing on resource-intensive models,

the results presented herein suggest that there are good

reasons for considering simple rules of thumb.

I. INTRODUCTION

In March 2011 a tsunami hit Japan. The production facil-

ity of Kureha, a company responsible for meeting approxi-

mately 70% of the worldwide demand of a polymer for

manufacturing mobile-device batteries, was badly affected

and could not deliver. As a consequence, Apple, Samsung,

and others could not deliver either. With the benefit of hind-

sight, Apple and other original equipment manufacturers

should have had more than one source for the polymer. So,

how many suppliers should a manufacturer have? Two, three?

The more the better? And how should they be chosen?

The traditional approach to answering such questions is to

set up and solve analytical models (e.g., models of optimiza-

tion). But in the context of global, dynamic, and uncertain sup-

ply chains, the resources necessary for solving such models—

such as adequate time and high-quality information—may not

always be attainable. Is there an alternative to complex models?

The answer is yes. Simple rules of thumb can, under

some conditions, provide better solutions than complex mod-

els to supply chain disruptions and a host of other challenging

problems such as the allocation of wealth to financial assets,

the analysis of customer base in order to target future adver-

tising, or the prediction of bank failure, while simultaneously

reducing the need for resources such as time, money, informa-

tion, and computation. Simple rules, if used intelligently, can

help make operations, specifically supply chains, more flexi-
ble as well as more robust.
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In this paper, following a strategic decision making lens,

we use the following definitions for flexibility and robust-

ness. An operation is flexible when it responds adaptively to

adverse events such as the Japanese tsunami. An operation is

robust when it is little affected by adverse events in the first

place. Previous research in supply chain management has

widely studied the flexibility and robustness from different

angles in the context of supply chain risk. (For an integrated

review, see, for example, Haks€oz (2013) and references

therein). Inspired by the work of Rosenhead (2013), who

shows that the robustness of an initial decision is a measure

of flexibility maintained for future decision making, we illus-

trate that flexibility and robustness are related through the

use of simple rules of thumb. To our knowledge, this inti-

mate connection of flexibility and robustness of supply

chains considering simple rules has not been addressed.

In Sec. II, we explain how “less can be more” in opera-

tional decisions, focusing on supply chain risk management.

The results are summarized in an easy-to-use graphical aid

for diagnosing and managing supply chain risk. In Sec. III,

moving beyond the supply chain risk, we present empirical

evidence on the relative performance of simple rules of

thumb and more complex models on other decision prob-

lems, as well as general theoretical conditions under which

the one outperforms the other (Gigerenzer et al., 2011).

These results are summarized in a straightforward table. On

the basis of this work, we recommend a four-step process for

determining the amount of resources that decision makers

should invest in so that they can make operations more flexi-

ble and robust. In the concluding section, we also discuss

similar ideas on simple rules in other fields such as strategic

management and systems thinking.

II. LESS CAN BE MORE IN SUPPLY CHAIN RISK
MANAGEMENT

A. How to construct a portfolio of suppliers?

Dual sourcing in procurement is a widely accepted indus-

try practice in various industries and organizations. Global tele-

communications company Cisco uses dual sourcing. In the

automotive industry, Freescale Semiconductor’s Japan presi-

dent David Uze says that after the shutdown of Japanese car-

makers for months following the 2011 tsunami, “dual sourcing

is industry policy now” (Greimel, 2014). Turkish tire manufac-

turer Brisa (a joint venture of Bridgestone Corporation and

Sabancı Holding) uses a portfolio of two suppliers for critical

raw materials in its global supply chain, one located nearby, in

Europe or the Middle East, and another one far away, in the

Far East (see Haks€oz (2013) for details of this field study on

supply chains that thrive in fragile contexts). Brisa supply chain

director explains the operation of their dual sourcing rule:

“Our team examines each raw material and finds out

whether it is supplied by a single supplier. If it is, then

the next step is to see if it is a global or local supplier.

For global suppliers, we look for substitutes. If there is

an emergency, is it possible to use an unapproved

supplier or can we shorten the approval procedure or by-

pass a part of it? We examine whether we can shift this

material’s procurement from European suppliers to

other locations.”

According to Brisa’s supply chain director, dual sourc-

ing allowed the company to deal with the disruptive effects

of the Fukushima tsunami:

“I am glad to say that the impact was minimal. Surely

Japanese facilities were affected. There was one particular

material we were procuring from Japan. With the

coordination of Bridgestone, we switched to a US supplier.

We also did some production prescription changes and

used a substitute material with the same specs in our

production. In the end, since some of our raw materials

sourced in the Far East may have disruptions, we use a

dual sourcing strategy including a near source in addition

to a far-away source” (Haks€oz, 2013).

Location-based dual sourcing circumvents the common

dilemma of manufacturers of how to choose between an

onshore or near-shore and an offshore supplier. It may be the

way to go for a company that operates a global supply chain

with exposure to diverse risks spread across large geographic

areas. Companies having a stable onshore or near-shore sup-

plier, say in North America, Latin America, or Europe, can

add an offshore supplier, for instance, in China, Eastern

Europe, or the Middle East. In the words of the global head

of procurement of another Turkish manufacturing company,

Kordsa Global, which is a global market leader, producing

industrial fabrics and reinforcement materials in nine

countries:

“We prefer to have suppliers at different geographic

areas such as one in Europe and one in the US or Asia. There

are tax and customs benefits for such an arrangement, as

well as proximity considerations. We can mitigate natural

disaster risks better in such a portfolio, that is, when a hurri-

cane hits the US shores, Europe is safe; likewise, when the

Rhine River has water shortage issues in Europe, the

American supplier will stay unaffected.” (Haks€oz, 2013)

One may expect dual sourcing to be advantageous in

that the buyer avoids the cost and complexity of coordinating

with too many suppliers while obtaining most of the benefits

of multiple sourcing. This intuition has been corroborated by

theoretical research by Tang and Tomlin (2008) and Allon

and Van Mieghem (2010). Assuming that supplier costs can

be modeled by a probability distribution (Bernoulli, uniform,

or exponential), it has been shown analytically that the

expected unit cost of ordering from multiple suppliers

decreases with the number of suppliers and reaches an

asymptote for a small number of suppliers. On the other

hand, it is clear that coordination costs increase with the

number of suppliers. Thus, the sum of these types of costs

can be predicted to be minimum for a few, possibly approxi-

mately two, suppliers. In sum, a little flexibility in the num-

ber of suppliers may bring most of the value that can be

attained in the supply chain (Tang and Tomlin, 2008).

Supplier portfolios can also be constructed in more

sophisticated ways than by considering just one attribute

such as supplier location in the previous examples. In dual
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sourcing, one supplier can be chosen for being able to pro-

vide at low cost and another one chosen for being able to

deliver at short notice. For instance, a $10 billion high-tech

U.S. manufacturer of wireless transmission components had

two assembly plants, one in China and another in Mexico

(Allon and Van Mieghem, 2010). The Chinese plant had

lower costs, but ocean transportation made its delivery times

five to ten times longer than those from Mexico. With highly

uncertain product demand—coefficients of variation of

monthly demand for some products reached 1.25—sole

sourcing was unattractive. Mexico was too expensive and

China too unresponsive. Inspired by such problems, a portfo-

lio has been proposed where the stable base demand—say,

three quarters of all demand—is handled by a low-cost/low-

speed supplier, and the remaining unexpected surge demand

is met by a high-cost/high-speed supplier. It has been shown

analytically that a low-cost/low-speed supplier together with

a high-cost/high-speed supplier generate almost all of the

theoretically expected value of a portfolio of all known sup-

pliers (Fu et al., 2010).

In sum, a simple approach is viable: Supplier portfolio

construction entails identifying only the one supplier with

the lowest cost and the one with the highest speed (which, in

many cases, would be a supplier which is located nearby).

That is, a more feasible and less resource-intensive task than

using an optimization model to identify suppliers in the con-

text of high uncertainty. In other words, a small amount of

flexibility in supplier portfolio can lead to a great deal of

robustness enhancing the value and reducing the impact of

disruption. This is related to Rosenhead’s (2013) point that

the robustness of an initial decision is an operational measure

of the flexibility maintained for future decision-making.

The point that a bit of flexibility can lead to a lot of

robustness is generally often true of complex adaptive sys-

tems when they are self-organized critical [see Bak et al.
(1988), Bak (1996), and Kauffman (1995) for the details on

self-organized criticality and its intimate connection with

complex behavior). It has been argued that a complex adap-

tive system can thrive and display emergent robustness at the

edge of chaos/order, just by employing a few good rules

which provide the right moderate amount of flexibility

(Kauffman, 1995). Too much flexibility based on a lot of rules

can lead to chaos and destruction via an unexpected and sud-

den breakdown, whereas no flexibility often leads to ossifica-

tion and rigidity. To the extent that a supply chain can be

envisaged as a complex adaptive system [Surana et al. (2005)

and Pathak et al. (2007)] it would be expected to achieve flex-

ibility and robustness via the use of a few simple yet inge-

nious rules. Haks€oz (2013) coins such supply chains as risk

intelligent. Simple rules invoked under right contexts increase

risk intelligence. Moreover, the value of these simple rules is

shown to increase as the context where a supply chain oper-

ates becomes more uncertain and dynamic.

B. How to allocate work within the supplier portfolio?

Let us say, that a manufacturer has indeed identified two

particular suppliers. Then, the question is what proportion of

work should be allocated to each one of them.

This problem can be modeled as one of optimization.

This approach was taken by Nobel laureate Harry Markowitz

for a similar problem, the allocation of wealth to assets in a

financial portfolio (Markowitz, 1952). For this problem, a

simpler alternative to optimization is the 1/N diversification

rule, which allocates an equal amount of wealth to each of N
assets (which have been fixed previously). The 1/N rule has a

long history. Rabbi Isaac bar Aha recommended it in the

Talmud in about the fourth century: “A man should always

place his money, a third into land, a third into merchandise,

and keep a third at hand” (Benartzi and Thaler, 2001).

The 1/N rule does not rely on any mathematical theory.

And it does not rely on any historical data about the previous

performance of assets. Possibly because of these features of

the 1/N rule, researchers often view it as na€ıve, or even con-

fused, and have, for example, concluded that “it does not

assure sensible or coherent decision making” (Benartzi and

Thaler, 2001).

Nevertheless, things look different when the perfor-

mance of Markowitz’s optimization model is compared

empirically with that of the na€ıve 1/N rule. It was recently

found in computer simulations using real financial data that

Markowitz’s model—and 12 of its sophisticated Bayesian

modifications—could not outperform the 1/N rule in terms of

standard measures such as return (measured by its certainty

equivalent) and Sharpe ratio (average return in excess over

the risk-free asset, divided by the standard deviation of the

return) (DeMiguel et al., 2009). More specifically, the 1/N
rule ranked first among all models in certainty equivalent

return and fifth in Sharpe ratio.

The main reason for this result is that the 1/N rule does

not require any data to run, whereas Markowitz’s model

requires ample high-quality data. It was estimated that

Markowitz’s model would need 250 years of historical data

to outperform the 1/N rule given a portfolio of 25 stocks for

sample-based mean-variance policy (DeMiguel et al., 2009,

p. 1941).

The 1/N rule can be easily adapted to supply chain risk

management: “Allocate work equally among suppliers.”

This rule has some clear advantages such as eliminating the

need for calculations while increasing the transparency and

trust in ongoing buyer–supplier relationships. Theoretical

research has also found quantitative benefits of the 1/N rule

in supply chain risk management.

In practice, simple rules that approximate the equity of

the 1/N rule are in use. For example, the manufacturing com-

pany Brisa uses two suppliers, which perform 60% and 40%

of the work, respectively. The supply chain director explains

their rationale as follows:

“We have long term relationships with raw material sup-

pliers. We do not purchase in the spot market. We need

approved suppliers to work with. Once we have a number of

suppliers, we use a dual sourcing strategy. That is, we pro-

cure 60% from supplier A and 40% from supplier B in order

to manage supplier related risks. Our main goal is to estab-

lish fruitful long term strategic alliances with suppliers, not

just procure for only a few years” (Haks€oz, 2013).

This concern with establishing relationships with suppli-

ers that can be sustained for a long time underlies another
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rule of thumb for allocating work within a supplier portfolio.

Before we state the rule, note first that the fact that a buyer

requests a supplier to meet, say, 50% of its demand does not

mean that the supplier can indeed meet this demand. Or per-

haps it can, but only barely or if other contracts are modified

or breached [Haks€oz and Seshadri (2007) and Haks€oz and

Kadam (2009)] all of which outcomes are not desirable for

any party. The supplier needs to get a big enough contract,

but not too big, so that s/he can have the possibility of taking

on other customers. Li and Fung, a global orchestrator of

supply chains for thousands of suppliers and customers

worldwide, use the following simple rule: “The work you

allocate to each one of your suppliers should be between

30% and 70% of their capacity” (Fung et al., 2008).

This simple rule of thumb increases the robustness of

Li and Fung and its suppliers. The upper bound of 70%

allows the suppliers to maintain relationships with other

buyers and reduces overly strong mutual dependency. The

lower bound of 30% sustains the investment of effort by

both parties. According to Li and Fung, these numerical

bounds are not computed by using methods of optimization

but are arrived at based on a process of intuition (Simon,

1990), which is formed by the experience and feedback Li

and Fung executives have accumulated during many years

of intimate work experience with thousands of diverse sup-

pliers. Surely, these upper and lower bounds will change

based on the type of supply chain and industry under focus.

We use these bounds (30%–70%) in this simple rule for

only illustrative purposes.

The three simple rules presented in this section—use
multiple or dual sourcing, allocate work equally among sup-
pliers, and reserve between 30% and 70% of each supplier’s
capacity—can be combined in a graphical aid for diagnosing

and managing supply chain risk, which is easy to understand

and use. The aid is shown in Fig. 1.

This aid has the form of a fast and frugal decision tree

(Martignon et al., 2008). In this article, decision trees are

tree-like graphical representations of processes for making

decisions. They have two kinds of nodes: input nodes in

which information about the problem at hand is asked and

output nodes in which, on the basis of the information pro-

vided previously, a decision or action is recommended. In

fast and frugal decision trees, there is always at least one out-

put node following each input node. This feature helps to

achieve speedy decision making based on a few pieces of

information, possibly even only one.

The tree in Fig. 1 queries managers on their use of the

three rules and recommends appropriate actions according to

their responses. If there is only a single supplier, this is

highly risky for the robustness of the supply chain, and the

manager is urged to identify additional suppliers. Note that

appropriately the recommendation box is colored red (dark

grey in print). If multiple or dual sourcing is used, the man-

ager is next queried on the other two rules, allocation of

work to suppliers and reservation of their capacity. If either

of these rules is violated, the corresponding recommendation

is made to the manager, albeit with less urgency and with

recommendation boxes accordingly colored towards yellow

FIG. 1. A fast and frugal decision tree for diagnosing and managing supply chain risk, using the three simple rules discussed in this section. The manager

should go through this aid repeatedly until ensuring that all three rules are in use. Note that the particular numbers in the (30%–70%) rule are presented only

for illustration. They will vary for every supply chain.
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(lighter grey in print). The manager should go through the

tree repeatedly until ensuring that all three rules are in use.

III. WHEN SHOULD DECISION MAKERS USE FEW
RESOURCES? EVIDENCE AND THEORY

A. Examples from practice

Considering only one, two, or a few attributes to make

an effective decision is not unique to supply chain risk man-

agement or the construction of financial portfolios. In this

section, we aim to review examples from practice in differ-

ent arenas of decision making.

In marketing, in order to decide whether to send adver-

tising materials to a past customer, the amount of time since

the customer’s most recent purchase can be taken into

account. In some industries, nine months without a purchase

are often considered sufficient for declaring a customer inac-

tive. It has been empirically found that this simple hiatus
rule makes more accurate predictions of future sales than

does a typical forecasting model, the Pareto/negative bino-

mial distribution model, namely, 77% vs. 74% in an airline,

and 83% vs. 75% in an apparel company, respectively

(Wuebben and von Wagenheim, 2008).

Second, economists at the Bank of England, in collabo-

ration with two of us, recently developed a fast and frugal

tree for allowing regulators to monitor whether a bank is at

high risk of bankruptcy or not (Aikman et al., 2014). Similar

to the tree in Fig. 1, this tree uses four attributes in a simple

sequential way (i.e., leverage ratio in the balance sheet,

market-based capital ratio, total amount of wholesale fund-

ing, and loan to deposit ratio). In the dataset of 116 banks,

which had more than 100 billion USD in assets at the end of

2006, the tree correctly identified 82% of the banks that sub-

sequently failed and 50% of the banks that did not fail. The

fast and frugal tree was not outperformed by any of 20 ver-

sions of the usual tool of financial economics, logistic regres-

sion—which used the same economic indicators as the

tree—while being much easier to understand and use.

As a final example, consider a key aspect of modern sta-

bility operations (e.g., in Afghanistan or Kosovo), the num-

ber of civilian casualties. Such operations aim at creating a

stable and secure environment that allows for the creation of

democratic institutions. Beyond being morally imperative,

the minimisation of civilian casualties is a central strategic

concern in stability operations. Any loss of life on the part of

the civilian population not only increases local resentment,

swelling the ranks of resistance forces, but is also a direct

failure to fulfil the political mandate of the operation.

Consequently, there has been increasing pressure to

minimise civilian casualties at NATO presences, such as

checkpoints (Petraeus, 2009). In some types of operations in

which the decision to use force has to be approved by higher

levels of command, as in close air support, the civilian death

toll has decreased. Yet, in situations in which individual sol-

diers have to, by themselves, assess potential threats and

judge how to react appropriately under time pressure, no

such reductions have been forthcoming. This is the case in a

NATO checkpoint where a vehicle is approaching and the

soldier staffing the checkpoint has to quickly decide if,

when, and how exactly to escalate force so that the vehicle

stops and collaborates in the inspection process.

It is not clear how to apply the usual analytical models

to this problem. The data required by standard decision trees

are not available. For example, in a dataset including 1060

incident reports of situations involving motor vehicles

approaching a NATO military presence between January

2004 and December 2009 in Afghanistan, there were only

seven suicide attacks recorded. These seven reports discuss

only the battle damage and provide little information which

could be used for predicting hostile incidents in the future

such as the characteristics of the hostile vehicle. Thus, it is

not clear how to solve this problem with standard methods of

optimization: The only decision tree that can be induced

from the dataset of 1053 nonhostile incidents is one that pre-

dicts that an approaching vehicle is never hostile and this

will obviously not do. The seven incidents in which suicide

attackers were missed may be added to the dataset but the

issue then is that only the attribute of the number of occu-

pants in the vehicle is available in these reports; then, the

induced decision tree would suggest that a vehicle is always

hostile when there is one occupant, which would result in

many false alarms and likely civilian casualties.

Alternatively, a fast and frugal decision tree can be con-

structed by using methods of cognitive field research such as

reviews of the academic and practitioner literature, observa-

tions of military training, and interviews with armed forces

instructors and other experienced personnel. This was done

in a project involving one of us and researchers and staff

from the German Armed Forces (Keller and Katsikopoulos,

2016). A fast and frugal decision tree was proposed for clas-

sifying a vehicle approaching a checkpoint as hostile or not.

The tree used only three attributes: the number of occupants

in the vehicle, whether the vehicle slows down or not while

approaching the checkpoint, and available intelligence infor-

mation. Had the tree been applied to NATO checkpoints in

Afghanistan between 2004 and 2009, the number of civilian

casualties would have been reduced from 204 to 78, while

terrorist attacks would be detected at least as often as when

soldiers decided without the help of the tree.

B. Review of the evidence

The few examples discussed above suggest that simple

rules—such as using only one attribute or all attributes but

without weighting them as in a 1/N rule—may be able to

compete with more complex models. But are these just iso-

lated incidents?

A fair amount of empirical evidence has accumulated on

the comparison between simple rules and more complex

models typically employed in operations research, statistics,

and computer science, such as regressions (i.e., linear, logis-

tic, and regularized), Bayesian networks (e.g., na€ıve Bayes),

neural networks, classification and regression trees, and sup-

port vector machines (Katsikopoulos, 2011). The problems

studied in this research include multi-attribute choice, classi-

fication, and forecasting and belong to domains as diverse as

economics, transportation, and healthcare. Below, we review
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studies that used multiple real world datasets to compare the

performance of simple rules and more complex models.

The first such study was performed in 1999 and mea-

sured the performance of linear regression, a one-attribute

rule, and a 1/N rule on 20 datasets from the domains of biol-

ogy, environmental science, demography, health, psychol-

ogy, and transportation (Czerlinski et al., 1999). The average

number of alternative options in a dataset was 67. In each

dataset, all multi-attribute choices involving two out of a

fixed half of the alternatives in the dataset were constructed

and used as the set on which the models were trained. The

performance of the models, with their parameters fixed at

the values estimated from the training set, was measured on

the other half of the dataset, which is called the test set. An

example of model parameters is the weights of the attributes

used in a linear regression. Predictive performance was mea-

sured as the percentage of agreement between model predic-

tions and ground truth in the test set. Say that a choice is to

pick one out of two American high schools with the higher

dropout rate; choosing the high school that indeed has the

higher rate agrees with the ground truth. This procedure was

repeated 1000 times in order to use different training and test

sets and thus average out random variation.

The main finding of this study is that, averaged across

datasets, the predictive accuracy of the one-attribute rule

equals that of linear regression, 76%, whereas that of the 1/N
rule is 69%. This result has been replicated and extended to

include other complex models (e.g., na€ıve Bayes) and very

small training sets (i.e., up to 15% of the whole dataset),

which may be more realistic for decision making under

changing conditions [Katsikopoulos (2011) and Czerlinski

et al. (1999)]. For very small training sets, the one-attribute

rule outperforms na€ıve Bayes by an average of 5% in predic-

tive accuracy.

Second, the performance of classification and regression

trees, logistic regression, and two versions of fast-and-frugal

trees was tested on 30 datasets from the UC Irvine Machine
Learning Repository (Martignon et al., 2008). All datasets

referred to classifications, with 11 of them referring to medi-

cal classifications. Training set sizes of 85%, 50%, and 15%

of the whole datasets were used. The main finding is a strong

effect of training set size. The best complex model outper-

forms the best simple rule for the largest training set by 4%

(82% vs. 78%), but the difference shrinks to 1% (76% vs.

75%) for the smallest training set.

In a third study looking at a broad range of problems, 51

datasets were used spanning the domains of biology, business,

computer science, ecology, economics, education, engineering,

environmental science, medicine, political science, psychology,

sociology, sports, and transportation (Şimşek, 2013). A state-

of-the-art version of linear regression with elastic net regulari-

zation was compared with a one-attribute rule. The size of the

training set was equal to that of the whole dataset minus one.

The main finding is that regularized linear regression scores

79% and the one-attribute rule 78%.

On the basis of this evidence, there appear to be no large

differences in accuracy between simple rules of thumb and

more complex models. This can be explained by the flat maxi-
mum effect (Lovie and Lovie, 1986). What this effect says is

that the attribute weights used in a linear model do not greatly

change the overall deviation between true and forecasted val-

ues. The flat maximum effect is relevant because many of the

simple rules and more complex models tested can indeed be

viewed as linear models (Katsikopoulos, 2011).

On the other hand, it is also clear that even a difference

in accuracy of 1% can have enormous implications in some

contexts, as when the customer base of a multi-national com-

pany includes hundreds of thousands or even millions of

people, or in retail settings where profit margins are razor

thin. Thus, it is necessary to have a theory delineating

the general conditions under which simple rules perform bet-

ter than more complex models, and vice versa [Hogarth

and Karelaia (2005), Hogarth and Karelaia (2006), and

Katsikopoulos and Gigerenzer (2013)].

C. Review of the theory

A general framework for understanding the comparative

performance of simple rules and more complex models is

provided by the statistical theory of prediction, and, in partic-

ular, the bias-variance decomposition of prediction error

[Geman et al. (1992) and Gigerenzer and Brighton (2009)].

This decomposition is a mathematical fact which says

that the prediction error of a model, be it simple or complex,

is the sum of two terms. The first term is called bias and it

measures how well, on the average, the model agrees with

the ground truth. Complex models—which usually have

many parameters—tend to have less bias than simple mod-

els—which usually have fewer parameters—because when

parameters can be tweaked, the agreement between model

prediction and ground truth can increase as well. For exam-

ple, Markowitz’s multi-parameter optimization model

achieves low bias, whereas the 1/N rule has zero parameters

and has relatively high bias.

But this is not the whole story. There is a second term,

called variance, which contributes to a model’s total predic-

tion error. Variance measures the variation of model predic-

tions around the model’s average prediction. Unlike the bias

term, when it comes to the variance term, model complexity

is less of a blessing and more of a curse. Complex multi-

parameter models tend to have higher variance than simple

models with fewer parameters, because more parameters can

combine in more ways and generate more distinct predictions.

For example, one can intuit why, when the training set

size is small, simple rules tend to have lower variance than

more complex models. The smaller the training set, the more

likely it is that sampling error and natural variations in the

instances which are included in the training set will lead to

variation in the parameter estimates of a given model. This

variation can be expected to have an influence on the more

heavily parameterized models to a greater degree than on the

simpler rules. In an extreme case, Markowitz’s multi-

parameter optimization model has relatively high variance,

whereas the 1/N rule has zero variance because it has zero

parameters.

Because a model’s total prediction error is the sum of its

bias and variance, one can see that the result can go either

way: A simple or a more complex model can have higher
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predictive accuracy in a particular dataset, depending on

whether an advantage in bias is larger than an advantage in

variance in this dataset.

It has been argued that, in practice, variance may play a

more critical role than bias (Brighton and Gigerenzer, 2015).

This claim is consistent with a recent review of the forecast-

ing literature which concluded that all valid evidence-based

forecasting methods are simple, and urged decision makers

to only accept forecasts from simple methods (Green and

Armstrong, 2015).

Surprisingly, it has been recently discovered that simple

rules may also achieve competitive bias in practice. This

happens when there exists an attribute, or an alternative

option, which dominates the others.

An attribute dominates other attributes when it is subjec-

tively much more important to the decision maker than the

other attributes. For example, supplier responsiveness or cost

efficiency may be much more important to a particular buyer

than other supplier attributes. A second meaning of attribute

dominance is when an attribute is statistically much more

informative of the utility of options than other attributes. For

instance, time since last purchase predicts future sales much

more accurately than customer age does. It has been analyti-

cally shown that a one-attribute rule that uses a dominant

attribute incurs zero bias (Katsikopoulos, 2011).

An alternative option dominates other options when its

attribute values are better or equal to the attribute values of

the other options. It should be noted that less restrictive defi-

nitions of dominance exist that also lead to good or even the-

oretically optimal performance of simple rules of thumb

(Baucells et al., 2008). Assuming that utility is an additive or

multi-linear function of the attributes, it has been analytically

shown that some one-attribute and 1/N rules have zero bias

when a dominant alternative exists.

One may think that dominant attributes and alternatives

are rare in the real world. In fact, the opposite seems to be

the case (Şimşek, 2013). Across 51 real datasets, it was

found that dominant attributes exist in 93% of binary data-

sets (i.e., attributes had values of 1 or 0) and in 83% of the

numeric datasets, and that dominant alternatives exist in

87% and 58% of binary and numeric datasets, respectively.

In sum, the conclusion of the theoretical work is that

simple rules of thumb tend to perform better than more com-

plex models when (i) the information available is not of high

quality or not ample enough to estimate the parameters of

models reliably or (ii) there exists one attribute, or one alter-

native option, which dominates the others. On the other

hand, when neither of conditions (i) nor (ii) hold, complex

models tend to perform better than simple rules of thumb.

Condition (i) essentially says that a problem is difficult.

Such difficulties may arise when a problem is dynamic or

future developments are unpredictable. Both issues are present

in the problem of constructing a financial or global supply

portfolio [(Benartzi and Thaler, 2001), (Haks€oz and Seshadri,

2007), and (Haks€oz, 2013)]. If (i) holds, an advantage in the

variance component of the prediction error can be expected to

be much larger than the bias component, and simple rules have

a very good chance of outperforming more complex models.

An interesting interpretation of condition (ii) is that it

says that the problem is easy, in the following sense. There

either exists one alternative option which is better than all

other options and the decision maker only needs to realize

this and identify this option or there exists one attribute

which is so important or informative that it suffices to only

consult this attribute and, again, the decision maker only

needs to realize this and identify this option. If (ii) holds, as

empirical research has shown that it often does in practice,

several simple rules achieve zero bias, and thus can indeed

outperform more complex models.

A summary of the empirical and theoretical results on

the general conditions under which simple rules of thumb

outperform more complex models and vice versa is provided

in Table I.

IV. A FOUR-STEP PROCESS FOR DETERMINING
THE AMOUNT OF RESOURCES TO USE

On the basis of the evidence and theory discussed in

Sec. III—summarized in Table I—we recommend a four-
step process for determining the amount of resources deci-

sion makers should use:

(1) Ensure that your company does not decide defensively

(e.g., “we have always used this software, for which we

pay expensive technical support” or “we have always

trusted our gut feelings”) but remains open to adopting

either simple rules or more complex models, depending

on the problem at hand.

(2) Identify the problem’s type: Is the problem difficult,

easy, or neither? (See the text preceding Table I for defi-

nitions of these terms).

TABLE I. A summary of the empirical evidence and theoretical analyses on the general conditions under which simple rules of thumb outperform more com-

plex models and vice versa, as discussed in this section.

Approach to decision making Types of problems for which each approach tends to perform better

Simple rules of thumb Difficult problems

(e.g., Use only one attribute; use a few attributes as in fast and frugal trees;

use all attributes but do not weight them differently, as in a 1/N rule)

(e.g., Low-quality or scant information, dynamic or unpredictable situations);

Easy problems
(i.e., problems with dominant attributes or dominant alternative options)

More complex models, typically employed in operations research,

statistics and computer science

Other problems

(e.g., Linear and logistic regression, Bayesian networks, neural networks,

classification and regression trees)

(e.g., Ample high-quality information, static or predictable situations; prob-

lems without dominant attributes or dominant alternative options)
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(3) Consult Table I to choose a simple rule or a complex

model, which is expected to perform best for your prob-

lem’s type.

(4) Record the performance of the model you chose and use

it to possibly update Table I for the domain and problem

in which you work.

In sum, against the recent trend of focusing on resource-

intensive models, the results presented herein suggest that

there are good reasons for considering simple rules of thumb.

V. CONCLUSION

How novel is the message of the merit of simplicity in

supply chain management? It has been put forward in other

areas of management such as strategy (Eisenhardt and Sull,

2001) and is entertained in related fields such as systems

thinking and “soft” operations research (Rosenhead and

Mingers, 2001). The main difference is that the simple rules

discussed in this article do not apply to so-called wicked or

messy problems with unclear objectives or multiple dis-

agreeing stakeholders. The simple rules presented here are

quantitative and apply to well-defined problems of perfor-

mance on set operational objectives where success can be

measured; they are not qualitative principles for clarifying or

prioritizing objectives. For example, operational perfor-

mance of a simple rule of dual sourcing in the context of

supply chain risk can be measured quantitatively and the

flexibility and robustness it provides can be demonstrated.

Supplier portfolio allocation is another such well-defined

problem addressed via a proposed simple rule of 1/N.

Whereas sometimes simple rules may focus on counteracting

biases (Tiwana et al., 2007), the rules presented here focus

on how effective decisions are made.

On the other hand, the process of deriving the various

simple rules is to a large extent common across fields such as

supply chain management, operations research, and business

strategy. It is typically based on the observation and analysis

of people’s purposeful behavior (Simon, 1990). In this sense,

the simple rules of thumb we discussed may be viewed as

expert systems (Jackson, 1986). Now, it is important to note

that expertise has not always been associated with simplicity.

The results presented here show that knowing when to go

for simplicity may well be an important part of expertise.

Today’s decision makers need to remain open to how simplic-

ity can be the key to flexibility and robustness.
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