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Abstract 

Longitudinal panel data obtained from multiple individuals measured at multiple time points 

are crucial for psychological research. To analyze such data, a variety of modeling 

approaches such as hierarchical linear modeling or linear structural equation modeling are 

available. Such traditional parametric approaches are based on a relatively strong set of 

assumptions, which are often not met in practice. We present a flexible modeling approach 

for longitudinal data that is based on the Bayesian statistical learning method Gaussian 

Process Regression. We term this novel approach Gaussian Process Panel Modeling 

(GPPM). We show that GPPM subsumes most common modeling approaches for 

longitudinal data such as linear structural equation models and state-space models as special 

cases but also extends the space of expressible models beyond them. GPPM offers great 

flexibility in model specification, facilitates both parametric and nonparametric modeling in a 

single framework, enables continuous-time modeling as well as person-specific predictions, 

and offers a modular system that allows the user to piece together hypotheses about change 

by selecting from and combining predefined types of trajectories or dynamics. We 

demonstrate the utility of GPPM based on a selection of models and data sets. 

 

Keywords: continuous-time modeling; longitudinal data analysis; statistical learning 
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Introduction 

 
Longitudinal panel data obtained from multiple individuals measured at multiple time points 

are among the most common types of data collected for psychological research. To analyze 

longitudinal data, different modeling approaches are commonly used, and their choice largely 

depends on the researcher’s discipline or statistical training. Most longitudinal analyses are 

performed using the general linear model (GLM; Cohen, 1968), hierarchical linear modeling 

(Raudenbush & Bryk, 2001), time series methods (Hamilton, 1994), or structural equation 

modeling (SEM; Bollen, 1989). These traditional parametric approaches have the advantage 

that specification, inference, and interpretation is relatively straightforward. However, this 

comes at the price of being restricted to a relatively strong set of assumptions. There is 

increasing appreciation of the fact that these strong assumptions may incur severe model 

misfit (and potentially wrong conclusions). More general approaches may provide more 

meaningful and correct models for the more complex situations that are often encountered in 

psychology (Lee & Zhu, 2002). 

 

Here, we present a novel modeling approach for longitudinal data, which we call Gaussian 

Process Panel Modeling (GPPM). It offers great flexibility in model specification, facilitates 

both parametric and nonparametric modeling, appreciates the continuous-time nature of the 

data, and offers a modular system that allows the researcher to piece together hypotheses 

about change by selecting from predefined types of trajectories or dynamics. 

 

We refer to our approach as GPPM because it is based on the flexible Bayesian non-

parametric multivariate regression method Gaussian process regression (GPR; Rasmussen & 
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Williams, 2006). GPR is a popular statistical learning method that has been applied 

successfully for the analysis of time series data from fields such as astronomy (Damouras, 

2008; Roberts et al., 2013), meteorology (Roberts et al., 2013), economics (Damouras, 2008; 

Roberts et al., 2013), biology (Saatçi, Turner, & Rasmussen, 2010), medicine (Brahim-

Belhouari & Bermak, 2004; Liu, Wu, & Hauskrecht, 2013), and neuroimaging (Ziegler, 

Ridgway, Dahnke, & Gaser, 2014). We refer to GPR as applied in the analysis of time series 

as temporal GPR. Temporal GPR is popular in statistical learning, but has received little 

attention from most social and behavioral scientists. Temporal GPR is a single-subject 

technique, and its extension to multi-subject data requires augmentation with a between-

person model. Here, we present a mechanism to extend temporal GPR in this way, resulting 

in GPPM.  

 

GPPM is closely related to longitudinal SEM (lSEM). lSEM and GPPM are both means- and 

covariance-modeling techniques. The central mechanism for model specification is the 

translation of hypotheses into restricted covariance matrices and mean vectors. A main 

difference between these methods lies in the way the model covariance matrix is specified. In 

lSEM, structural equations that relate observed and latent variables to each other are at the 

heart of model specification. In contrast, GPPM uses a covariance-matrix generating and 

mean-vector generating function using the so-called kernel language. This allows more 

efficient expression of a broader class of models than linear SEM, as we will demonstrate 

later on. As a consequence, GPPM extends lSEM in two important ways: First, it is not the 

covariance matrix of the observations that is modeled but rather the infinite dimensional 

covariance matrix of the underlying continuous process from which the observations are 

sampled. Thus, it enables continuous-time modeling (Voelkle, Oud, Davidov, & Schmidt, 

2012). Second, it allows specification of all lSEMs as part of an even broader model class.  
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GPPM is also closely related to continuous-time linear Gaussian multi-subject state-space 

modeling (Boker, 2007; Chow, Ho, Hamaker, & Dolan, 2010; Driver, Oud, & Voelkle, 2017; 

Oud & Singer, 2008), which we will abbreviate to state-space modeling in the remainder of 

this article. State-space modeling importantly contains the more popular autoregressive 

integrated moving average (ARIMA) models (Hamilton, 1994), and thereby vector 

autoregressive models as special cases. Like GPPM, state-space modeling also allows direct 

modeling of the underlying continuous-time process. Again, the core difference between 

GPPM and state-space modeling is the language for model specification. While in state-space 

modeling the model is specified via stochastic difference or differential equations, making it 

well suited for dynamic models, GPPM uses the kernel language for model specification, 

which is more closely related to model specification in lSEM. Thus, GPPM could be more 

suitable for formulation of trajectory-based continuous-time models. However, as we will 

show below, GPPM also includes state-space models as a special case (for comparison 

between temporal GPR and state-space modeling for time series analysis, see Grigorievskiy 

& Karhunen, 2016).  

 

To our knowledge, temporal GPR has only rarely been applied to psychological data. For 

example, Ziegler and colleagues (2014) used temporal GPR to estimate a normative cross-

sectional age gradient of volumetric changes in the brain. Two publications already brought 

up the notion of extending temporal GPR for the analysis of hierarchical data: Within the 

field of statistics, Hall, Müller, & Yao (2008) proposed an extension of temporal GPR to 

model non-Gaussian panel data, and within psychology, Cox, Kachergis, & Shiffrin (2012) 

suggested an hierarchical extension to model computer-mouse trajectories nested in trials and 

conditions across multiple participants. The present article proposes an extension of temporal 
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GPR for the analysis of psychological panel data. In the following, we provide a detailed 

comparison with conventional psychological panel data analysis methods and include a full 

set of corresponding frequentist inference procedures. 

 

We provide proof-of-concept implementations of GPPM in both R (R Core Team, 2015) and 

Matlab (MATLAB, 2014), which enables readers to apply this approach to their own data. 

We showcase the usage of both packages by providing the code that was used to implement 

the demonstration analyses as well as the code for production of the figures below as a 

supplement. While the R software is easier to use, it is – at the time of writing – less mature 

than the Matlab package. Parameter estimation, for example, is substantially slower. For the 

novice in GPPM, we advise starting with the R software and eventually switching over to the 

Matlab package that provides more advanced features. However, this is likely to change, as 

there are plans to extend the R package substantially. 

 

This article is structured as follows: First, we formally define temporal GPR. Our 

presentation of temporal GPR differs from previous treatments (e.g., Roberts et al., 2013) in 

that we do not assume that the reader has knowledge of GPR. Instead, we connect temporal 

GPR directly to the more familiar linear model. Second, we propose a generalization of 

temporal GPR for the analysis of longitudinal panel data, resulting in the more general 

framework, GPPM. Third, we demonstrate the advantages of GPPM by comparing it to 

existing longitudinal panel modeling methods based on a select set of example models and 

data sets. Specifically, we show how person-specific predictions, even on non-observed time 

points, can be obtained easily. We demonstrate this using an application of the latent growth 

curve model (LGCM; Duncan, Duncan, & Strycker, 2006) to data from the Berlin Aging 

Study (BASE; Baltes & Mayer, 2001; Delius, Düzel, Gerstorf, & Lindenberger, 2017), a 
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longitudinal study tracking the development of older adults. We also demonstrate how the 

popular first-order autoregressive model (AR(1) model) can easily be translated into its 

continuous-time equivalent using a GPPM representation and how the resulting model can be 

combined with the LGCM to implement AR(1)-correlated errors for the LGCM. We proceed 

to show that GPPM can also represent the nonparametric technique of generalized additive 

modeling, which was recently introduced as a promising modeling approach for 

psychological data (Bringmann et al., 2017; Shadish, Zuur, & Sullivan, 2014; Sullivan, 

Shadish, & Steiner, 2015). Furthermore, GPPM can extend generalized additive modeling to 

become a panel modeling technique. Finally, we demonstrate the utility of the squared 

exponential model, one of the most commonly used GPR models in statistical learning, for 

the analysis of longitudinal panel data. We close this paper with a summary and a discussion 

of work to be done in the future. 

 

Gaussian Process Time Series Modeling 

 
To introduce the model specification mechanism of GPPM, the kernel language, we will first 

provide a short recap of the linear growth model, which most researchers will be familiar 

with, before demonstrating how the linear growth model can be expressed as a temporal GPR 

model. Then we introduce model specification using the kernel language in its general form. 

 

Linear Growth Model 

One of the simplest models for a time series is to assume that the repeated measures of some 

observable variable, like a person’s height, follow a linear trend. Formally, we assume that 

each observation 	yt  is made at a time point !t . The scale of time is arbitrary and could be the 
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person’s age or the time that has elapsed since the beginning of a study. For illustration, 

assume !t  encodes age in days. If the perfectly measured observations follow a linear trend, 

for every observation 	yt , we obtain the regression equation with time as independent 

variable: 

 		yt = b0 +b1t .  (1) 

The parameters !!b0  and !!b1  represent the linear trend’s intercept and slope (i.e., the rate of 

linear change) respectively. Both parameters are allowed to take on any continuous scalar 

value, 		 b0 ,b1 ∈! . 

 
Typically, we assume that all observed variables are subject to measurement error. To 

account for this, we add an explicit measurement model. In this simplest case, we assume 

uncorrelated, normally distributed measurement errors at each time point. Formally, we 

account for measurement error by adding a Gaussian random variable ! εt  with a mean of zero 

and measurement error variance 	 σ ε
2  to Equation (1), resulting in 

 		 Y(t)= b0 +b1t +εt .  (2) 

We have changed the notation of 		Y(t)  because it now represents a random rather than a fixed 

variable and no longer corresponds to the observations but to a stochastic representation of 

the underlying process. Each observation yt  is a realization of the random variable Y(t) . 
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Linear Growth Model as Gaussian Process Time Series Model 

The linear growth model introduced above corresponds to linear regression with time as the 

only predictor applied within persons. In this section, we show how the linear growth model 

can be expressed equivalently as a temporal GPR using the kernel language. 

 

First note that for each time point !t , the regression model in Equation (2) defines a Gaussian 

random variable. Meanwhile, time is modeled as a continuous variable, that is, ! t ∈! . As a 

consequence, the set 		 {Y(t):t ∈!}  contains an infinite number of random variables, one for 

each time point !t . This type of set is called a stochastic process. If and only if every random 

variable !Yt  has a Gaussian distribution, the set 		 {Y(t):t ∈!}  is called a Gaussian process. 

 

Equation (2) implies a mean for every time point !t  and a covariance for each pair of time 

points !s , !t . They both depend on the model parameters !! θ = [b0 ,b1 ,σ ε2] :  

		  

Eθ[Y(t)]= b0 +b1t
Covθ[Y(s),Y(t)]=δ(s −t)σ ε2

,  

where !δ(⋅)  is the Dirac delta function, that is, it yields 0 for all cases; unless its function 

argument is zero (here, when s equals t) when it yields 1. Following the above model 

specification, we can define a mean function !!m(t)  that returns the model-implied expectation 

for every time point and a kernel (also, covariance function) !!k(s ,t)  that returns the model-

implied covariance for every pair of time points !s , !t :  

 
		 

m(t ;θ )= b0 +b1t
k(s ,t ;θ )=δ(s −t)σ

ε

2 . (3) 
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We find that the simple linear regression model in Equation (2) and the mean and kernel 

functions in Equations (3) define the same model in the sense that the model-implied 

distribution is identical for both. In the supplement, we also demonstrate this practically by 

showing that the parameter estimates obtained by linear regression modeling software and the 

GPPM software are identical.  

 

 Representing a model using mean and kernel functions is referred to as kernel language 

representation. The kernel language is not only an alternative language for model 

specification, it is also much more expressive than the linear model, as we will show 

throughout this paper. 

 

For readers familiar with the GPR literature, it may seem strange that the core definition of 

the linear model is done here through the mean and not the kernel function, as models are 

mostly defined by their kernel functions in the GPR literature. We explain this in Appendix 

A.  

Model Specification Using the Kernel Language 

In the previous section, we obtained a temporal GPR model by translating the linear growth 

model into its kernel language representation. In general, a GPR is defined by specifying 

parameterized mean and kernel functions. These functions can be derived through multiple 

avenues, such as translating a theory directly into mean and kernel functions or translating a 

model expressed in a different specification language (as carried out above for the linear 

model). 
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Another approach for specifying a temporal GPR model that facilitates the representation of 

complex hypotheses is to formulate a model by flexibly combining a set of predefined 

template models. To this end, one can make use of the fact that new mean and kernel 

functions can be created from sets of available template mean and kernel functions using a 

variety of operators (Duvenaud, 2014, Chapter 2; Rasmussen & Williams, 2006, Chapter 

4.2.4; Roberts et al., 2013), for instance, by simply adding them together. In this paper, we 

will primarily capitalize on the fact that new functions can be obtained by multiplying 

functions by a scalar and that both the sum and the product of two functions again produce 

new valid functions. These simple combination rules allow us to efficiently specify a wide 

range of hypotheses in form of mean and kernel functions.  

 

As an easy example of this compositional mechanism, we present an alternative avenue to 

obtain the kernel language representation of the linear model. The linear growth model can be 

specified by taking the sum of the constant mean function, 		m(t ;b0)= b0 , and the linear mean 

function, 		m(t ;b1)= b1t . We will present many more examples of the combination 

mechanisms throughout the text. 

 

Gaussian Process Panel Modeling 

In the following, we extend the time series modeling method, temporal GPR, to GPPM for 

the analysis of longitudinal panel data. The extension consists of a framework to formulate a 

between-person model as well as corresponding frequentist inference procedures. 
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Between-Person Model 

The core difference between time series modeling and panel data modeling is that only a 

model for the within-person structure is required for the former, whereas a model for the 

within- and the between-person structure is needed for the latter. Thus, extending a time 

series method to a panel method requires augmenting the method by a way to account for the 

between-person structure. In this section, we discuss how we propose to do this when 

extending temporal GPR to GPPM. 

 

Before we can proceed, we need to introduce some notation. Formally, a time series consists 

of multiple observations !yt  at multiple time points 		t ∈{t1 ,t2 ,…,tT }  originating from one 

person. A longitudinal panel data set consists of multiple observations !yit  from multiple 

persons 		i∈{1,2,…,N}  and time points 		t ∈{ti1 ,ti2 ,…tiTi } . Note that the time points at which 

persons were observed do not have to be the same across persons when using this notation. 

With 	yi , we denote the vector containing the complete time series of person 	i .  

 

The easiest way to adapt temporal GPR for the analysis of longitudinal panel data is to treat 

each time series 	yi  as an independent data unit and consequently to perform an independent 

GPR analysis for each person. The implicit assumption underlying this approach is that the 

differences between people are so large that they should be treated as completely independent 

analysis problems. Therefore, no between-person model is specified. This approach 

corresponds to a no-pooling analysis in multilevel parlance (Gelman, 2006).  
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At the other end of the spectrum we need to assume that there are no between-person 

differences. This can be implemented by contending that the time series of each person 	yi  is 

a realization of the same Gaussian process. In multilevel models, this would conform to the 

complete-pooling approach. Formally,  

		Yi(t)~GP(m
*(t),k*(s ,t))  , 

where the mean 		m
*(t)  and the kernel function 		k

*(s ,t)  describe the true but unknown 

distribution of the Gaussian process. Additionally, the process 		Yi(t)  for a person 	i  is assumed 

to be independent of the processes of all other persons. In this case, the task of statistical 

inference reduces to recovering the true mean 		m
*(t)  and kernel function		k

*(s ,t) . Also, it is 

sufficient to define a statistical model on the level of the individual time series. The model for 

the panel data set follows directly. Essentially, the same mechanism as used for SEM can be 

employed when it is assumed that the data for each person is a realization of one true 

multivariate Gaussian distribution. Here, however, we exchange multivariate Gaussian 

distribution with an infinite-dimensional Gaussian process.  

 

We would argue that neither assumption – no differences between persons or no relationship 

between them at all – is typically realistic. The middle ground is to specify a between-person 

model. This model could, for example, allow estimation of a sample average and individual 

deviations from that average. To elaborate: The person-specific analysis approach, mentioned 

at the beginning of this section, results in estimates for the person-specific parameters 	θi . No 

between-person distribution is imposed on the person-specific parameters 	θi . In the 

nonspecific analysis approach, the implicit assumption is that 	θ1 =θ2 =… . The middle 
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ground is to suppose that there is some between-person parameter distribution 	 P(θ )  of which 

the person-specific parameters are realizations. This approach, referred to as partial pooling, 

is typically taken in hierarchical linear modeling, multilevel models, or random-effects 

models, in which it is assumed that the between-person distribution of regression coefficients 

is a multivariate normal distribution (Raudenbush & Bryk, 2001). This approach can also be 

taken in SEM. One way to see this is to acknowledge that multilevel models can be 

considered a special case of SEM (Curran, 2003). An extension of this approach is to assume 

that the between-person distribution itself depends on stable observable characteristics 	zi  of 

a person by formulating a model for their conditional distribution 		 P(θ |zi ) . This is often done 

in SEM, for example, where person-specific characteristics 	zi  are employed to modify the 

mean of a latent variable for each person. 

 

Somewhat counterintuitively, specifying one GPPM that is shared across all persons, also 

permits one to represent between-person distributions of parameters as just shown. This is 

best understood based on an example. Consider the following GPPM, which encodes the 

assumption that the observed measurements are constant across both persons and time 

		 

m(t ;θ )= c
k(s ,t ;θ )=δ(s −t)σ

ε

2   

We now add a between-distribution for the c parameter (		 c~N (µc ,σ c
2) ). This changes the 

model to  

		 

m(t ;θ )= µc
k(s ,t ;θ )=σ c

2 +δ(s −t)σ
ε

2 .  

Thus, by introducing a between-person model for a fixed parameter, only the mean and 

kernel function are changed.  
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Not every between-person model can be expressed using GPPM. Essentially, only those 

between-person models that can be expressed by hierarchical linear modeling and SEM can 

also be expressed by GPPM. More formally, a Gaussian between-person distribution can be 

specified for each linear parameter of the mean function. The reason for this is that the 

resulting person-level model is again a model on a Gaussian process. In the next section, we 

give a more elaborate example of this mechanism by demonstrating how the linear growth 

model can be extended by a Gaussian between-person model, resulting in the well-known 

LGCM that allows between-person differences in linear trajectories. 

 

In order to implement conditional between-person distributions 		 P(θ |zi ) , the mean and kernel 

functions must accept the stable characteristics 	zi  as input, in addition to time. This does not 

pose a problem since mean and kernel functions can be defined for arbitrary inputs. Instead of 

using only the time point of each observation as input for the mean and kernel function, one 

can use arbitrary predictors from each time point. This is achieved by the following 

straightforward change in formalism. Instead of the time point 	t , the mean function accepts a 

vector 	xit  as input, which contains arbitrary information about the measurement from person 

	i  at time point 	t . So, the vector 	xit  typically contains at least one marker of time but can 

also contain other predictors of interest. A special case of this is of course to assume that 

predictors are constant for each person, as is done for the stable characteristics 	zi . The kernel 

function is extended in the same fashion. That is, its form changes to 		k(xit ,xis ) . This 

inclusion of stable characteristics allows for a broader class of between-person models than 

available in classical frameworks such as SEM and hierarchical linear modeling. Below, we 
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demonstrate this extension of the GPPM framework in detail by showing how the GPPM 

representation of the LGCM can be augmented by a stable characteristics variable 	zi that is 

related to the slope’s mean as well as its variance. 

Latent Growth Curve Model and Extensions as GPPM 

The LGCM starts out from the linear growth model introduced for time series, repeated here 

for convenience; with an emphasis on the fact that this is a model for a specific person 	i : 

 
		 

m(t ;θi )= bi0 +bi1t
k(s ,t ;θi )=δ(s −t)σ ε2

  (4) 

In LGCM, the between-person model is introduced by assuming that the individual 

parameters describing growth are distributed according to a Gaussian distribution. Formally, 

		 

bi0
bi1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
~N

µb0
µb1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

σ b0

2 σ b0 ,b1

σ b0 ,b1
σ b1

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 . 

In Equation (4), we treated 		bi0  and 		bi1  as parameters. With the inclusion of the between-

person distribution they are no longer parameters but random variables. As a consequence, 

the mean function itself becomes a Gaussian process. To see this, note that 

		 

E(m(t)) = µb0 + µb1t

Cov(m(s),m(t)) = σ b0

2 +σ b0 ,b1
(s +t)+σ b1

2 st
 

.

  

To bring the measurement error back into this model, one simply needs to add its kernel 

representation. This shows that the GPPM formulation of the LGCM is 

 

		 

m(t ;θ ) = µb0 + µb1t

k(s ,t ;θ ) = σ b0

2 +σ b0 ,b1
(s +t)+σ b1

2 st +δ(s −t)σ
ε

2   
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In the supplement, we provide a practical demonstration of the equivalence of the LGCM 

represented as GPPM and as lSEM.  

 

To showcase the ability of GPPM to represent conditional between-person models, we now 

assume that the between-person model additionally depends on two stable characteristics 

variables 		zi1 ,zi2  in the following fashion  

		 

bi0
bi1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
|zi ~N

µb0
µb1 + c1zi1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

σ b0

2 + σ b0 ,b1

σ b0 ,b1
σ b1

2 f (c2 ,zi2)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

. 

We include a stable characteristics variable 		zi1  that is linearly related to the mean of the 

slope. This corresponds to a regression of the latent slope on 		zi1 , and is often done in LGCM 

to investigate whether a proportion of the slope variance can be explained by a stable 

characteristics variable. We also included a stable characteristics variable 		zi2  that is related to 

the slope variance according to some generic and potentially nonlinear function 		f (c2 ,zi2)  

with the additional parameter 		c2 . This is not typically done in LGCM and also not possible in 

(standard) SEM or hierarchical linear modeling.  

For the model-implied mean and kernel function, we obtain 
 

 

		 

E(m(t)) = µb0 +(µb1 + c1zi1) = m(xit ;θ )
Cov(m(s),m(t)) = σ b0

2 +σ b0 ,b1
(s +t)+σ b1

2 f (c2 ,zi2)st = k(xit ,xis ;θ )
,

(5)

 

with 		xit = [t ,zi1] , 		xit = [s ,zi1] . For the model to hold 		f (c2 ,zi2)  must be such that the kernel 

function is still valid. This, however, still allows many different functional forms to be 

employed.  
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The kernel representation of the LGCM again illustrates the fact that GPPMs can typically be 

specified through combinations of template mean and kernel functions. The mean function 

consists of the sum of the constant 		m(t ;µb0 )= µb0  and the linear 		m(t ;µb1 )= µb1t  mean 

functions. The kernel function consists of the sum of the constant 		k(s ,t ;σ b0

2 ) , a scaled (times 

		σ b1

2 ) version of the linear 		k(s ,t)= st , the white noise 		 k(s ,t ;σ ε
2)=δ(s −t)σ

ε

2 , and a non-

standard kernel function that represents the correlation between the intercept and the slope 

		k(s ,t ;σ b0 ,b1
)=σ b0 ,b1

(s +t) .  

 

Inference for Gaussian Process Panel Models 

Despite temporal GPR typically being used in conjunction with Bayesian inference, we 

focused on developing frequentist inference procedures for GPPM to make it better 

comparable to standard methods (specifically, such that parameter estimates would be 

identical to other specification languages that use maximum likelihood inference). In this 

section, we also show how GPPM makes it easy to obtain person-specific predictions after 

the population-level model has been fitted. We also provide suggestions for model selection 

when multiple hypotheses are to be compared on empirical data. 

 

For maximum likelihood estimation, a likelihood function is required. Usually, the likelihood 

function can be obtained easily because the data are assumed to be a realization of the 

random vector on which the model is formulated. In GPPM however, the model is formulated 

on a stochastic process; and it is impossible to observe a complete realization of a stochastic 

process as this would equate to a time series with infinitely many time points. Instead, the 
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stochastic process is partially observed at a finite set of time points. This problem however is 

easily solved as a GPPM also implies a model for every finite set of time points. This implied 

discrete model on a random vector can be used to perform maximum likelihood estimation as 

usual. It technically corresponds to a marginal likelihood, which is marginalized over all 

infinitely many unobserved time points. In Appendix B, we show this formally and also 

demonstrate that the likelihood ratio test for hypothesis testing is valid for GPPMs. 

Confidence intervals and regions can be calculated based on the likelihood ratio test (Pek & 

Wu, 2015).  

 

A more informal proof that these inference methods are valid for GPPM can be obtained by 

acknowledging that GPPM can be implemented using extended SEM (Neale et al., 2016). In 

contrast to conventional SEM, extended SEM allows path coefficients and covariances to 

vary for each person, for instance, via definition variables. Additionally, path coefficients and 

covariances can be arbitrarily complex functions of parameters. In Figure 1, we present how 

the discrete model implied by a GPPM can be translated into an extended SEM. Essentially, 

the mean function becomes a path coefficient from the constant to the observations and the 

covariance function populates the values of the covariances between the observations. This 

translation might represent the most straightforward clarification of GPPM for researchers 

accustomed to extended SEM.  

 

The features of GPPM lead to a natural approach to obtaining person-specific predictions. 

Assume that we have a panel data set and a corresponding GPPM. Using maximum 

likelihood estimation, we obtain a parameter estimate 	θ̂ . Given this estimate and the 

observed data 	yi  for a person 	i  at time points 	ti , we can now ask: What are the predictions 
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for the observations at unobserved time points 		ti
* ? For example, this question could be of 

interest to predict the development of a particular child or of a patient with regard to some 

score of their mental health.  

 

Formally, the maximum likelihood estimate 	θ̂  represents the distribution of a Gaussian 

process. Thus, it especially expresses the joint distribution 		pθ̂( yi , yi
* )  of the process at the 

observed and the unobserved time points, which is a multivariate Gaussian. Person-specific 

predictions can be obtained by conditioning on the observations. This results in the 

conditional distribution 		pθ̂( yi | yi
* ) , which is again a Gaussian and also known as the 

posterior predictive distribution in the Bayesian inference literature. If a point estimate is 

needed, different approaches to reduce the posterior predictive distribution to a point, like the 

mode or the expectation, are possible.  

 

For model selection, the same ideas can be used as for SEM. Besides its application for 

hypothesis testing, the likelihood-ratio test can also be used to compare two nested models. 

The more restrictive model becomes the null hypothesis and is selected if the null hypothesis 

is not rejected. Fit indices like the Akaike information criterion (AIC) and the Bayesian 

information criterion (BIC) can also be used for general, non-nested model selection and are 

implemented in the provided packages. 

 

Both the fit indices (Barrett, 2007) and the likelihood-ratio test (West, Taylor, & Wu, 2012) 

have been criticized in the context of SEM. The same criticisms also apply to their use in the 

context of GPPM. As a modern, statistical learning-inspired alternative we have therefore 

also developed cross-validation for GPPMs. We use the word cross-validation here in the 
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same sense as it is used in statistical learning. That is, the procedure of leaving out data is 

repeated multiple times until every data point has been left out exactly once. The idea is as 

follows: The maximum likelihood estimate represents the distribution of a Gaussian process. 

With new, unseen data we can now estimate the out-of-sample likelihood of those data. We 

choose the model that leads to the highest out-of-sample likelihood. Thus, we choose the 

model that best approximates the true distribution in a likelihood sense. For the cross-

validation, we can either choose to leave out persons in each fold, which would estimate how 

well the model generalizes across persons, or we leave out time points, which would measure 

how well the model generalizes over time for the observed persons.  

 

Flexibility of Gaussian Process Panel Modeling 

The main advantage of GPPM is its flexibility in formulating a model for the within-person 

structure. Using the kernel language, every model that can be expressed as a set of candidate 

distributions for a Gaussian process can be specified as a GPPM. Besides lSEM, and state-

space modeling, this also includes generalized additive modeling, which has recently been 

proposed as a flexible, nonparametric method for the analysis of psychological time series 

(Bringmann et al., 2017; Shadish et al., 2014; Sullivan et al., 2015). Essentially, all these 

techniques employ different, less expressive languages to describe a model on a Gaussian 

process or a multivariate Gaussian, which can be considered the finite dimensional special 

case of a Gaussian process. Furthermore, in terms of statistical inference all aforementioned 

methods rely on frequentist inference, specifically, maximum likelihood estimation and the 

likelihood-ratio test. Formal proofs of the fact that GPPM generalizes these methods as well 

as a detailed discussion of how GPPM extends these methods can be found in Karch (2016; 

see Chapter 4.1.1 for lSEM, and Chapter 4.1.2 for multi-subject continuous-time state-space 
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modeling). We do not present a formal proof for generalized additive modeling. However, 

Duvenaud, Nickisch, and Rasmussen (2011) present a GPR model that subsumes generalized 

additive modeling. Also, Rasmussen and Williams (2006, Chapter 2) show how any Bayesian 

kernel regression model can be implemented as a GPR model. Just by comparing the 

definition of Bayesian kernel regression (Rasmussen & Williams, 2006, p.12, Equation 2.10) 

and generalized additive modeling (Wood, 2006, p. 199, Equation 3.1), one can see that 

Bayesian kernel regression generalizes the former and consequently also GPR. For the 

purposes of this paper, we find it most instructive to demonstrate how GPPM can represent 

smoothing splines, the core technique used within generalized additive models.  

 

As GPPM is an inherently continuous-time modeling approach, it shares the same advantages 

that other continuous-time modeling approaches (e.g., continuous-time state-space modeling) 

have over discrete-time modeling approaches (e.g., discrete-time state-space modeling; 

Voelkle et al., 2012): It adequately models different time intervals both between and within 

persons, results are comparable across studies with different measurement intervals, and 

missing data are treated “automatically” as they simply result in a different time interval 

between successive measurements. 

 

In the following, we demonstrate the flexibility and utility of GPPM for psychological data 

analysis based on a selected set of example models. We start by presenting the GPPM 

formulation of popular longitudinal panel models. Additionally, we show that the GPPM 

representations of these models have certain advantages compared to their traditional 

representations. We close by presenting novel models for longitudinal panel data provided by 

GPPM that are not expressible as hierarchical linear models, lSEMs, state-space models, or 

generalized additive models. 
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Latent Growth Curve Model: 
Person-Specific Predictions of Cognitive Change in the Berlin Aging Study 

We mentioned earlier that one of the strengths of GPPM is that it allows us to obtain person-

specific predictions after the population-level model has been fitted in a straightforward 

fashion. For instance, we might be interested in the cognitive development of older adults. In 

the Berlin Aging Study (BASE; Baltes & Mayer, 2001; Delius et al., 2017), cognitive 

functioning of initially 516 older adults (aged 70+ years) was measured up to 8 times over the 

course of roughly 20 years. After having performed a LGCM analysis on the BASE data to 

get at a population-level model, one might be interested in the development of one particular 

person, for example, in order to select individuals for an intervention. 

  

A data analysis using LGCM results in parameter estimates that can be interpreted as 

describing a distribution of a Gaussian process. As parameter estimates for the LGCM we 

assume 		µb0 =58 , 		µb1 = −1 , 		σ b0

2 =258 , 		σ b1

2 =0.4 , 		σ b0 ,b1
2 =0 , 	 σ ε

2 =10 , which are adapted 

versions of the values that Ghisletta et al. (2014) reported based on a LGCM-type analysis of 

perceptual speed on the BASE data (cf. Stoel & Van Den Wittenboer, 2003, for the 

adaptation procedure). For simplicity, we set the covariance between the intercept and the 

slope to 		σ b0 ,b1
=0 , recoded age to be centered at 70, and rounded all values to 0 decimals. 

These parameters amount to an average mild decline of perceptual speed with no relationship 

between perceptual speed assessed at age 70 and the severity of the decline. There is, 

however, considerable between-person variation both with regard to perceptual speed at age 

70 and the severity of the decline.  
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For our exemplary participant, we assume to have obtained two measurements: The value 40 

at age 70 (recoded age 0) and the value 25 at age 80 (recoded age 10). We are now interested 

in predicting the participant’s perceptual speed at age 85 (recoded age 15). The joint 

distribution of the observed 		 [Y(0),Y(10)]
⊤and the unobserved perceptual speed values 		Y(15)  

according to the fitted GPPM is obtained by plugging in the corresponding values into the 

mean and kernel functions. Thus, it is a multivariate Gaussian with mean vector 

 

 

and covariance matrix 

 

		 

Σ =

σ b0

2 +σ b1

20⋅0+σ
ε

2 σ b0

2 +σ b1

20⋅10 σ b0

2 +σ b1

20⋅15
σ b0

2 +σ b1

210⋅0 σ b0

2 +σ b1

210⋅10+σ
ε

2 σ b0

2 +σ b1

210⋅15
σ b0

2 +σ b1

215⋅0 σ b0

2 +σ b1

215⋅10 σ b0

2 +σ b1

215⋅15+σ
ε

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
268 258 258
258 308 318
258 318 358

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.  

To obtain the predictive distribution for the perceptual speed at age 85 (recoded as 15), one 

simply has to condition this joint distribution on the observations at age 70 and 80, which 

were recoded as 		 yi = [ 40 25 ]⊤ . The conditional distribution is again a Gaussian with 

mean and variance as follows (see Bishop, 2006, Chapter 2.3.1, for the general formula): 

 

		

µ =

µb0 +0µb1
µb0 +10µb1
µb0 +15µb1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
58
48
43

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

		 

E Y(15)| yi⎡⎣ ⎤⎦ = 43+[ 258 318 ] 268 258
258 308

⎡

⎣
⎢

⎤

⎦
⎥

−1
40
25

⎡

⎣
⎢

⎤

⎦
⎥−

58
48

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ ≈25

Var Y(15)| yi⎡⎣ ⎤⎦ = 358−[ 258 318 ] 268 258
258 308

⎡

⎣
⎢

⎤

⎦
⎥

−1
258
318

⎡

⎣
⎢

⎤

⎦
⎥ ≈28
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These results are in accordance with the following intuition. Without any measurements, the 

expectation for a particular person at age 85 is 43. The measurements taken at age 70 and 80 

were considerably worse than to be expected given the model. Thus, the expectation for age 

85 is also lowered compared to the unconditional expectation.  

 

 

The predictive distribution can be obtained for and based on an arbitrary number of time 

points and for any type of kernel and mean function. In this case, we demonstrated how to 

obtain it for a single time point based on two measurement occasions for simplicity’s sake. 

With more than one time point, the predictive distribution becomes a multivariate Gaussian, 

so there can be covariance between predictions. Also, predictions can be obtained for latent 

constructs, like the perceptual speed before being contaminated by measurement error. In this 

example, all that needs to be done is removal of the measurement error from the model-

implied variance for 	Σ(3,3) , resulting in 		σ b0

2 +σ b1

215⋅15 . In Figure 2, we visualize the 

predictive distribution for the latent (measurement-error free) perceptual speed for our 

exemplary individual for the ages 81 to 100. We also present the unconditional predictions, 

that is, those without conditioning on any observations. These can be interpreted as 

predictions on the group level, or alternatively, as the predictions for an individual for whom 

no data is available. As to be seen in the figure, conditioning on the observations not only 

shifts the predictions but also decreases their uncertainty.  

 

AR(1) Model: Continuous-Time Representation 

In this section, we will showcase the ability of GPPM to represent dynamic models like the 

AR(1) model. We also show how the GPPM representation of dynamic models facilitates the 
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transformation of traditional discrete-time dynamic models to modern continuous-time 

dynamic models (Oud & Jansen, 2000; Voelkle et al., 2012). 

 

Dynamic models are still predominantly employed in their discrete-time variant, that is, the 

model is typically formulated for sequential discrete time points (which would translate to 

integer-valued time indices in our framework). To reflect this fundamental difference in 

comparison to GPPM, we will denote time as an index instead of a functional argument in 

our notation and call it .  

 

The AR(1) model is arguably the most popular dynamic model employed in psychology. The 

basic idea is to use a linear model to predict the observation at the current time point based on 

the observation at the previous time point:  

!! Yj = b0 +b1Yj−1 +εj , 

with 		b0 , 		b1  being parameters and ! 
εj  a Gaussian error term with mean zero and variance ! σ ε

2 . 

Typically, the wide-sense stationary variant of the AR(1) model is employed. The process !
Yj  

is wide-sense stationary if and only if !!|b1 |<1 .  

 

To convert the AR(1) model in its linear model formulation into a GPPM, we compute the 

mean and the kernel functions. They are as follows (for the derivation, see Appendix C): 

 

		  

E Yj( ) = b0
1−b12

:=m( j;θ )

Cov Yj ,Yj+r( ) = b1r σ
ε

2

1−b12
:= k( j , j + r;θ )

  (5) 

	j
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where 	r  is the discrete-time interval between two not necessarily successive measurement 

occasions. Thus, the AR(1) model can also be expressed as a GPPM. In the supplement, we 

again demonstrate that the solutions obtained by SEM software and the GPPM software for 

this model are identical. 

 

Recently, the advantage of using a continuous-time approach for dynamic models has 

become more and more appreciated within psychology (Asparouhov, Hamaker, & Muthén, 

2017; Boker, 2007; Chow, Ram, Boker, Fujita, & Clore, 2005; Driver et al., 2017; Oud & 

Jansen, 2000; Voelkle et al., 2012). This is due to the fact that it allows the correct treatment 

of unequal measurement intervals, for example. Translating the discrete-time AR(1) model 

into its continuous-time variant has proven to be rather difficult. Using standard approaches 

to specify the continuous-time AR(1) model, such as SEMs, relies on non-standard 

extensions of the SEM framework (Oud & Jansen, 2000) or approximate solutions (Boker, 

2007). In contrast, specifying the continuous-time AR(1) model as a GPPM is relatively 

effortless. We simply employ a continuous representation of time and slightly modify the 

mean and kernel functions in the following way: 

		 

m(t ;θ )= b0
1−b12

k(t ,t + r)= exp b1r( ) σ
ε

2

1−b12  (6)

 

We have exchanged 		b1
r  by 		exp b1r( ) . Importantly, the distance between two measurements 	r  

is allowed to be a continuous value here, while it needs to be discrete in Equation (5). For a 

more detailed treatment of this topic including a proof that these mean and kernel functions 

represent the continuous-time AR(1) model, see Karch (2016, Chapter 4.2.1). 
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The modular nature of GPPM can also be used to combine the AR(1) model (Equation (6)) 

and the LGCM (Equation (5)). One simply has to add the two models: 

		 

m(t ;θ )= µb0 + µb1t

k(s ,t)=σ b0

2 +σ b0 ,b1
(s +t)+σ b1

2 st +exp b1 |s −t |( ) σ
ε

2

1−b12
  

This model can be interpreted as the LGCM with AR(1)-correlated error terms. It accounts 

for auto-correlations between error terms as they often occur in longitudinal panel studies 

(Sivo, Fan, & Witta, 2005). If the auto-correlations are not corrected for, they will bias 

parameter estimation (Sivo et al., 2005). For a full demonstration of this model based on 

positive affect data from the COGITO study (Schmiedek, Bauer, Lövdén, Brose, & 

Lindenberger, 2010), an intensive longitudinal data set, see Karch (2016, Chapter 4.2.2). On 

the COGITO study data, the LGCM with AR(1)-correlated errors was selected over the 

regular LGCM by all employed model-scoring methods, confirming that this model is indeed 

more appropriate for some longitudinal data sets.  

 

Smoothing Spline: Extension to Panel Model 

Recently, generalized additive modeling (Wood, 2006) has been introduced as a non-

parametric alternative for modeling psychological time series data (Bringmann et al., 2017; 

McKeown & Sneddon, 2014; Shadish et al., 2014; Sullivan et al., 2015). The core technique 

utilized by generalized additive modeling is the smoothing spline (Hastie, Tibshirani, & 

Friedman, 2009, Chapter 5.4). In this section, we will demonstrate that GPPM is also able to 

implement this non-parametric technique. By formulating splines as GPPM, we translate it 

from a nonparametric function fitting approach into a parametric statistical model. This has 

the advantage that more inference methods can be leveraged (for example Bayesian 
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inference). More importantly, the GPPM representation permits the application of smoothing 

splines for the analysis of panel data. The relationship between GPR and smoothing splines is 

discussed in detail by Seeger (1999). 

 

The starting point for smoothing splines is again the linear growth model introduced at the 

beginning of this paper: 

		 Y(t)= b0 +b1t +εt . 

Here, from a least-squares perspective, we are trying to find a function 		f (t)  such that the 

residual sums of squares 

		t∈{t1 ,…,tT }
∑ yt − f (t)( )2  

is minimized. As candidates, we only consider functions of the form 		f (t)= b0 +b1t , that is, 

linear functions. 

 

For smoothing splines the residual sums of squares are also minimized. However, “all 

functions” (technically, only those functions that have two continuous derivatives) are 

considered as candidates, thus making it a non-parametric method. To avoid overfitting by 

always selecting a function that perfectly fits the data, an additional constraint favoring 

smooth functions is added: 		 ′′f∫ (t)2dt . Thus, smoothness is quantified here as the average-

squared second derivative, as denoted by the double prime, that is, a monotonic function of 

the average-squared change in change. The complete term to minimize is then 

 
		t∈{t1 ,…,tT }
∑ yt − f (t)( )2 +λ ′′f∫ (t)2dt . (7) 
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The positive scalar λ  controls the compromise between model fit and smoothness. λ =∞  

results in a flat line while 	λ =0  yields any function that fits the data perfectly – and such a 

function always exists as the set of all functions is considered. The function 		g(t)  that 

minimizes Equation (7) is called a smoothing spline. 

 

To find the smoothing spline 		g(t) , the following result can be employed, which transforms 

this hard non-parametric problem into a solvable penalized regression model. It can be shown 

that the smoothing spline 		g(t)  is a natural cubic spline (Hastie & Tibshirani, 1990, Chapter 

2.10). That is, 		g(t)  can be written as 

 		
g(t)=

k=1

T

∑bkhk(t) ,   

where 		hk(t)  is a T-dimensional set of basis functions representing the natural cubic spline. It 

follows that the penalty term that punishes smoothness can be rewritten as follows (Wood, 

2006, p. 140, Exercise 7):  

		 ′′f∫ (t)2dt = b⊤Sb  

with 		 b= b1 ,…,bT⎡⎣ ⎤⎦
⊤

 and 		 S = d∫ (t)d(t)⊤dt , where 		dk(t)= ′′hk ..(t) . For notational simplicity, 

we introduce the matrix 	 X ∈!T×T with 		Xlk = hk(tl ) . Equation (7) simplifies to the following 

penalized regression problem   

 		 || y − Xb||+λb
⊤Sb , 

which has the minimizer  

 		 b̂= X⊤X +λS( )−1 X⊤ y . (8) 

 



  Gaussian Process Panel Modeling (GPPM) 
 

 31 

As the first step of translating smoothing splines into a GPPM, we utilize the ability of 

Bayesian regression to implement penalized regression (Bishop, 2006, Chapter 3.3.1). Linear 

regression written in the Bayesian notation amounts to the likelihood function

		 p( y |X ,b,σ ε
2)= N ( y;Xb,σ

ε

2) . As the prior for the regression coefficients weights, we use 

		 p(b)= N (b;0,Σp)  here. The maximum a-posteriori estimate for the regression weights is 

		 b̂= X⊤X +σ
ε

2Σp
−1( )X⊤ y . 

(for the formula, see Rasmussen & Williams, 2006, p. 9). By setting 		Σp
−1 = S  and 	 σ ε

2 = λ , we 

obtain Equation (8).  

 

As the next step, this Bayesian regression model needs to be translated into a GPR model. 

This is covered in depth by Rasmussen and Williams (2006, Chapter 2). In the supplement, 

we demonstrate how GPPM software is able to implement smoothing splines by providing a 

GPPM reimplementation of the example presented by Wood (2006, Chapter 3.2). By 

representing splines as GPPM, the optimization problem has been turned into a statistical 

model. Thus, instead of applying the traditional cross-validation to optimize the parameter λ , 

we can now also use other methods such as model evidence maximization, which is favored 

by some (cf. Bishop, 2006). 

 

Besides being able to represent spline models as parametric statistical models instead of a 

nonparametric optimization problem, GPPM also allows their extension. Specifically, it is 

possible to formulate a panel spline model. In the context of time series modeling, the 

smoothing parameter λ  is optimized using the respective time series. However, if the time 

series is embedded in a panel data set, it might be better to take all of the participants’ data 
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into account to find a smoothing parameter that is optimal for everyone, in order to counteract 

overfitting. This amounts to the hypothesis that all person-level time series share the same 

compromise between smoothness and model fit, which nevertheless allows for considerable 

heterogeneity in the form of the person-level time series and represents a much broader 

assumption than those implemented by LGCMs, for example.  

 

To illustrate that this model is still able to fit relatively complex population models, we 

generated data according to a quadratic model: 

		 Yi(t)= b0i +b2it
2 +εit , [b0 ,b2]⊤~N (0,I), εit ~N (0,.05)  (8) 

Thus, both the intercept and the coefficient of the quadratic function varied between persons. 

We fitted the panel spline model to these data and explored the fit of the model visually based 

on three randomly selected persons. Figure 3 shows that the panel spline model indeed fits 

well for all three persons.  

 

Modeling Smoothness with Squared Exponential Kernels 

Probably the most popular model in GPR is the so-called squared exponential model 

(Rasmussen & Williams, 2006, p. 83) 

		

m(t ;θ ) = 0

k(s ,t ;θ ) = σ 2exp − (s −t)
2

ρ
⎛

⎝⎜
⎞

⎠⎟
, 

with the length scale 	ρ >0  being a parameter that controls how rapidly the auto-covariance 

declines and the signal variance 	σ 2
  representing the variance at each time point. The squared 

exponential model serves as a local smoother, for which the locality is defined via the length 
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scale. The smaller the length scale is, the greater the covariance between two equidistant time 

points, and the greater the trajectory’s smoothness. 

 

Both the squared exponential model and the smoothing spline model are smoothers. 

However, they differ in the ways they formalize smoothness. Which method is better will 

always depend on the actual data set (Duda, Hart, & Stork, 2001, Chapter 9.2).  

 

Interestingly, the GPPM representation of the AR(1) model also reveals a similarity between 

the squared exponential and the autoregressive model. The AR(1) model kernel can be 

reparametrized as follows  

		
k(s ,t ;θ )=σ 2exp −|s −t |

ρ
⎛
⎝⎜

⎞
⎠⎟

.  

Thus, the kernel function representing the AR(1) model and the squared exponential model 

only differ in the distance function employed. The squared exponential function employs the 

exponential squared distance function 
		
exp − (s −t)

2

ρ
⎛

⎝⎜
⎞

⎠⎟
 whereas the AR(1) model employs the 

exponential distance function 
		
exp −|s −t |

ρ
⎛
⎝⎜

⎞
⎠⎟

. Karch (2016, Chapter 4.2.1) covered this topic 

in depth and showed that the squared exponential model may yield a better fit to a dataset that 

was previously thought to adhere to an AR(1) model, suggesting that it might not only be a 

worthwhile alternative to the recently introduced method of smoothing splines but also to the  

established AR(1) model. 

 

In Figure 4, we compare the predictive means obtained by the panel extensions of the squared 

exponential model, the autoregressive model, and the spline model. As a basis for 
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comparison, we again used the population model introduced in Equation (8) but added more 

noise (	 σ ε
2 = .5 ) to induce differences between the methods. The predictions for the three 

individuals clearly differ by model. Both the spline and the squared exponential model 

essentially fall back to fitting a line per person. For the spline model, this is relatively easy to 

understand. The amount of noise in combination with the relatively few measurements per 

person does not justify a more complex model than a line in terms of compromise between 

smoothness and model fit. In contrast, the predictive mean obtained by the AR(1) model is 

considerably more complex and not smooth. 

 

Summary and Discussion 

Summary 

In this paper, we introduced the novel longitudinal panel data modeling method GPPM. The 

main advantage of GPPM is its flexibility with regard to the specification of the within-

person model, which makes it possible to formulate models appropriate to complex situations 

for which traditional methods might not work adequately. We have shown some of the 

possibilities that this flexibility opens up. 

 

Throughout this manuscript, we have demonstrated how the combination rules introduced for 

temporal GPRs can be utilized to form novel GPPMs based on existing models that are 

popular in psychology. Another promising avenue in this context is to construct novel models 

based on (a combination of) existing temporal GPR models (Duvenaud, 2014; Roberts et al., 

2013). We have only scratched the surface of this subject by discussing the utility of the 

squared exponential model for psychological research. 
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We have also emphasized the capability of GPPM to obtain person-specific predictions 

easily. This makes it possible to estimate person-specific trajectories that also take into 

account the data of all other study participants. Person-specific predictions can, for example, 

be used as screening tools for interventions by identifying those people whose trajectory is at 

risk of moving into an unsatisfactory direction. Of course, GPPM is not the only method that 

yields person-specific predictions. However, formulating the model on a Gaussian process in 

terms of mean and kernel functions results in an easy and natural method. All that needs to be 

done is to compute the conditional distribution of a multivariate Gaussian. In contrast, lSEM 

requires introduction of a latent variable into the model for every time point for which a 

prediction is desired. Different methods can be applied to obtain a prediction for this latent 

variable (Estabrook & Neale, 2013). Technically, the GPPM predictive distribution is 

equivalent to the expected posterior method in SEM (Estabrook & Neale, 2013).  

 

In the context of the AR(1) model, we discussed that GPPM is inherently a continuous-time 

modeling technique and thus takes differences in measurement intervals into account 

adequately. We also demonstrated that GPPM permits extension of the LGCM with AR(1)-

correlated errors. The same mechanism can be used to augment any GPPM with AR(1)-

correlated, or alternative error structures, such as the squared exponential kernel or the spline 

kernel. Modeling smooth residuals in this way may be a good nonparametric approach to take 

into account the unmodeled complexity of the data. 

 

We have shown that GPPM can also represent exploratory generalized additive models and 

demonstrated that GPPM representation affords the extension of smoothing splines to a panel 

modeling technique.  
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We proceeded with the squared exponential kernel, which is arguably the most used kernel in 

statistical learning. It is typically used as a universal smoothing method like smoothing 

splines. We also showed that the squared exponential kernel can be regarded as an alternative 

to smoothing splines but also to AR(1) models. 

 

Besides the squared exponential model, many other models only expressible by GPPM could 

provide new modeling approaches for longitudinal psychology data. Roberts et al. (2013) 

provides an overview of models used for temporal GPR and Duvenaud (2014) reviews those 

for regular GPR. Among the most promising candidates are periodic models. In the field of 

psychology these might be useful for modeling oscillations, for example, in brain signals 

measured with electroencephalography (EEG) or in emotion regulation data (Chow et al., 

2005). 

 

Essentially, as a result of its flexibility, GPPM frees researchers from the boundaries set by 

specific methods. Although we consider this additional freedom as an important step forward, 

it also highlights the importance of an appropriate model specification. Ideally, the model is 

formulated based on a careful translation of substantive theory into mathematical formalism 

and then checked for correctness. The kernel language is beneficial for this task, as it is able 

to express more models than traditional methods. At the same time, GPPM also provides the 

means for exploratory analysis, for example, by applying the spline model or the squared 

exponential model.  

  

GPPM subsumes and generalizes a variety of traditional longitudinal panel modeling 

methods. Thus, GPPM can be regarded as a unification of existing panel modeling methods 
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in one consistent formal framework, the kernel language. Together with the combination 

rules we introduced, GPPM allows researchers to create hybrid models that consist of a 

mixture of models from different traditions, such as the LGCM with AR(1)-correlated errors. 

 

The fact that GPPM can represent many different models in one common formalism can also 

be utilized for didactical purposes. Comparisons between different methods can be performed 

more easily as they are not hindered by differences in the modeling language. Fundamentally, 

GPPM can be used to understand the connections between apparently different methods. For 

example, the GPPM representations of the smoothing spline and LGCM presented above 

could be used to investigate the communalities between these two seemingly different 

methods in more depth. Although we emphasized the connection between GPPM and SEM, 

there is also work connecting GPR to many other methods stemming from supervised 

statistical learning such as support vector machines or artificial neural networks (Rasmussen 

& Williams, 2006, Chapter 6). One interesting result that follows from the identification of 

SEM as a special case of GPPM, and GPPM’s close relation to Bayesian kernel regression, is 

that every conventional SEM is equivalent to linear regression in some high-dimensional 

space. Thus, GPPM provides a good starting point to better understand the differences and 

commonalities among many methods such as SEM and nonlinear regression, both popular in 

psychology, but also support vector machines, as used in statistical learning.  

 

Limitations and Future Work 

GPPM also has disadvantages. In contrast to lSEM, GPPM lacks a graphical model 

representation. SEMs can be represented by graphical representations as they describe linear 

relationships between a finite number of variables. GPPM, on the other hand, describes 
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arbitrary relationships between an infinite number of variables within a stochastic process. 

Thus, it is not straightforward to come up with a graphical representation for GPPMs. At the 

same time, describing a model on the level of a stochastic process is one of the core 

advantages of GPPM that contributes to its favorable properties. 

 
While being very flexible with regard to the formulation of the within-person model and also 

more flexible with regard to the formulation of the between-person model than classical 

methods such as lSEM and hierarchical linear model, GPPM is still rather limited in terms of 

the specification of the between-person model. A true between-person model, that is, a set of 

candidate probability distributions, can only be specified using Gaussian distributions, and 

only for linear parameters of the mean function. However, deterministic between-person 

models, that is, a set of functions that describe how a person-specific parameter changes 

depending on some person-level variables, can be formulated for every parameter. 

Nevertheless, we would like to be able to specify true between-person models for all 

parameters. It seems, for example, implausible and inconsistent to assume that parameters 

such as the autoregressive parameter 		b1  in the AR(1) model exhibits no between-person 

variation, while also assuming that all parameters of the linear growth model vary between 

persons, as is the case when using LGCM. The multi-subject state-space modeling 

framework, which is less flexible with regard to the within-person model than GPPM, has 

recently been extended to allow specification of a between-person model for all parameters 

(Asparouhov et al., 2017; Driver & Voelkle, in press). This includes the equivalents of non-

linear parameters of the mean function and parameters of the kernel function. We plan to 

extend the flexibility of GPPM with regard to the between-person model in the near future. 

 



  Gaussian Process Panel Modeling (GPPM) 
 

 39 

Of course, GPPM does not include every modeling approach for longitudinal data as a special 

case. For example, nonlinear relationships between latent and observed variables (Lee & Zhu, 

2002) are not possible. If a nonlinear SEM is used to formulate a longitudinal model, the 

resulting stochastic process is typically no longer a Gaussian process. This results from the 

fact that transforming a Gaussian variable using a nonlinear function typically does not result 

in a Gaussian random variable. Given the general assumption that a Gaussian process 

generates the trajectories is fulfilled, however, GPPM is the most flexible approach possible 

by definition.  

 

As introduced here, GPPM is only suitable for continuous but not for nominal and ordinal 

data. In GPR, in equivalence to generalized linear models, so-called link functions 

(Rasmussen & Williams, 2006, Chapters 3 and 9.3) are used to accommodate non-Gaussian 

data. This complicates parameter estimation. However, the appropriate algorithms have been 

developed (Rasmussen & Williams, 2006). Adapting them for use in GPPM remains to be 

done in the future. 

 

For didactical reasons, we have focused on univariate GPPMs here. However, in practice the 

joint development of multiple variables is often of interest and requires multivariate models. 

The specification of multivariate GPPMs is possible. Beyond the auto-kernels, which restrict 

the form of the auto-covariance for each variable pair, this requires definition of a cross-

kernel, which restricts the form of the cross-covariance. 

 

Technological progress enables us to obtain unprecedented amounts of measurements per 

person, and therefore, speeding up model-fitting algorithms for longitudinal models is 

becoming increasingly important. GPPM has much potential in this regard. Karch (2016, 
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Chapter 4.3.1) performed a theoretical analysis, which revealed that the standard GPPM 

fitting algorithm already avoids certain costly computations necessary for SEM fitting 

algorithms. However, the overall running time is about equal for SEM and GPPM, as the 

number of measurements 	T  contributes cubically 		O(T
3)  in both frameworks. Various 

approximations for faster model fitting have been proposed for Gaussian process regression 

(Hartikainen & Särkkä, 2010; Lawrence, Seeger, & Herbrich, 2003; Leithead & Zhang, 2007; 

Quiñonero-Candela & Rasmussen, 2005; Zhang & Leithead, 2007) since it is typically 

applied to substantially larger data sets than SEM. Transferring these approximation 

algorithms to make them applicable to GPPM could substantially decrease the amount of 

time needed to fit GPPMs, and consequently SEMs. Whether the resulting approximation 

error is in an acceptable range needs to be investigated.  

 

GPPM also provides many opportunities for exploratory data analysis. As we have discussed, 

the squared exponential model can be considered an alternative to the nonparametric 

regression technique smoothing splines and is able to fit any continuous trajectory. In the 

context of GPR models, exploratory analysis has been taken one step further by an algorithm 

that automatically learns the kernel function from data and then describes the model in 

natural language (Lloyd, Duvenaud, Grosse, Tenenbaum, & Ghahramani, 2014). Extending 

this algorithm for use in GPPM would allow the appropriate model to be learned on the basis 

of a longitudinal panel data set, including a natural language description of the model, and 

thus facilitate exploratory data analysis. 
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Conclusion 

In this paper, we have presented GPPM, a novel flexible method for modeling longitudinal 

data based on the Bayesian non-parametric method of Gaussian process regression. The 

overarching advantage of this new method is its flexibility in specifying a within-person 

model. Due to lack of space, we could only cover a fraction of the possibilities that GPPM 

offers but hope to spawn interest and further research into kernel-based longitudinal modeling 

of psychological panel data. 
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Figure Captions 
 

Figure 1.  Extended SEM representation of generic GPPM. Here, 	
tij  refers to the time 

point of the 	j -th observation of person 	i . 

 

Figure 2.  Visualization of the person-specific predictive distribution obtained using a 

LGCM and an exemplary individual. On the left, the predictive distribution 

without taking the person’s data into account is shown. On the right, the data 

are taken into account. The observed data are marked as squares (left) and 

circles (right) and are identical. The red line describes the mean of the 

predictive distribution and the shaded area delineates the variance. The black 

lines demarcate twice the point-wise standard deviation, that is, the shaded 

area is a 95% credibility region. 

 

Figure 3.  Visualization of the success of the spline model. The fitting result for one 

person is visualized in each of the panels. The mean of the predictive 

distribution is shown in brown. The true underlying latent process, which is 

corrupted by measurement error, is a quadratic and shown in purple. The 

circles represent the observations.  

 

Figure 4.  Visualization of the differences between the squared exponential, the spline, 

and the AR(1) model. The fitting results for one person are shown in each of 

the panels. The mean of the predictive distribution is shown in brown for the 

spline model, in red for the squared exponential model, and in green for the 

AR(1) model. The true underlying latent process, which is corrupted by 

measurement error, is a quadratic and shown in purple. The circles represent 

the observations. 
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Figure 3 
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Figure 4 
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Appendix A 
Temporal GPR is typically used within the Bayesian inference framework whereas we have 

introduced it within a frequentist framework. When using temporal GPR in conjunction with 

frequentist inference, the model is mostly specified in the mean function, and the kernel 

function only represents the measurement error. In contrast to that, when using temporal GPR 

in conjunction with Bayesian inference, the model is mostly specified in the kernel function. 

We will explain why this is based on an example. 

If we take the linear model without measurement error introduced at the beginning 

		Y(t)= b0 +b1t  

and augment it with the prior 		 [b0 ,b1]
⊤~N (0,σ b

2I)  the temporal GPR representation changes 

from  

		
m(t ;θ )= b0 +b1t
k(s ,t ;θ )=0

  

to 

		

m(t ;θ )=0
k(s ,t ;θ )=σ b

2 +σ b
2st

  

Thus, the core part of the model has moved from the mean function to the kernel function. 

This was a direct result of assuming a zero mean Gaussian prior on the regression weights. 

This is also the reason why most GPR models have constant or even zero mean functions, the 

assumptions are mostly encoded in the kernel function, and why different models are mostly 

characterized by their kernel function. Interestingly, both the mean and the kernel function 

are typically important for model specification in GPPM. 
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Appendix B 

Let 	Xi  be the predictor matrix for person 	i . That, is 	Xi  has the predictor vector 		 xi1
⊤ ,…,xiTi

⊤  

as rows. The vector	yi  contains the observed time series for person 	i . For notational 

convenience, we define 

 

		  

M(Xi ;θ ) = [m(xi1;θ ),m(xi2;θ ),…,m(xiTi ;θ )]
⊤

K(Xi ) =

k(xi1 ,xi1) k(xi1 ,xi2) … k(xi1xiTi )
k(xi2 ,xi1) k(xi2 ,xi2) !

! "
k(xiJ ,xiTi ) … k(xiJ ,xiTi )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 . 

   

  

 

Maximum likelihood estimation 

For a given data set 			D= (X ,y) , with 		X = (X1 ,…,XN )  and 			y = ( y1 ,…, yN )  the likelihood 

function for a GPPM is  

 
			 
L(θ |D)= p(y|X ,θ )=

i=1

N

∏N ( yi ;M(Xi ;θ ),K(Xi ,Xi ;θ )).   

The maximum likelihood estimate is thus 		θ̂ = argmaxθ∈ΘL(θ |D).   

 

For most GPPMs, the maximum of the likelihood function cannot be derived analytically. 

As a remedy, numerical optimization methods are used.  
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Likelihood-Ratio Test 

One important condition for the likelihood-ratio test is that the null hypothesis can be 

expressed by a constraint g(θ) = 0. A GPPM can be restricted in such a way. For the 

likelihood-ratio test to be valid, i.e., for the test statistic to asymptotically converge to a Chi-

squared distribution when the null hypothesis is true, both the restricted maximum likelihood 

(ML) estimator 		θ̂R(Y )and the unrestricted estimator 		θ̂R(Y )  need to be asymptotically 

Gaussian (Taboga, 2012a).   

A complete proof of the asymptotical normality of the estimators is not within the scope of 

this manuscript. However, we will provide the intuition for the proof: We assume that the 

number of time points observed for each person is equal. It is known that the ML estimator 

and the restricted ML estimator are asymptotically Gaussian for SEMs. Both a SEM and the 

statistical model implied by GPPM for a particular data set 			D= (X ,y)  can be written in the 

form  

			 
p(y|X )∈ N

i=1

N

∏ ( yi ;µ(Xi ;θ ),Σ(Xi ;θ ):θ ∈Θ
⎧
⎨
⎩

⎫
⎬
⎭

 

For a SEM, the implied mean 		µ(Xi ;θ )  and covariance matrix 		Σ(Xi ;θ )  are the same for every 

person. Furthermore, the mean 		µ(Xi ;θ )  and the covariance matrix 		Σ(Xi ;θ )  must correspond 

to a set of linear structural equations with Gaussian noise. In contrast to that, the implied 

mean 		µ(Xi ;θ )  and covariance matrix 		Σ(Xi ;θ )  for GPPMs may be different for every person 

and can in principle have any form (as long as 		Σ(Xi ;θ )  is a valid covariance matrix for each 

parameter value θ ).  

Thus, GPPM extends SEM in two ways: first, there is no restriction on the parameterization 
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of the mean vector and the covariance matrix, and second, the mean and the covariance 

matrix may be different for every person. The first extension does not violate any of the 

assumptions for asymptotic normality (Taboga, 2012b). The second extension violates the 

assumption of an independent and identical distribution. However, since the person-specific 

differences in the mean and the covariance matrix are produced by entering the predictors 

into template mean and covariance matrices, the conditional independent and identically 

distributed assumption still holds. This assumption is sufficient for the restricted as well as 

the unrestricted (conditional) maximum likelihood estimator to be Gaussian.  

Confidence Regions 

The validity of likelihood-based confidence intervals and regions follows directly from the 

validity of the likelihood-ratio test (Pek & Wu, 2015).  
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Appendix C 

Proof that the GPPM representation of the discrete-time AR(1) model is  

		  

E Yj( ) = b0
1−b12

:=m( j;θ )

Cov Yj ,Yj+r( ) = b1r σ
ε

2

1−b12
:= k( j , j + r;θ )

 

Because of the stationarity it follows that 		 E Yj( ) = E Yj−1( ) =:µ . 

 

		  

E Yj( ) =E b0 +b1Yj−1 +εj( )
⇒ µ = b0 +b1µ +0
⇔ (1−b1)µ = b0

⇔ µ =
b0

1−b1

 

The calculation of the auto-covariance is slightly more complex. First, we calculate the 

variance. We use the same strategy as for the expectation. From stationarity, it follows that 

		Var Yj( ) = Var Yj−1( ) =:σ 2 . 

		 

Var Yj( ) = Var b0 +b1Yj−1 +εj( )
⇒σ 2 = b1

2σ 2 +σ
ε

2

⇔ (1−b12)σ 2 =σ
ε

2

⇔σ 2 =
σ
ε

2

(1−b12)

  

Now, we are equipped to calculate the auto-covariance. First note that only the mean depends 

on the parameter !!b0 ; not the variance. Thus, to calculate the auto-covariance we can set 

!!b0 =0 .  
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Consequently, 

 

!! 

Yj+1 = b1Yj +εj+1
Yj+2 = b1

2Yj +b1εj+1 +εj+2
Yj+3 = b1

3Yj +b1
2εj+1 +b1εj+2+εj+3

Yj+r = b1
rYj + b1

iεj+r−i
i=0

r−1

∑

  

Thus,  

!! 
Cov Yj ,Yj+r( ) =Cov Yj ,b1rYj + b1

iεj+r−i
i=0

r−1

∑⎛
⎝⎜

⎞
⎠⎟

  

However, since all ! 
εj+r−i  are independent of !

Yj  this simplifies to: 

!! 
Cov Yj ,Yj+r( ) = Cov Yj ,b1rYj( )= b1rCov Yj ,Yj( ) = b1rσ 2 = b1

r σ
ε

2

(1−b12)
 


