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Figure S1. The wfAll-Cheng pipeline selected its model 1 among all models contributed by the WeFold pipelines as 
well as servers models. (Top left) Of the 67 CASP12 domains released so far, the wfAll-Cheng pipeline selected 22 
models submitted by pipeline wfMESHI_TIGRESS and 18 models submitted by pipeline wfMESHI-Seok as model 
1. (Top right) Of the 39 FM CASP12 domains released so far, the wfAll-Cheng pipeline selected 14 models 
submitted by pipeline wfMESHI_TIGRESS and 9 models submitted by pipeline wfMESHI-Seok as model 1. 
(Bottom left) Of the 16 TBM/FM CASP12 domains released so far, the wfAll-Cheng pipeline selected 6 models 
submitted by pipeline wfMESHI_TIGRESS and 5 models submitted by pipeline wfMESHI-Seok as model 1. 
(Bottom right) Of the 12 TBM CASP12 domains released so far, the wfAll-Cheng pipeline selected 4 models 
submitted by pipeline wfMESHI_Seok and 2 models submitted by pipeline wfMESHI-TIGRESS as model 1 
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Table ST1: The GDT_TS loss for the different steps in the complete clustering process for TRXXX targets, as 
measured by comparing the GDT_TS difference between the best GDT_TS before and after the different stages; 
energy is loss after applying the Rosetta energy filter cutoff, rmsd1 is the loss after applying the filter that excluded 
models too different from the lowest Rosetta energy model, energy+rmsd1 is the cumulative loss by applying both 
energy and rmsd1 filters, clustering is the loss after clustering, and Total loss refers to the complete cumulative loss 
by after both filtering and clustering. 

stages energy rmsd1  Clustering  

combo 
stages 

  energy+rmsd1  Total loss 

TR280 -1.1 0.0 -1.1 -1.8 -2.9 

TR283 -3.7 0.0 -3.7 -1.1 -4.8 

TR759 -2.8 0.0 -2.8 -1.6 -4.4 

TR760 -18.0 -16.7 -18.0 -1.2 -19.3 

TR765 -1.0 0.0 -1.0 -0.7 -1.7 

TR768 -1.8 0.0 -1.8 -2.1 -3.8 

TR769 -3.4 0.0 -3.4 -3.9 -7.2 

TR774 -3.0 0.0 -3.0 -1.0 -4.0 

TR780 -2.9 0.0 -2.9 -1.1 -4.0 

TR782 -1.1 0.0 -1.1 -1.6 -2.7 

TR792 -0.6 0.0 -0.6 -3.1 -3.8 

TR803 -1.5 0.0 -1.5 0.0 -1.5 

TR811 -1.7 0.0 -1.7 -1.4 -3.1 

TR816 -4.0 0.0 -4.0 -0.4 -4.4 

TR822 -2.9 0.0 -2.9 -2.2 -5.0 

TR829 -0.8 0.0 -0.8 -2.2 -3.0 

TR833 -3.9 0.0 -3.9 -1.9 -5.8 

TR837 -2.1 0.0 -2.1 -3.1 -5.2 

TR848 0.0 0.0 -6.7 -1.6 -8.3 

TR854 -5.4 0.0 -5.4 -1.7 -7.1 

TR856 -3.1 0.0 -3.1 -2.1 -5.2 

TR857 0.0 0.0 0.0 -2.1 -2.1 

Median -2.5 0.0 -2.8 -1.7 -4.2 
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Description of the WeFold2 Pipelines 	

The Keasar-Foldit pipelines: wfKsrFdit-BW-Sk-BW and wfKsrFdit-BW-Sk-McG  

As their names suggest, the wfKsrFdit-BW-Sk-BW and wfKsrFdit-BW-Sk-McG pipelines shared 
most of their components, splitting only in their last step. They started from CASP server 
models, which were selected by Keasar. A subset of those models was provided to Foldit players, 
who sampled around and between them generating a massive set of decoys. This set was then 
shrunk to a manageable size of around one hundred by filtering and clustering performed by 
Wallner. After refinement of the cluster centers by Seok group, the two pipelines split.  In one 
branch (wfKsrFdit-BW-Sk-BW) Wallner group selected the five submitted models from the set of 
refined cluster centers, in the other branch the selection was done by McGuffin group. Below we 
describe this process in detail. 

Sampling step  

The first step in these pipelines was the selection of 10-20 server models as starting points. The 
selection protocol, developed by the Keasar group is thoroughly discussed in [1]. Briefly, the 
protocol starts with a preprocessing step of energy minimization, which normalizes the server 
models by removing clashes and other distortions.  Then, a large set of structural features is fed 
into an ensemble-learning predictor that was trained on a curated subset of CASP8, CASP9, and 
CASP10 server models. The list of top scoring models was uploaded to the WeFold site.   

Up to five of those Keasar's top scoring models were provided as starting models in the Foldit 
game [2], allowing players to create hybrid predictions by combining different server models 
together in the same puzzle. Initially, Keasar’s top five ranked server predictions were selected, 
so long as they were not too similar (i.e. >2.5 Å RMSD) to one another, in order to provide Foldit 
players with a conformationally diverse set of starting structures. As CASP11 progressed, 
however, it became apparent that Foldit players were converging on server predictions that had 
been generated using the Rosetta energy function [3] (such predictions appear near-optimal in 
Foldit, which also uses the Rosetta energy function). For example, if players were given five of 
Keasar’s top-ranked server predictions for a particular CASP target, but one of those five was a 
RosettaServer model, the top-scoring Foldit solutions would all originate from the RosettaServer 
model and not from the other four starting structures. This was not exclusive to RosettaServer 
predictions, as this occurred with any server models that had been generated using the Rosetta 
energy function. 

Since the in-game Foldit score is entirely based on Rosetta, from a player perspective this 
resulted in two different classes of server predictions: those that scored well in Foldit and those 
that scored poorly when initially loaded into the game. It is not surprising that players found it 
easier to improve Rosetta-based server predictions than those with very poor initial Foldit scores. 
Ideally, these two different classes of server models would have split into two separate Foldit 
puzzles for each CASP11 target: one with only Rosetta-based predictions and one without. This 
was not feasible with the time constraints of the CASP experiment, as only a handful of CASP11 
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targets were attempted in the first place, due to the throughput limitations of a typical personal 
computer running Foldit. Instead of posting puzzles for both classes of server models, one class 
was selected based on the majority of Keasar’s top five ranked server predictions (e.g., if 3 out of 
Keasar’s top 5 models were non-Rosetta models, only those 3 server predictions were given to 
the players and the 2 Rosetta-based models were ignored). Each CASP11 Foldit puzzle was 
typically accessible to players for 5-8 days, along with a sequence logo of secondary structure 
predictions generated by the SAM-T08 server [4]. Overall, Foldit players generated between 96K 
and 240K models per target (166K on average), which were uploaded onto the WeFold gateway. 

Clustering step  

By the time the numerous Keasar-Foldit models were available, the submission deadline was 
only one week away, too tight to allow computationally intensive assessment of their quality and 
refinement (discussed below). Therefore, in order to reduce the models ensemble to a 
manageable size, Wallner applied a two-stage intermediate clustering step.  

The clustering aimed at finding 100 clusters, representing the structural space of the initial 
models. The Foldit players generated on average 166,000 models per target, but due to memory 
and time-constraints the clustering protocol was limited to at most 30,000 input models. Thus, 
before clustering the initial model ensemble had to be reduced, quite significantly, to between 
69%-88% of the original ensemble size. The filtering needed to be relatively fast, since the 
clustering needed to be completed within one day to leave enough time for the other methods 
further down the pipelines. We therefore applied a Rosetta energy filter (energy filter) and a filter 
based on the RMSD distance to the model with lowest Rosetta energy (rmsd1 filter). It was 
observed that some models were almost identical, probably a result from players sharing and 
working on the same model. This would add an unwanted bias so these models were excluded 
before applying the energy and rmsd1 filters, by requiring that models with almost identical 
Rosetta energy (energy difference < 0.01) need to be at least 0.1Å different.	

To find the energy and rmsd1 filter cutoffs that would filter the required number of models, 
energy cutoffs ranging from median energy to lowest energy in 10 steps and RMSD distance to 
the lowest energy model in the range 5Å-10Å in 1Å steps were used. This filtering step ended up 
with around 30,000 models. The combination with the most relaxed cutoffs (highest energy and 
RMSD distance cutoff) for which 30,000 models passed the filters was chosen. Finally, four 
clustering runs with cluster radii 0.5Å, 1Å, 2Å, and 3Å were performed using Rosetta’s 
clustering application and cluster centers from the run with the total number of cluster centers 
closest to 100 were selected.	

Refinement step  

The sets of cluster centers were refined using a modified version of GalaxyRefine [5,6]. The 
refinement method is composed of three steps of initial optimization, relaxation, and model 
selection, as outlined in Figure S2. The number of runs for each model was reduced from 32 to 5 
compared to the original method to save computational cost because a large number of models 
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(~100) needed to be refined in the WeFold experiment.	

 
Figure S2. Modified GalaxyRefine flow chart for WeFold. 

Each model was first subjected to side chain optimization based on a graph-theory algorithm, 
and then relaxed by 22 times of side chain perturbations and subsequent short (0.6-ps) molecular 
dynamics (MD) simulations with a 4-fs time step. The total MD simulation time for this run is 
14.4-ps including 1.2-ps of pre-relaxation. For each initial model, 5 runs of the 14.4-ps relaxation 
were performed, and the lowest-energy model out of the 5 final MD snapshots was selected. The 
energy function for GalaxyRefine [5,6] consists of physics-based energy terms such as the 
CHARMM22-based molecular mechanics energy [7], FACTS solvation free energy [8], and 
knowledge-based energy terms such as hydrogen bond energy [9], dipolar DFIRE potential 
energy [10], and side-chain [11] and backbone torsion angle energy. The same energy function 
was used for side chain optimization and MD simulation.	

Selection steps  

The refined models were finally assessed and ranked by McGuffin’s ModFOLD5_single method 
and Wallner’s ProQ2 [12] method, which are described further below. We call the former 
pipeline wfKsrFdit-BW-Sk-McG and the latter wfKsrFdit-BW-Sk-BW. In pipeline wfKsrFdit-BW-
Sk-McG, Zhang’s models were additionally added to the pool of models for final ranking with 
ModFOLD5_single from target T0795 onwards.  

Selection by the ModFOLD5_single method. The latest version of the ModFOLD server 

[13,14,15] (ModFOLD5) was used to score and rank the final set of models for the wfKsrFdit-
BW-Sk-McG pipeline. The ModFOLD5 server is capable of working in quasi-single model 
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mode or in multiple-model/clustering mode. The first stage of the algorithm generates ~115-130 
Tertiary Structure (TS) models using the multi-template approach [16] which forms the basis of 
the IntFOLD3 server [17]. Usually, in the default server mode (ModFOLD5), a straightforward 
clustering approach is used whereby all submitted models are pooled together with the 
IntFOLD3 TS models and clustered using ModFOLDclust2 [18]. The global QA score output 
from ModFOLDclust2 is simply the mean of the global QA scores obtained from the 
ModFOLDclustQ method and the original ModFOLDclust method [13,19]. ModFOLDclustQ is 
similar to the previous ModFOLDclust method, however with ModFOLDclustQ a modified 
version of the structural alignment free Q-measure [20] is used instead of the TM-score [21], 
which is used by ModFOLDclust, in order to carry out all-against-all pairwise model 
comparisons. 	

The ModFOLD5 server also operates in a quasi-single model mode (ModFOLD5_single) 
whereby each 3D model is compared in isolation against the pool of reference IntFOLD3 models 
using a global and local scoring approach similar to that used for ModFOLDclust2. However, for 
the WeFold pipelines, because we were just submitting models for the Human/All groups targets, 
this meant that all of the CASP11 server models were available to us prior to submission. We 
therefore used the server models as the ModFOLD5_single reference comparison set for all 
submissions, instead of just the IntFOLD3 models. Following ranking with ModFOLD5_single, 
the per-residue error estimates, or local QA scores, were taken directly from ModFOLDclust and 
were added to the B-factor column in each model file. Finally, the top 5 models, ranked 
according to the ModFOLD5_single global score, were submitted. 

Selection by the ProQ2 method. A new implementation of ProQ2 [22] as a scoring function in 
Rosetta was used to score and rank the final set of models for the wfKsrFdit-BW-Sk-BW and 
wfZhng-Sk-BW (described in 2.1.2) pipelines. ProQ2 is a single-model method that estimates 
model accuracy using a support vector machine (SVM) to predict the local quality of a protein 
model by combining structural and sequence-based features calculated over a sequence window 
from the model (see the references for details). The local quality is measured by S-score [23] 
Si=1/(1+(di/3)2), where di is the distance deviation of residue in a superposition that maximize 
the sum of Si over the whole protein. For the case of ranking the local predicted Si-scores are 
summed to a global score from which the top 5 models are selected. In the official quality 
assessment category in CASP11, ProQ2 was one of the best if not the best single-model quality 
assessment method [24]. 

 

Foldit Players Pipelines: wf-AnthropicDreams, WeFold-Contenders, WeFold-GoScience, wf-
Void_Crushers, and WeFold-Wiskers  

Five Foldit-based teams requested the ability to select and submit their own CASP11 
submissions from a pool of their own team’s solutions. Each of these five teams was provided 
with any top-scoring solutions produced by team members, as well as team solutions that were 
flagged for special interest. This was a new feature added to Foldit after CASP10: a ‘Share with 
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Scientists’ button, allowing players to flag a particular prediction as interesting (even if it was 
not a top-scoring Foldit solution). 	

As Foldit does not allow different teams to share solutions with one another, these five CASP11 
teams were completely independent from one another. In the case that Foldit players built on 
previous work by other WeFold contributors (e.g. Keasar’s selection of server models), each 
Foldit-based team submitted predictions under a specialized WeFold alias: wf-AnthropicDreams, 
WeFold-Contenders, WeFold-GoScience, wf-Void_Crushers, and WeFold-Wiskers. 

 

The Zhang pipelines: wfZhng-Ksr and wfZhng-Sk-BW  

Zhang provided decoys for (assumed) single domain targets. These decoys had been generated 
by three pipelines: (1) I-TASSER server [25], (2) QUARK server [26], and (3) an interplay 
pipeline of I-TASSER and QUARK [27]. While the I-TASSER pipeline used a uniform 
template-based protocol for all targets, QUARK ran the ab initio protocol for hard targets and the 
template-based protocol for easy ones, where the category of the targets was decided 
automatically by the LOMETS threading programs [27,28]. These decoys should not be confused 
with models generated by Zhang’s human group, which was also based on an automated 
approach, but using models from other CASP servers [29,30]. In each pipeline, the initial 
conformations generated by the structure assembly simulations were clustered by SPICKER [31] 
and then refined by FG-MD [32]. Sets of 400-1550 full-atom models per target were pooled from 
the clusters of the three pipelines, and were made available to the WeFold groups at 
http://zhanglab.ccmb.med.umich.edu/decoys/casp11/. Due to the limited accuracy of the domain 
parsers, in particular for the hard targets [33], the Zhang group provided only the decoy sets for 
those targets that were deemed to be of a single domain by the servers. 

Zhang’s models were clustered by the Wallner group using the clustering application in Rosetta 
with cluster radii 0.5Å, 1Å, 2Å, and 3Å. No filtering prior to clustering was needed here since 
the total number of models was much smaller than in the case of Foldit. The cluster centers from 
the run, with the total number of cluster centers closest to 100 (based on the number of structures 
that the QA/scoring groups could handle at the time), were selected and served as the basis for 
two pipelines: wfZhng-Ksr and wfZhng-Sk-BW.  

The wfZhng-Ksr pipeline simply aimed to select the best five models out of the cluster centers, 
using MESHI-score, and submit them. In the alternative wfZhng-Sk-BW pipeline, Seok Lab 
refined the representatives from each cluster using GalaxyRefine [5] and the Wallner group 
selected the best 5 using ProQ2 [12].  

 

UNRES pipelines: wfCPUNK and wf-Baker-UNRES  

There were 2 UNRES-based pipelines: wfCPUNK and wf-Baker-UNRES and they mainly 
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differed in the distance restraints they used which were provided by (a) Floudas’ lab and (b) 
Baker’s lab respectively. The wfCPUNK procedure used was similar to that used during the 
CASP10 exercise [34] with modifications resulting from updates of its components. The wf-
Baker-UNRES pipeline was a new addition in CASP11 that started submitting targets from target 
T0812 onwards and, consequently, only submitted results for 10 targets.  

(a) For the wfCPUNK pipeline, the consensus secondary structure (SS) SVM model, conSSert 
[35], was utilized. conSSert uses as features the probabilities for coil, helix, and strand as 
predicted by PSSPRED [36], PSIPRED [37], RAPTORX [38], and SPINE-X [39]. conSSert 
consists of 3 one vs. all binary classifiers that are combined to provide a 3-class prediction. 
conSSert has been shown previously to provide significant improvements in the prediction of 
ordered secondary structure, especially for the prediction of strands [35].  

Tertiary contact prediction for the wfCPUNK pipeline was based on a consensus-template based 
approach. The procedure began with a SPARKS-X [39] run for the full target sequence and the 
calculation of a normalized Z-score, based on alignment span. The normalized Z-score allows for 
the identification of potential protein domain boundaries based on the definition of protein 
domains in the template library, and was utilized for the subsequent splitting of the target 
sequence into domains. SPARKS-X was used to produce a ranked list of templates for the 
sequence segments of each identified domain. Delaunay triangulation was applied to identify Cβ 
contacts in the top 25 structural templates. A consensus-score, based on a summation of the Z-
scores for every template in which a given contact was observed, was used to rank the contacts. 
For a given target, the consensus-scores were normalized by the maximum observed value, so 
that the scores range between 0 and 1.  

(b) All CASP related submissions to the GREMLIN webserver [40] were made public and 
provided to WeFold community. In addition to the predicted contacts, the webserver provides an 
overlay of the contacts on the top 10 HHsearch hits. If the top HHsearch [41] hits did not make a 
large portion of the predicted contacts, these targets were deemed worthy for human 
intervention. For each target multiple attempts were made to create an optimal alignment for 
contact prediction. This includes trimming the target sequences to conserved regions, trying 
different e-value cutoffs, iterations and different alignment generation software. The first scan of 
e-values was made using HHblits [42] using the UniProt [43] database from 2013_03. If not 
enough effective sequences were found (< 5 sequences per length) Jackhmmer [44] with a newer 
UniRef90 database from 2014_04 was used. The e-values tried include 1E-04, 1E-06, 1E-10, 1E-
20 and 1E-40. The iterations tried include 1, 2, 4 and 8. The default was 1E-10 with 4 iterations. 
After manual inspection of the results, the GREMLIN authors shared their preferred predictions 
on the WeFold forums.   
 
The restraints were imposed on the virtual-bond dihedral angles between the consecutive Cá 
atoms and virtual side-chain distances, respectively. The backbone virtual-bond-dihedral-angle 
restraints were assigned based on the secondary structure predicted by conSSert [35] (as 
described above). The boundaries of angle restraints were from 30o to 70o for the helical and 
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(1)	

from -220o to -140o or from 140o to 220o (or, alternatively, a continuous interval from 140o to 
220o when shifting the dihedral-angle interval to [0o,360o]) for extended structure. A quaternary 
penalty function of the form given by eq. 1 was applied   	 							

 
where γmin and γmax are the allowed range of the variation of the virtual-bond-dihedral angle γ 
and k is the force constant; we assumed k=0.1 in this study, which corresponds to weak 
restraints. 

To determine the distance restraints for the wfCPUNK pipeline, the consensus-template contacts 
were converted into distance restraints with 8 Å adapted as the cut-off distance. The consensus-
scores for each contact were multiplied by a factor of 0.01 and used as the weights for the 
restraints, with the restraint function having the same quaternary form as that for angles (eq 1). 

For the wf-Baker-UNRES pipeline, distance restraints were derived from the contact prediction 
carried out with the GREMLIN [40] method. GREMLIN works by constructing a global 
statistical model that simultaneously captures the conservation and co-evolution patterns in the 
input multiple sequence alignment. The alignments were generated using HHblits [42] and 
Jackhammer [45] with varying e-value and number of iterations. Strongly co-evolving residue 
pairs as identified by this approach were used as restraints in modeling [45]. 

Sampling was carried out by applying restrained Multiplexed Replica Exchange Molecular 
Dynamics (MREMD) [46,47,48] simulations with the coarse-grained UNRES force field 
[49,50,51,52,53] for each of the targets considered. For each target, the MREMD simulation 
consisted of 64 trajectories run at 32 different temperatures (2 trajectories per temperature, 
temperature range from 200 to 500 K), each trajectory consisting of 20,000,000 steps with a 4.9 
fs time step, replicas exchanged and snapshots recorded every 20,000 steps. Subsequently, 200 
last snapshots were taken from each of the trajectories (12,800 snapshots total) and Weighted-
Histogram Analysis Method (WHAM) [54] was used to calculate the ensemble averages and 
probabilities of the conformations, as described in our earlier work [55]. The heat-capacity graph 
was computed and analyzed and the clustering temperature Tc selected (usually 20 K less than 
that of the major heat-capacity peak) to carry out subsequent analysis.  

The Ward’s minimum-variance method [56] was used to obtain 5 clusters corresponding to the 5 
models to be submitted to CASP. These clusters (models) were ranked according to their 
decreasing summary probability, as described in our earlier work [55]. For each cluster, the 
average structure (each component conformation being weighted by using its probability 
calculated by WHAM at Tc) was subsequently computed and the conformation of the cluster 
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closest to the respective average structure was selected as the respective coarse-grained model. 
The final models, which were subsequently submitted to CASP, were obtained by converting the 
coarse-grained models to all-atom structures using the PULCHRA method [57] and SCWRL 
[58]. 

	

The PTIGRESS pipelines: wfHHpred-PTIGRESS and wfKeasar-PTIGRESS  

The following pipelines were constructed with the goal to refine the models predicted by the 
HHpred-A method and by Keasar’s selection of server models, which both performed well in 
CASP10. In wfHHpred-PTIGRESS, Model 1 from HHpred-A was selected for refinement by 
Princeton_TIGRESS [59]. If the size of the structure was ≤ 154 residues, 5 refinements of the 
starting HHpred-A model were submitted, using the full Princeton_TIGRESS pipeline. If the size 
was > 154 residues, 1 model was submitted, using only the MD portion of Princeton_TIGRESS.  
The cutoff of 154 was shown previously [59] to be optimal in distinguishing when to use the 
Rosetta FastRelax [3] method vs. molecular dynamics to maximize refinement by GDT_TS. In 
wfKeasar-PTIGRESS, Princeton_TIGRESS refined the 5 server models scoring highest 
according to the Keasar method. Princeton_TIGRESS [59] was enhanced for CASP11 to include 
an improved SVM classifier of refined and degraded structures, as well as an improved MD 
protocol to handle larger structures. Among refinement methods currently implemented as 
servers, Princeton_TIGRESS was found to demonstrate the most consistent (highest # GDT_TS 
> 0) refinement, improving Model 1 78% of the time, as well as the most substantial net 
refinement (highest ∑i=1 GDTi), in blind predictions in the refinement category during CASP11 
[60].  

 

Mixed pipelines: wfAll-Cheng, wfAll-MD-RFLB, wfMix-KFa, wfMix-KFb 

There were several pipelines that selected from a combination of server, Keasar-Foldit, and 
Zhang models, including: (a) wfAll-Cheng, (b) wfAll-MD-RFLB, (c) wfMix-KFa, (d) wfMix-KFb, 
(e) wfMix-KPa, and (f) wfMix-KPb. The wfAll-MD-RFLB pipeline is described below.	

(a) wfAll-Cheng  

The wfAll-Cheng method collected models generated by all CASP11 servers and WeFold 
methods. Each chain was extracted from the multi-chain models as a single model. Models with 
incorrect information, such as incorrect residue numbers and names or incorrect PDB format, 
were filtered out. A fully pairwise model comparison tool, APOLLO [61], was used to evaluate 
all the models. APOLLO calculates a GDT_TS score (Global Distance Test Total Score) [46] 
between one model and each of other models using the TM-score [21] program. The predicted 
score of a model is the average GDT_TS score between it and all the other models. The top five 
models with highest scores were then refined using i3Drefine [62,63], which employs hydrogen-
bonding network optimization and atomic-level energy minimization using a composite physics 
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and knowledge-based force field. The residue-level local quality of the refined models was 
assessed by ModFOLDclustQ [18], a novel model quality assessment program that compares 3D 
models of proteins without the need for CPU intensive structural alignments. The residue-
specific local quality scores were added into the refined top models. The energy-minimized 
models were submitted as final predictions.  

(b) wfAll-MD-RFLB  

The wfAll-MD-RFLB pipeline employed the dominance criterion to rank models generated by 
other WeFold pipelines. This criterion can rank the models using conflicting metrics, called 
objectives, simultaneously. 
 
Model A is said to dominate model B when both the following conditions are satisfied: 

1. Model A is not worse than B in any objective; 
2. Model A is strictly better than B in at least one objective. 

The ranking of each model is defined by performing all possible pairwise comparisons and 
calculating the number of other models it dominates. Additionally, all solutions which are not 
dominated by any other composes a set, called Pareto-optimal, that meets an equilibrium 
situation between the conflicting metrics [64,65]. 
 
Each model from a large dataset of structures generated by other WeFold pipelines was 
submitted to a two-step energy minimization with the steepest descent algorithm. While in the 
first step no constraints were applied to the protein, in the second one all covalent bonds were 
constrained with the LINCS algorithm [66]. The calculation of potential energy and solvation 
energy was carried out with the GROMACS 4.6.5 [67] suite using the AMBER99SB-ILDN 
force-field [68]. The GBSA implicit solvation model [69] was used with the OBC algorithm for 
calculating the Born radii [70]. The potential and solvation energy were used as objectives and 
the dominance among models was calculated by the 2PG Sort Dominance Front software. This 
method does not rely on similarity between the target and other proteins. 
 
(c-d) wfMix-KFa and wfMix-KFb 

The wfMix-KFa and wfMix-KFb pipelines made use of two different versions of Seder, V1.0 and 
V2.0 [71]. While Seder V1.0 takes into account the distribution of inverse distances delineated 
into residue types, the newer version of Seder makes additional distance classes and uses these 
refined distributions to provide an estimate for the closeness of a given model to the native x-ray 
conformation. Briefly, Seder calculates the distribution of inverse distances associated with a 
given model. It then uses machine learning [72] to process this information. In the training phase 
the inverse distance distributions of a given model are mapped to the TM-Score [21] of that 
model to the native structure of the same sequence. For the WeFold collaboration two dedicated 
pipelines were set up. For initialization purposes, and since sometimes WeFold models were 
unavailable for a given target, only the server models submitted to CASP were initially used. As 
WeFold models became available they were downloaded from the WeFold site and were used 
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instead of the CASP server models. These models were then ranked using the Seder V1.0 and 
Seder V2.0 scoring functions.	

(e-f) wfMix-KPa and wfMix-KPb 

The pipelines wfMixKPa and wfMixKPb were based on an extension and improvement of the 
MQAPsingle methodology that was among the most successful Model Quality Assessment 
techniques in CASP10 experiment [73]. This program submits the target sequence to the 
GeneSilico Fold prediction metaserver [74] to collect approximately one hundred of 3D models 
for the target protein. In parallel, it executes the following three modules. First module predicts 
secondary structure, solvent accessibility and contact maps for the target sequence using third-
party methods. These predictions are compared with values of the corresponding features 
calculated directly from the 3D structural models by the DSSP program [75]. These 
(dis)agreement terms, together with in-house implementation of the DFIRE [76] statistical 
potential and the number of unsatisfied hydrogen bond donors/acceptors, are used to estimate 
GDT_TS score [77] of each of the input and reference models. The second module calculates the 
all possible pairwise comparisons between the input models and the reference models only. Two 
measures of similarity between a pair of models are applied: GDT_TS and Q-score [78,79], the 
latter measures the structural similarity between two models by comparing their internal residue 
distances.  Then, 3D-Jury algorithm [80] is applied to calculate the consensus scores of the input 
model(s). The third module is based on an assumption that values of “pure” single-model scoring 
function, on average, decrease as models become more similar to the native structure. Thus, the 
model that is the closest to the native structure should provide the highest correlation coefficient 
of a score (provided by such a single-model MQAP) versus distance, when used as the reference 
in pairwise comparisons with the remaining models [81]. Finally, to predict the GDT_TS score 
of the input model(s), the primary scores provided by the above-mentioned three modules and a 
linear regression algorithm were used. 

 
Description of WeFold2 Refinement Pipelines  

wfFdit-BW-KB-BW, wfFdit-K-McG, wfFdit_BW_K_SVGroup, and wfFdit_BW_SVGroup  

The refinement pipelines were created based exclusively on models generated by Foldit players 
who were given the starting models provided by the prediction center. For the wfFdit-BW-KB-
BW, wfFdit-K-McG, and wfFdit_BW_K_SVGroup pipelines, refinement models were constructed 
using Foldit, then filtered and clustered by Wallner using the procedure described in 2.1.1.2, then 
refined with KoBaMIN [82], and finally ranked using the ProQ2, ModFOLD5_single, and the 
PSN-QA methods, respectively. ProQ2 and ModFOLD5_single are described in subsection 
“Selection step” and PSN-QA is described below. The pipeline wfFdit_BW_SVGroup is similar 
to wfFdit_BW_K_SVGroup, but chooses from unrefined clusters rather than from KoBaMIN-
refined clusters, as wfFdit_BW_K_SVGroup does.	

Selection by the PSN-QA method. The Protein Side-chain Network-Quality Analysis (PSN-QA) 



16	
	

ranking tool is based on a graph-theoretical translation of a protein structure based primarily on 
its side-chain connectivity network. A detailed methodology of the derivation of the protein 
graph is available in the literature [83]. In brief, a PDB file is read as the primary input and based 
on side-chain atom-atom distance cutoff of 4.5Å, a connection is defined between two residues, 
separated by at least one amino acid (i+/-j >1). The number of such atom-atom connections 
between any two amino acid pairs is then normalized by the geometric mean of normalization 
values of those residues which were derived from a database of high-resolution protein structures 
[84]. Mathematically this is represented as:  
	

Iij = ni * 100 / sqrt(Ni * Nj )     
 
where Iij is the interaction strength between the residue pairs, nij is the number of sidechain atom 
pairs within a distance cut-off of 4.5 Å, between residues i and j, and Ni and Nj are the 
normalization values for residues i and j. 
 
A PSN thus constructed results in an n*n matrix of varying interaction strengths (Iij). The next 
step is to segregate this raw-matrix into bins of binary adjacency matrices where certain Iij 
satisfying minimum interaction strength (Imin) are converted to ones and the remaining are 
converted to zeroes. The resulting adjacency matrices at each Imin hold crucial information 
regarding the protein residue connectivity like size of the largest cluster, size of the top 3 k-1 & 
k-2 communities, and many other network parameters as a function of Imin [85,86]. The transition 
of these parameter values over Imin follows a common pattern for native proteins and becomes 
strikingly different for decoy structures. This has been used to train a SVM model on good native 
proteins (5422) and bad decoys (20000+) to recognize a decoy whose side chain connections are 
native like in their global connections or not [87,88]. The PSN-QA tool provides a rank value 
based on which the models are sorted and ranked. An advantage of this method is that the scores 
are derived based on the inherent nature of folded proteins and does not require a comparison 
with experimentally derived structures. PSN-QA uses information derived from interactions of 
side-chain atoms to judge the quality of a predicted model. Hence, the use of PSN-QA score in 
selecting native-like structure is most effective on models that have significant backbone overlap 
with the template structure. Apart from PSN-QA, recently a new method called Network 
Similarity Score (NSS) which compares protein structures based on the spectral properties of 
weighted protein networks, has been developed [89,90]. This method captures global changes in 
the protein structure from subtle variations in the side chain orientations.  NSS can serve as a 
powerful structure validation tool in future, in comparing atomistic details of side chain 
interactions.   
 

Description of the WeFold3 Pipelines 

The pipelines of the third WeFold round, during CASP12, can be divided into four main 
categories based on their initial decoy generators: Rosetta, UNRES-generated, CASP12 server 
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models, and a combination of CASP12 servers and WeFold models.  
 
The Rosetta pipelines: wfDB_BW_SVGroup, wfRosetta-MUfold, wfRosetta-ProQ-MESHI, 
wfRosetta-ProQ-ModF6, wfRosetta-Wallner, and Rstta-PQ-MESHI-MSC 

These pipelines shared their initial components, splitting only in their last steps (Figure 2). They 
started with BAKER-ROSETTASERVER decoys of target domains generated by the 
Rosetta@home distributed computing project (http://boinc.bakerlab.org/rosetta).  These pipelines 
differ from BAKER-ROSETTASERVER in model selection, refinement, and domain assembly.  
Pipeline steps prior to decoy generation such as domain boundary prediction and difficulty 
prediction assessment, PDB template detection, sequence /structure alignment, contact 
prediction, and restraint generation were carried out by BAKER-ROSETTASERVER.  All 
domains were modeled using the Rosetta comparative modeling protocol (RosettaCM) [91], and 
difficult domains, were also modeled using the Rosetta fragment assembly methodology 
(RosettaAB) [92]. As ProQ2 has been integrated recently into Rosetta [93], quality assessment 
scores for each decoy were calculated directly from Rosetta generated silent files without the 
need to extract millions of PDB files. Silent files are Rosetta-specific file formats used for 
efficient concatenated storage of large numbers of structures. In total, 32,474,636 decoys were 
generated by BAKER-ROSETTASERVER and scored using ProQ2 during CASP12.  

The Rosetta sets included hundreds of thousands of decoys per domain, just like the Foldit sets 
had in WeFold2. However, rather than applying filtering and clustering to reduce the complexity 
like they did in WeFold2, the Wallner group filtered each set by selecting the top 1,000 decoys 
according to the ProQ2 score. There was a set of 1,000 decoys per protein domain as identified 
by BAKER-ROSETTASERVER. 

The resulting 1,000 or more decoys were then scored using different quality score algorithms in 
the different pipelines. In the wfDB_BW_SVGroup branch, the SVLab group used their SVM-
based algorithm; the wfRosetta-MUfold branch used MUFOLD for the selection. The wfRosetta-
ProQ-MESHI and Rstta-PQ-MESHI-MSC branches used two different scoring functions that 
utilize the same features but different machine learning approaches [1]. Finally, the wfRosetta-
ProQ-ModF6 branch used ModFOLD6, and the wfRosetta-Wallner branch just used ProQ2. 
Another major difference between the pipelines was the way they handled the splitting of the 
target protein to domains when applicable. Some of the pipelines simply failed to handle the 
domain issue and submitted the decoys as independent domains, but this consequently negatively 
affected their CASP performance on multidomain targets.  
 
The UNRES pipelines: wf-BAKER-UNRES and wfCPUNK 
These pipelines are similar to those used during the WeFold2 exercise with modifications 
resulting from updates of their components. Please refer to Section 2.1.4 for a brief description 
and to the Supplementary Materials for a more detailed description. 
 
Mixed pipelines: wfAll-Cheng and wfRstta-PQ2-Seder 
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The wfAll-Cheng pipeline is similar to the WeFold2 pipeline of the same name except that the 
average ranking of APOLLO and Qprob[94] (a single model quality assessment method) was 
used to select models in WeFold3. Please refer to Section 2.1.6 for a brief description and to the 
Supplementary Materials Section for a more detailed description. wfRstta-PQ2-Seder uses Seder 
v1.0 to pick from a pool of candidate protein models obtained from a combination of all CASP12 
submitted server models and the Rosetta models selected by ProQ2 for the Rosetta pipelines. 
 
The server models pipelines: wfMESHI-TIGRESS and wfMESHI-Seok 

These pipelines differ in the refinement and final selection methods used. They started with the 
entire set of CASP server models, which were scored by MESHI_Score [1]. The wfMESHI-
TIGRESS pipeline is similar to the wfKeasar-PTIGRESS pipeline in WeFold2, which was briefly 
described in section 2.1.5. Both pipelines use the same TIGRESS refinement algorithm [59]. No 
re-ranking of models was performed after refinement, meaning that the refined version of the 
model ranked 1 by MESHI was submitted as wfMESHI-TIGRESS model 1. 

The wfMESHI-Seok branch was newly tested in WeFold3. The CASP server structures were 
scored by MESHI_Score [1] and the number of structures to be refined was reduced to 48 (due to 
time constraints) by taking those with the highest MESHI scores that are structurally distinct 
with mutual TM-score lower than 0.95. The selected structures were refined with an improved 
version of GalaxyRefine [5,95], which includes a newly developed knowledge-based potential 
that considers solvation states of interacting atoms as well as their distances. The refined models 
were ranked by the new potential, and the top five models were submitted as final predictions. 

 

Large Scale Analysis of WeFold2 Pipelines 	

Figures S3-S20 show box and whiskers plots for each one of the steps in the Keasar-Foldit 
pipelines. Each figure corresponds to one of the submitted targets. These pipelines start with the 
server models that are released by the CASP organizers (stage 1 and stage 2). These steps 
correspond to the first two columns in the figures, which is labeled srvr 1 and srvr 2 in the x-axis. 
Besides the name of the component in the pipeline, the x-axis shows the number of models that 
are created or handled at each step. From the server models, Keasar selects a subset of 10-20 
models which are marked as dots in the third column and Khatib selects 1-5 of them which are 
given to the Foldit players. Khatib’s selected models are marked as triangles. The fourth column 
shows the box and whiskers plot for the hundreds of thousands of models generated by the Foldit 
players. In each figure the GDT_TS value of the best model submitted to CASP11 considering 
all CASP teams is marked with a dashed green line, which is labeled with the name of the team 
that submitted the best model. These plots show that some of the models generated by the 
players are better than the best model submitted to CASP11 by all groups in most cases. The fifth 
column shows a box and whiskers plot for the cluster representatives calculated by Wallner’s 
method and the sixth column shows the GDT_TS values of the same models refined by the 
GalaxyRefine method. These GDT_TS values of the clusters are slightly improved by the 
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refinement algorithm as it can be seen in the plots. The columns that follow show the selection 
by the different QA algorithms. The 5 models submitted by each group are marked in colors 
according to whether they were submitted as model 1, 2, 3, 4, or 5. Columns 7th and 8h show the 
selection by Wallner/ProQ2 (pipeline wfKsrFdit-BW-Sk-BW) and by ModFOLD5_single 
(pipeline wfKsrFdit-BW-Sk-McG), which were solely based on Keasar-Foldit generated models 
for this target. The rest of the columns, 9th-13th show the selection by mixed pipelines wfMix-
KFa, wfMix-KFb, wfMix-KPa, wfMix-KPb, and wfAll-Cheng, respectively.  
	

Box	and	whisker	plots	for	the	WeFold2	Keasar-Foldit	Pipelines:	

Column	1:	Srvr	1	=	Servers	stage1	
Column	2:	Srvr	2	=	Servers	stage2	
Column	3:	Keasar	picks	from	servers,	then	Khatib	picks	from	Keasar’s	selection	
Column	4:	Foldit	players	generate	models	
Column	5:	Wallner	finds	clusters	
Column	6:	Seok’s	lab	refines	clusters	
Columns	7-13:	Different	groups	select	from	these	clusters,	or	from	a	combination	of	these	and	Zhang’s	clusters,	or	
from	a	combination	of	all	the	models	shared	by	various	WeFold	groups	and	servers.	
	
Green	line	is	the	best	model	submitted	to	CASP11	for	that	target	considering	all	the	CASP11	groups	
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The following box and whiskers plots show each one of the steps in the Zhang pipelines. The 
first column shows a box and whiskers plot for the GDT_TS values of all the models created by 
Zhang’s methods. The second column shows a box and whiskers plot for the cluster 
representatives calculated by Wallner’s method and the third column shows the GDT_TS values 
of the same models refined by the GalaxyRefine method. The columns that follow show the 
selection by the different QA algorithms. The 5 models submitted by each group are marked in 
colors according to whether they were submitted as model 1, 2, 3, 4, or 5. Columns 4th and 10th 
show the selection by pipelines wfKsrFdit-BW-Sk-McG (which combined models from Keasar-
Foldit and Zhang), wfZhng-Sk-BW, wfZhng-Ksr, wfMixKFa, wfMixKFb, wfMixKPa, 
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wfMixKPb, and wfAll-Cheng, respectively. The last five combined models from Keasar-Foldit, 
Zhang, and servers. 
	

Zhang	pipeline	plots	
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The following box and whiskers plots compare the GDT_TS of the initial set of Keasar-Foldit, 
Zhang, and CPUNK models from which the different WeFold groups selected 5 models. 
Columns 1-3 show box and whiskers plots for the entire set of Foldit models, clusters, and 
refined clusters. Columns 4-6 show plots for entire set of Zhang models, clusters, and refined 
clusters. Finally, column 7 shows the entire set of models generated by UNRES for the CPUNK 
pipeline (results fro wfCPUNK are not available for all the targets considered in this analysis). 
The dashed green line represents the GDT_TS value of the best model submitted to CASP11 for 
that target considering all the CASP11 groups. 
 

Group	Comparison	Plots	
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The following box and whiskers plots show each one of the steps in the refinement Foldit 
pipelines. Each plot corresponds to one of the refinement targets submitted to CASP11 by these 
pipelines. The first column shows the hundreds of thousands of models generated by Foldit 
players when given an initial model whose GDT_HA value is represented by the dashed red line. 
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The GDT_HA value of the best models submitted is marked with a dashed green line, which is 
labeled with the name of the CASP11 team that submitted the best model. The second column 
shows a box and whiskers plot for the cluster representatives calculated by Wallner’s method and 
the third column shows the GDT_HA values of the same models refined by KoBaMIN [82]. 
These GDT_HA values of the clusters are slightly improved by the refinement algorithm as it 
can be seen in the plots. The columns that follow show the selection by the different algorithms. 
The 5 models submitted by each group are marked in colors according to whether they were 
submitted as model 1, 2, 3, 4, or 5. Columns 4th and 5th columns show the selection by the 
SVLab group from the clusters (pipeline wfFdit_BW_SVGroup) and from the refined clusters 
(pipeline wfFdit_BW_K_SVGroup). The 5th and 6th columns show the selection by 
ModFOLD5_single (pipeline wfFdit-K-McG) and by ProQ2 (pipeline wfFdit-BW-KB-BW).  
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Large Scale Analysis of WeFold3 Pipelines 	
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Figure S3. Bar plots show the down-selection process across the Rosetta-based pipelines for 10 targets using GDT-
HA and GDT-MM. Red bars represent best GDT-HA and blue bars represent best GDT-MM. GDT-MM is a Baker-
lab specific metric, where the MAMMOTH alignment algorithm (MM = MAMMOTH) is used for the superposition 
(slight variations with respect to GDT-TS are based on alignment.) Top bars show best GDT-HA (or MM) among 
the hundreds of thousands of models generated by Rosetta. Next 2 bars show the best GDT-HA (MM) among the 
best 5 selected by the BAKER-ROSETTASERVER; next 2 bars show the best GDT-HA (MM) among the one 
thousand models selected by ProQ2; the remainder bars show the best GDT-HA (MM) among the best 5 selected by 
the Rosetta-based WeFold groups (one set of bars each.)  

	

Box	and	whisker	plots	analysis	for	the	WeFold3	Rosetta-based	pipelines:	

Column	1:	GDT-MM	for	all	hundreds	of	thousands	Rosetta	models	generated	by	Baker	lab	
Column	2:	GDT-MM	for	the	Rosetta	models	in	Column	1	were	scored	using	ProQ2	and	the	top	1000	models	were	
selected.	They	are	represented	in	this	column.	
Column	3:	GDT-MM	for	the	best	five	models	selected	by	BAKER-ROSETTASERVER	
Column	4:	GDT-MM	for	the	best	five	models	selected	by	wfRosetta-ProQ-ModF6	
Column	5:	GDT-MM	for	the	best	five	models	selected	by	wfRosetta-Wallner	
Column	6:	GDT-MM	for	the	best	five	models	selected	by	wfRosetta-ProQ-MESHI	
Column	7:	GDT-MM	for	the	best	five	models	selected	by	wfRosetta-ProQ-MESHI-MSC	
Column	8:	GDT-MM	for	the	best	five	models	selected	by	wfRosetta-ProQ-MESHI	
Column	9:	GDT-MM	for	the	best	five	models	selected	by	wfRosetta-MUfold	
Column	10:	GDT-MM	for	the	best	five	models	selected	by	wfDB_BW_SVGroup	
	
	
Dashed	red	line	is	the	GDT-MM	of	the	best	model	submitted	to	CASP12	for	that	target	considering	all	the	CASP12	
groups	
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