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Abstract

In this review we provide a rigorous and self-contained presentation of one-body reduced density-matrix (1RDM)

functional theory. We do so for the case of a finite basis set, where density-functional theory (DFT) implicitly becomes

a 1RDM functional theory. To avoid non-uniqueness issues we consider the case of fermionic and bosonic systems at

elevated temperature and variable particle number, i.e, a grand-canonical ensemble. For the fermionic case the Fock

space is finite dimensional due to the Pauli principle and we can provide a rigorous 1RDM functional theory relatively

straightforwardly. For the bosonic case, where arbitrarily many particles can occupy a single state, the Fock space is

infinite dimensional and mathematical subtleties (not every hermitian Hamiltonian is self-adjoint, expectation values

can become infinite, and not every self-adjoint Hamiltonian has a Gibbs state) make it necessary to impose restrictions

on the allowed Hamiltonians and external non-local potentials. For simple conditions on the interaction of the bosons

a rigorous 1RDM functional theory can be established, where we exploit the fact that due to the finite one-particle

space all 1RDMs are finite dimensional. We also discuss the problems arising of 1RDM functional theory as well as

DFT formulated for an infinite-dimensional one-particle space.
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List of symbols

E energy (2.21)

F[γ] universal functional (2.30)

S entropy (2.22)

T temperature

v (non-local) one-body potential (matrix)

Z partition function (2.25)

β inverse temperate, i.e. 1/T

γ one-body reduced density matrix (1RDM)

φ, ψ state in one-body spaceH
Φ,Ψ state in Fock space F
Ω grand potential (2.20)

Nb number of one-body states, i.e. dimension ofH
Nb index set of one-body states, typically {1, . . . ,Nb}

Operators

diag(ai) diagonal matrix with elements ai on its diagonal

Ĥ Hamiltonian acting in Fock space

N̂ number operator acting in Fock space

V̂ (non-local) one-body potential acting in the Fock space

T̂ kinetic energy operator acting in the Fock space

ρ̂ density matrix operator (2.17)

tr{·} trace of Nb-dimensional vector space

Tr{·} trace in the Fock space

〈·〉 expectation value

〈·|·〉 inner product

‖·‖ norm

Sets & spaces

Bǫ(x) closed ball of radius ǫ centred at point x

H(n) space of n × n hermitian matrices (3.36)

H one-body Hilbert space

V set of potentials yielding a proper Gibbs state

F± pre-Fock space, containing only vectors of finite length

F± Fock space (3.12), i.e. completion of F±
P± set of all density matrix operators (3.39)

P± set of all finite temperature density matrix operators (3.52)

N ± set of ensemble N-representable 1RMDs (3.50)

N± interior of N ± (3.55)

V± set of v-representable 1RDMs (3.51)

T space of trace class operators (3.40)
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1. Introduction

The main challenge in most areas of quantum physics and quantum chemistry is to solve equations that describe

many interacting particles. This central challenge of modern physics is called the quantum many-body problem. It

arises rather inconspicuous due to the way we construct a many-body quantum theory from a single-particle descrip-

tion. In quantum mechanics, for instance, this is usually done by starting from a single electron in real space. We

describe this single electron by a normalised wavefunction ϕ(r) that solves a linear equation on the Hilbert space of

square-integrable functions (Teschl, 2014), e.g., the Schrödinger equation for the hydrogen atom.

For the description of a two-particle problem we want to ensure that the properties of the single-particle theory are

kept intact. For this we just give every particle its own “real space”. Taking into account indistinguishability and the

fundamental property of spin leads for the two-electron problem to a wavefunction in its simplest form1

Φ(r1, s1; r2, s2) = ϕ(r1)χ1(s1) ϕ(r2)χ2(s2) − ϕ(r2) χ1(s2)ϕ(r1)χ2(s1) , (1.1)

where χ1/2(s) are spin wavefunctions for spin s. A general two-electron problem is then described by a wavefunction

of the form Ψ(x1, x2) where we denote x ≔ (r, s). To determine the wavefunction of an interacting two-particle

problem, e.g., the ground-state of a neutral hydrogen molecule (H2), we have to represent the problem on a computer.

We can do so either by discretising real space, i.e., that we represent continuous real space by a grid of discrete points,

or by some appropriate single-particle basis. For instance, to find a good basis for H2 we could choose an s-type

electronic orbital sa(r) at the position of the first nucleus and one sb(r) at the position of the second and then define

symmetry adapted basis functionsσg/u(r) =
(

sa(r)±sb(r)
)

/
√

2(1 ± 〈sa|sb〉). Then by Gram–Schmidt orthogonalisation

we can construct further functions that all together constitute an orthonormal basis for the single-particle Hilbert space.

Either way, an accurate representation of the wavefunction usually forces us to use many grid points or basis functions

and thus if we need to store for each particle M entries, the amount of data we have to handle is roughly M2 bytes.

If we have more then two particles this grows exponentially with the number of particles N, i.e., we need to handle

MN bytes to work with many-body wavefunctions. Even with nowadays supercomputers we can only treat relatively

small systems without further tricks. Therefore tremendous effort has been put into developing methods that make

numerical calculations for complex many-body systems feasible. Many methods try to find efficient and accurate

approximations to the many-body wavefunctions such as tensor-network approaches (Schollwöck, 2011; Orus, 2014),

coupled-cluster theory (Bartlett and Musiał, 2007) or quantum Monte-Carlo techniques (Gubernatis et al., 2016).

A different route is to change from the exponentially-scaling many-body wave function as the fundamental de-

scription of the multi-particle problem to an equivalent, yet reduced quantity. This is the basic idea behind density-

functional theories (DFT) (Dreizler and Gross, 1990; Eschrig, 1996, 2003), density-matrix theories (Cioslowski, 2000;

Mazziotti, 2007; Pernal and Giesbertz, 2015; Bonitz, 2015) and Green’s function techniques (Fetter and Walecka,

2003; Stefanucci and van Leeuwen, 2013). While it is numerically demanding to calculate Green’s functions, this

approach has the advantage that it is in principle easy to increase the accuracy of the calculated Green’s function by

including higher-order Feynman diagrams (Fetter and Walecka, 2003; Stefanucci and van Leeuwen, 2013). On the

other hand, in DFT it is relatively simple to numerically calculate the one-body density but it is demanding to system-

atically increase the accuracy (Burke, 2012). This is due to the fact that the many-body energy, which is the central

object in ground-state DFT, is a very implicit functional of the density or the auxiliary Kohn-Sham (KS) wavefunc-

tions. In this respect reduced density-matrix (RDM) functional theories are an interesting compromise. For one-body

RDM (1RDM) functional theory the kinetic energy of the many-body energy becomes explicit and for two-body

RDM (2RDM) even the two-body interaction energy becomes an explicit functional. The drawback of RDM theor-

ies, however, is that in contrast to DFT or Green’s function methods it is very hard to guarantee that some arbitrary

RDM is connected to a specific many-body Hamiltonian or even just an arbitrary many-body wavefunction. These

representability as well as other subtle mathematical problems (Coleman, 1963; Erdahl and Smith, 1987; Klyachko,

2006; Altunbulak and Klyachko, 2008; van Aggelen et al., 2010; Mazziotti, 2012) have hampered the development

and applicability of RDM functional theories.

To overcome these problems and provide a sound mathematical foundation for further developments of 1RDM

functional theory, we present in this review a rigorous formulation in finite basis sets at elevated temperature and

1We employ an unconventional, yet more consistent normalisation, as explained in more detail in Sec. 3.1. Our normalisation guarantees the

probability interpretation of the (modulus of) underlying many-body wavefunction (Stefanucci and van Leeuwen, 2013).
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arbitrary particle numbers as well as statistics, i.e., for fermions and bosons. The choice of this specific setting is

not only convenient, since temperature allows us to avoid non-uniqueness problems and at the same time the finite

single-particle basis makes the rigorous treatment of the grand-canonical potential relatively simple. But it also has a

more immediate consequence for the many users of DFT, since DFT implicitly becomes a 1RDM functional theory

for finite basis sets. Thus this review also provides the necessary foundation for approximate DFT calculations.

2. Theoretical motivations for the setting

2.1. 1RDM functional theory in disguise: DFT in finite basis sets

One of the problems which arises in practical DFT is that one often needs to use finite basis sets for calcu-

lations. Unfortunately DFT is not well defined for finite basis sets (in the accompanying statements of Nooijen,

1992),2 so these calculations can lead to pathological problems as is well known in the optimised-effective potential

approach to the KS potential (Görling, 1999; Kollmar and Filatov, 2008; Jacob, 2011; Gidopoulos and Lathiotakis,

2012; Betzinger et al., 2012). Let us demonstrate how a finite basis is typically problematic with a simple example.

We consider the exact solution for the ground state of the neutral H2 problem from above in the minimal basis

{σg(r), σu(r)}. In this case the exact ground state becomes with σk,l(x) = σk(r)χl(s)3

Ψ(x1, x2) = cg

(

σg,1(x1)σg,2(x2) − σg,1(x2)σg,2(x1)
)

+ cu

(

σu,1(x1)σu,2(x2) − σu,1(x2)σu,2(x1)
)

, (2.1)

where c2
g + c2

u = 2. The density is readily evaluated as

n(r1) =
∑

s1,s2

∫

dr2 |Ψ(x1, x2)|2 = c2
gσg(r1)2 + c2

uσu(r1)2 . (2.2)

The KS approach to DFT now aims at reproducing the very same density in the same single-particle basis set but with

a non-interacting auxiliary system. The corresponding single-particle KS Hamiltonian then becomes a two-by-two

matrix in the single-particle states |σk〉

ĥKS =
∑

k,l

|σk〉 〈σk |− 1
2
∇2|σl〉

︸          ︷︷          ︸

=tkl

〈σl| + |σk〉 〈σk |vKS|σl〉
︸       ︷︷       ︸

=vkl

〈σl| . (2.3)

Here the |σk〉 are connected to the spin-space orbitals

|σk,m〉 =
∑

s

∫

dr σk,m(rs)ψ̂†(rs)

︸                        ︷︷                        ︸

=â
†
k,m

|0〉 (2.4)

by |σk〉 =
∑

m|σk,m〉 and we employ for notational convenience and to connect the real-space perspective with a spin-

orbital basis representation the field operators4 obeying the fermionic anti-commutation relations {ψ̂(x), ψ̂†(x′)} =
δ(x − x′). The resulting creation and annihilation operators â

†
k,m

and â
k,m

for the spin-orbitals consequently also obey

anti-commutation relations. Further, |0〉 is the vacuum state (see Sec. 3.2).

One of the problems is that in a finite basis, we cannot determine anymore whether the KS potential is local or

non-local. To be more precise, with a non-local potential, we mean a potential which acts in the following manner on

a function ϕ(r)

v̂ϕ(r) =

∫

dr′ v(r, r′)ϕ(r′) =
∑

kl

ψk(r)vkl〈ψl|ϕ〉 , (2.5)

2We point out that in a grid basis this is not the case, since there one can rely on lattice DFT (Chayes et al., 1985).
3See footnote 1.
4We note that we later avoid the use of field operators which have some undesirable mathematical properties (Thirring, 2013) and use the

non-problematic creation and annihilation operators directly (see Sec. 3.2).
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where the summation runs over a complete basis {ψk}. A local potential is a special (non-local) potential in the sense

that it is diagonal in the spatial representation

v̂loc =

∫

dr′ vloc(r)δ(r − r′)ϕ(r′) = vloc(r)ϕ(r) . (2.6)

If we only have the matrix elements of the potential, let us say only vkl for 1 ≤ k, l ≤ m, then we can easily construct

a truly non-local potential as

v̂nl =

m∑

k,l=1

|ψk〉vkl〈ψl| . (2.7)

One readily sees by acting on any other basis state that this potential is indeed not local as v̂nlψk(r) = 0 for k > m.

With slightly more effort, we can also construct a local potential corresponding to these matrix elements. To that

end, partition the space into m(m + 1)/2 regions Ai, i.e. the number of unique pairs in the finite basis. Denote the

overlap between the basis functions within these regions as 〈ψk |ψl〉i, where i enumerates the regions. Further, set

the potential to be constant within each of these regions with a value vloc
i

. Now we require this local potential to be

consistent with the specified matrix elements vkl, so the vloc
i

need to satisfy

∑

i

〈ψk |ψl〉i vloc
i = vkl . (2.8)

This is just a set of linear equations in which 〈ψk |ψl〉i is regarded as a matrix with kl-pairs on its column and the region

index i as its row index. This set of linear equations will typically always have a solution. If not, just subdivide some

of the regions. An explicit expression for the local potential can be given as

vloc(r) =
∑

i

vloc
i 1Ai

(r), (2.9)

where we used indicator functions 1Ai
(r) defined as

1Ai
(r) =






1 if x ∈ Ai

0 if x < Ai .
(2.10)

As we cannot decide anymore in a finite basis set, whether the potential corresponding to a set matrix elements vkl is

local or non-local, a functional theory which does not need this distinction anymore, will be clearly in advantage over

DFT. The functional theory exactly employing exactly this set of non-local one-body potentials is 1RDM functional

theory.

Putting these difficulties with the locality of the potential aside for the moment, let us see how far we can get within

the Kohn–Sham DFT framework. Assuming non-degeneracy, the unique ground state of this one-particle problem then

reads |ϕ0〉 = a|σg〉+b|σu〉. The resulting two-body KS wave function becomes |Ψs〉 = (aσ̂
†
g,1
+bσ̂

†
u,1

)(aσ̂
†
g,2
+bσ̂

†
u,2

)|0〉
and which yields the density

ns(r) = 2
(

a2σg(r)2 + 2abσg(r)σu(r) + b2σu(r)2
)

. (2.11)

As the interacting density (2.2) is symmetric, we need either a = 0 or b = 0. So either ns(r) = 2σg(r)2 or ns(r) =

2σu(r)2. Therefore, we have ns(r) , n(r) if both cg , 0 and cu , 0, which is the typical case.

Our assumption in the Kohn–Sham construction was that we could find a non-degenerate state and it is actually

this assumption that prevented us from reproducing the exact density. If we choose the KS potential such that the KS

orbitals become degenerate, the both determinants |Φg〉 = σ̂†g,2σ̂
†
g,1
|0〉 and |Φu〉 = σ̂†u,2σ̂

†
u,1
|0〉 are degenerate and any

linear combination of them is also a ground state. In particular, we can make the linear combination

|Ψs〉 = cg|Φg〉 + cu|Φu〉 = |Ψ〉 , (2.12)

which would be the exact wave function and hence, yield the exact density. This would be the type of solution one

expects from the Levy constrained-search approach to DFT (Levy, 1979) as one limits oneself to pure states.
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As proposed by Valone in the 1RDM functional setting (Valone, 1980b,a) and by Lieb in the DFT setting (Lieb,

1983), extending the search to density-matrix operators leads to improved mathematical properties. The extension

implies that the KS wave function does not necessarily need to be equal to the interaction one. For instance, if we

assume degeneracy as before we could use the density-matrix operator (introduced in more detail in Sec. 2.3)

ρ̂s = c2
g|Φg〉〈Φg| + c2

u|Φu〉〈Φu| . (2.13)

Which ever way we choose, both approaches imply that the KS system reproduces the 1RDM of the interacting

system. Indeed, using the later convention (see Sec. 3.1) that we employ combined spin-orbital indices i ≡ (k,m) the

1RDM operator reads γ̂i j = â
†
j
â

i
and leads in our case to the 1RDM γi j = 〈Ψ|γ̂i, j|Ψ〉 = Tr{ρ̂sγ̂i j} = c2

g〈Φg|γ̂i, j|Φg〉 +
c2

u〈Φu|γ̂i, j|Φu〉 = (γs)i j, where we used the definition of the trace in (2.18). The explicit 1RDM is now given as

γ =





c2
g 0 0 0

0 c2
g 0 0

0 0 c2
u 0

0 0 0 c2
u





. (2.14)

This effectively means that due to a lack of flexibility in the basis set, the KS system is actually forced to reproduce at

least the exact 1RDM. In a finite basis set KS-DFT therefore typically degenerates to 1RDM functional theory if one

insists on having exactly

‖n − ns‖1 ≔
∫

dr |ns(r) − n(r)| = 0 . (2.15)

This finite basis size effect is not limited to two electron systems, but is a general problem of finite basis set DFT. For

example, the same effect has also been observed in attempts to reproduce the correlated density of CH2 (Schipper et al.,

1998). In the smaller aug-cc-pCVTZ basis an ensemble was needed to reproduce the density with the desired accuracy,

whereas in the larger cc-pCVQZ a pure state was sufficient.

As in a finite basis set we effectively will require that the 1RDMs are identical, it is more natural to attempt to define

a 1RDM functional theory for finite basis sets. Since in 1RDM functional theory we use γ as basic functional variable

in contrast to DFT, which only uses the diagonal of the 1RDM in a spatial representation, also its conjugate variable

will change. In order to be able to control the full 1RDM and to set up a suitable one-to-one correspondence, 1RDM

functional theory allows for non-local potentials vi j that give rise to a corresponding non-local potential operator

V̂v ≔

∑

i j

vi jâ
†
i
â

j
. (2.16)

That a purely local potential viδi j is not the appropriate conjugate variable to γi j is evident from the different dimen-

sionalities. Thus we need to find conditions under which we can establish a one-to-one correspondence between v

and the resulting γ. The set of non-local potentials for which this is possible we denote by V and the set of induced

1RDMs, the so-called v-representable 1RDMs, we denote by V . In the following we will discuss the theoretical set

up for which we want to establish rigorous foundations of 1RDM functional theory.

2.2. Non-uniqueness in 1RDM functional theory

It has been observed already some decades ago that the same ground state 1RDM γ can come from different non-

local potentials v which differ by more than a simple constant as in DFT (Gilbert, 1975; Pernal, 2005; van Leeuwen,

2007; Baldsiefen, 2012). Though there has been some progress by giving a full account of the non-uniqueness in

1RDM functional theory (Giesbertz, 2015) in the non-degenerate case, it would be convenient to circumvent this

difficulty. The difficulty of a non-unique non-local potential is readily avoided by working at a finite temperature

(van Leeuwen, 2007; Baldsiefen, 2012). Working at finite temperature means that all states in the Hilbert space are

participating in the ensemble, which avoids the possibility of ‘blind spots’ as in the zero temperature case (Giesbertz,

2016). Additionally, problems with degenerate states are avoided, as the Boltzmann factors always select the equi-

ensemble (Eschrig, 2010).

In fact, we will even work with the grand canonical ensemble, which allows one to vary the particle number with

the constant of the potential (chemical potential). This eliminates even all degrees of freedom in the potential and a

7



strict one-to-one relation is obtained between the equilibrium 1RDM and the non-local potential, similar to its finite

temperature DFT counterpart (Mermin, 1965). In particular, the constant of the potential acts as minus the chemical

potential and controls the number of particles. The number of particles does not need to be integer anymore, as the

particle number is now an average over states with different particle number. Hence, this will be the setting in which

we wish to establish 1RDM functional theory for both fermions and bosons.

2.3. Problems in the full-space case

In statistical quantum mechanics one needs to allow for the possibility that the quantum state of a system is not

completely determined. Instead one can only attribute a certain probability wi to encounter the system in the quantum

state |Ψi〉. This uncertainty in the quantum state can conveniently be described with the help of the density-matrix

operator

ρ̂ ≔
∑

i

wi|Ψi〉〈Ψi| , (2.17)

where wi ≥ 0 as they are probabilities and
∑

i wi = 1, since the probability to encounter the system in any of the

quantum states should be one.

To be able to determine the expectation value of a physical observable from the density-matrix operator, we will

define the trace of an operator. The trace of an operator, Tr{·}, is defined as summing the expectation values of any

complete basis of the Hilbert space under consideration. So for an operator Â we have

Tr{Â} ≔
∑

i

〈Ψi|Â|Ψi〉 , (2.18)

where |Ψi〉 is a complete basis for the Hilbert space. Expectation values of observables are now evaluated by taking

the trace of the density-matrix operator and the corresponding operator.

O = 〈Ô〉 = Tr{ρ̂ Ô} =
∑

i

〈Ψi|ρ̂ Ô|Ψi〉 =
∑

i,k

〈Ψi|wk |Ψk〉〈Ψk |Ô|Ψi〉 =
∑

i

wi〈Ψi|Ô|Ψi〉 , (2.19)

where we have chosen the eigenstates of the density-matrix operator as the orthonormal basis, since this allowed

us to exploit the diagonal representation of the density-matrix operator. As expected we simply got the weighted

average of the expectation value of the operator for each state. For later convenience we also introduce the notation

tr{·} to indicate traces of the 1RDM γ and objects with the same dimensionality, e.g., the non-local potential v. This

distinction is useful because it will more clearly highlight where we make explicit use of the fact that we work with

finite dimensions.

Up to this point we did not specify which Hilbert space to consider for the state |Ψi〉. There are two important

cases to distinguish. The first option is to use a Hilbert space HN with a fixed number of particles, N. This Hilbert

space would be suitable for the canonical ensemble, since the number of particles is fixed in this ensemble. As

the grand canonical ensemble allows for an arbitrary amount of particles, this Hilbert space does not offer sufficient

flexibility. We therefore need to resort to the other option to describe a grand canonical ensemble: a Hilbert space

with an arbitrary amount of particles. Such a Hilbert space can be be constructed for any quantum system by adding

all ‘fixed number’ Hilbert spaces leading to a new Hilbert space which is called the Fock space, F . The procedure to

construct the Fock space will be described in more detail later in Sec. 3.1.

The quantum-mechanical grand potential is now defined analogously to the classical case as

Ωv[ρ̂] ≔ Ev[ρ̂] − β−1S [ρ̂] , (2.20)

where

Ev[ρ̂] ≔ Tr{ρ̂ Ĥv} (2.21)

is the energy of the system with the Hamiltonian Ĥv ≔ Ĥ0 + V̂v. Note that µ = − tr{v} = −∑

i vii already serves as the

chemical potential with µN̂ = µ
∑

i â
†
i
â

i
, so there is no need to add this term separately. In the last term we have the

inverse temperature, β = 1/T , and the entropy (von Neumann, 1927)

S [ρ̂] ≔ −Tr{ρ̂ ln(ρ̂)} . (2.22)
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The thermodynamic equilibrium state of the system is defined as the density-matrix operator which minimises the

grand potential. We will call the minimiser ρ̂v the canonical density-matrix operator, which also sometimes referred to

as the Gibbs state. To find the minimum, we simply follow the standard procedure and make it stationary with respect

to variations in the density-matrix operator (Mermin, 1965; van Leeuwen, 2007)

0 = Tr
{

δρ̂
(

Ĥv + β
−1 ln(ρ̂v)

)}

+ β−1 Tr{δρ̂} . (2.23)

The unit trace condition requires that we only consider variations for which Tr{δρ̂} = 0, so we obtain the solution

1

β
ln(ρ̂v) + Ĥv = C , (2.24)

where C is a constant to be determined by the unit trace condition. This equation is readily worked out as

ρ̂v = e−βĤv
/

Z[v] , where Z[v] ≔ Tr
{

e−βĤv
}

. (2.25)

It is clear that this procedure yields only a proper solution when 0 < Z[v] < ∞. As might be unexpected, the case

Z[v] = ∞ is actually the typical case for the quantum systems considered in chemistry and physics in full space, i.e.,

the particles are considered in R3. For example, consider the hydrogen atom and let us try to calculate the contribution

from only the bound states in the one-particle sector. As the bound states have energies ǫn = −1/(2n2) (in atomic units)

for n = 1, 2, . . . and an n2-fold degeneracy the contribution to the partition function becomes

Zbounded
N=1 =

∞∑

n=1

n−1∑

l=0

l∑

m=−l

〈

nlm
∣
∣
∣e−βĤ

∣
∣
∣nlm

〉

=

∞∑

n=1

n2eβ/(2n2) ≥
∞∑

n=1

n2 = ∞ . (2.26)

Since the partition function already does not converge when we only include the bound states in the one-particle

sector, the full partition function will definitely not converge. If this is already the case for the hydrogen atom, one

quickly realises that this implies that the partition function of any molecule or solid is infinite. The problem is that all

these systems have a Rydberg series and/or a continuum of states which makes the partition function divergent. More

generally we can state that any Hamiltonian with an accumulation point or continuous part in its spectrum will yield a

divergent partition function. The argument is along the same lines as before. As we have an accumulation point, there

exists an infinite sequence of eigenstates {Ψk}, such that their energies Ek ≤ L < ∞. The contribution to the partition

function from these states is readily estimated as

Zacc. =

∞∑

k

e−βEk ≥
∞∑

k

e−βL = ∞ . (2.27)

A similar argument can be used also for the continuum case, where we can find arbitrarily many approximate ei-

genfunctions (distributional eigenfunctions integrated over an arbitrarily small but finite spectral interval) within the

continuous spectrum (Dereziński and Gérard, 2013; Thirring, 2013).

There are two major approaches in practice to deal with this problem. The first one is to treat the volume as

an extensive quantity explicitly and enclose everything in a box or in an infinitely large confining potential like an

harmonic oscillator. By placing the molecule in a box or harmonic potential, we get rid of the Rydberg series and

continuum states. The thermodynamic limit is now obtained (provided it exists Thirring (2013)) by taking the limit of

an infinitely large box at the end of the calculation, or by taking the limit of a very shallow harmonic potential

The other option is to assume that the relevant physics only occurs in a small part of the Fock space and the re-

mainder is relatively unimportant. So the second procedure is to simply truncate the Fock space to a finite dimensional

space. In this case quantum physics becomes simple linear algebra and there are no accumulation points or continua

in the spectrum, since the Hamiltonian will just reduce to a finite-dimensional matrix. Hence, for a finite-dimensional

Fock space the partition function is always finite. The approach would now be to calculate the desired properties for

an increasing dimension of the Fock space and to see whether the answers converge.

Here we will follow a route in between. The restriction to a finite one-particle basis will, for the fermionic case,

result due to the Pauli exclusion principle in a finite dimensional Fock space (see Sec. 3.1). Hence for the fermionic
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case the mathematics will be comparatively simple. The fermionic Hamiltonians we consider (see Sec. 3.2 and 3.3)

are matrices, a fermionic ground state will always exist and the 1RDM is defined for any fermionic density-matrix

operator (see Sec. 3.6). Further, the necessary properties of the grand potential and the universal functional will be

easily determined (see Sec. 4).

For the bosonic case though, the restriction to a finite one-particle basis will not lead to a finite-dimensional

Fock space, since infinitely many bosons can occupy the same quantum state (e.g. in a Bose–Einstein condensate).

Consequently we will have to deal with unbounded operators, the hallmark of quantum physics.5 And in this case

we can encounter again the case Z = ∞. For example, consider only a single bosonic mode and a non-interacting

Hamiltonian, Ĥ = ǫ â†â = ǫN̂. In that case, the partition function is readily worked out as

Z =

∞∑

n=0

e−βǫn =






(

1 − e−βǫ
)−1

if ǫ > 0

∞ if ǫ ≤ 0 .
(2.28)

So only when ǫ > 0, we obtain a finite value for the partition function and otherwise Z diverges. This is actually

not so strange, since if ǫ < 0 the Hamiltonian is unbounded from below, because we can make the energy arbitrarily

low by adding more and more particles. Therefore, we should at least require that the Hamiltonian is bounded from

below, i.e., the energy expectation value on the domain of the Hamiltonian has a lower bound. The domain, i.e.,

for which states the Hamiltonian is well-defined, is usually not the full infinite-dimensional Hilbert space. Take for

instance the state |Ψ〉 = ∑∞
n=1|n〉/n in the case above. It is normalised to 〈Ψ|Ψ〉 = π2/6, but if we act with the above

Hamiltonian for an ǫ , 0 on it then 〈ĤΨ|ĤΨ〉 → ∞. Thus, such a state will not be in the domain. A proper account

of the domain of the bosonic Hamiltonians, their self-adjointness and existence of ground states will be given in

Sec. 3.2 and 3.3. Further, in Sec. 3.5 and 3.6 we then provide the details of the bosonic density-matrix operators

and 1RDMs. The necessary properties of the bosonic grand potential and universal functional will then be derived in

Sec. 5. Unfortunately, the existence of a ground state is not sufficient to ensure a finite partition function and hence

a well-behaved grand potential. Consider for example the following Hamiltonian for the case of one bosonic mode,

Ĥ = 1/(N̂ + 1). Formally this Hamiltonian can also be written as Ĥ =
∑∞

n=0(−N̂)n. Though this Hamiltonian has a

ground state, it has an accumulation point as well. So again we have Z = ∞. To avoid such accumulation points, one

would expect that if we introduced a highest-order repulsive interaction between the bosons (basically stop the above

expansion at some finite order 2n) that we can avoid this ‘infinite boson’ catastrophe. This is indeed the case as we

will proof later in Sec. 5.2.

2.4. General approach for 1RDM functional theory

The general approach in density-functional like theories is to partition the minimisation in the canonical grand

potential (energy in the zero temperature case) as

Ω[v] = inf
γ

(

F[γ] + Tr{v γ}) , (2.29)

where

F[γ] ≔ inf
ρ̂→γ
Ω0[ρ̂] = inf

ρ̂→γ
Tr

{
ρ̂
(
Ĥ0 + β

−1 ln(ρ̂)
)}

(2.30)

is called the universal functional. In case no ρ̂ → γ exists, we define F[γ 8 ρ̂] = ∞. This functional is universal in

the sense that for a given interaction (fixed Ĥ0) it can be used for any system with an extra one-body potential v (Ĥv =

Ĥ0+V̂v). The use of the universal functional is obvious. If we would have a manageable expression for F[γ], we do not

need to calculate the canonical density-matrix operator in the full Fock space to evaluateΩ[v] and hence find the exact

γ. The main objective of this work is therefore to study the properties of this universal function F[γ] (see Sec. 3.7).

To do so we will take full advantage of the fact that we work in a finite one-particle basis set which makes γ a finite-

dimensional matrix and the universal functional will thus have a finite-dimensional domain. Since it can be shown that

F[γ] is strictly convex (Theorem 14 in Sec. 3.7) we can take advantage of well-known properties of such functions (for

5Note, that the most fundamental relation of quantum mechanics, i.e., [x̂, p̂] = i~1̂, necessarily needs unbounded operators

Blanchard and Brüning (2003).
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a finite-dimensional domain): 1) local Lipschitz continuity, 2) the directional derivative exists in all directions, 3) the

subdifferential is non-empty and 4) if the subdifferential contains only one element, the function is differentiable and

the subgradient equals the gradient. All of these concepts will be defined more precisely and explained in more detail

in Sec. 3.4. The most important consequence is that the universal functional will be differentiable, if we are able to

show uniqueness of the subdifferential. Differentiability of F[γ] allows to find the minimiser (2.29) via

∂F

∂γ
= −v . (2.31)

Strict convexity implies that there is only one solution to (2.31) and that it yields a global minimum. To demonstrate

uniqueness of the subdifferential, it will first be shown that any γ (as defined in Sec. 3.7) is v-representable. The

subdifferential can now be identified with the potentials generating the particular γ. By repeating Mermin’s proof, we

will show that the potential generating a 1RDM is actually unique, which implies that the subdifferential contains one

element, and hence, that F[γ] is differentiable.

Differentiability is also important if one desires to setup a Kohn–Sham like construction to approximate F[γ] with

the one from a non-interacting system. For a non-interacting system (Ĥs =
∑

i j(hs)i jâ
†
i
â

j
) the grand potential as a

functional of the 1RDM can be worked out as (see Appendix Appendix B),

Ω±s [γ] = ∓1

β
tr
{

ln(1 ± γ)
}

, (2.32)

where the upper and lower sign refer to bosons and fermions respectively. Since we have the grand potential as

an explicit functional of the 1RDM, we can also construct an explicit expression for the non-interacting universal

functional

F±s [γ] = tr
{

γ
(

(hs,0 + β
−1 ln(γ)

) − β−1(γ ± 1) ln(1 ± γ)
}

. (2.33)

Note how much simpler the 1RDM functional is for the non-interacting system compared to the density functional

version: it is even explicit! In the density-functional version one would first need to find a local potential such that the

non-interacting system yields the required density. From its solution, one can then finally calculate Fs[n].

The in general unknown universal function which has to be approximated in practice is now expressed as

F[γ] = Fs[γ] +
(

F[γ] − Fs[γ]
)

≕ Fs[γ] + FHxc[γ] . (2.34)

The Hartree-exchange-correlation function has two different contributions: an interaction part and an entropic part

Fxc[γ] = W[γ] + S c[γ] . (2.35)

It is a matter of taste whether one wants to treat Hartree and/or exchange contributions explicitly or would rather like

to build an integral approximation for the interaction energy. In the usual case, only number conserving two-body

interactions are present, i.e., the interacting Hamiltonian we want to approximate reads

Ĥ0 =
∑

i j

hi jâ
†
i
â

j
+

1

2

∑

i jkl

wi jklâ
†
i
â
†
j
â

k
â

l
. (2.36)

The Hartree and the exchange part are then explicitly given in terms of the 1RDM as

WH[γ] ≔
1

2

∑

i jkl

wi jklγliγk j , (2.37a)

Wx[γ] ≔
1

2

∑

i jkl

wi jklγl jγki . (2.37b)

The correlation part of the interaction energy is now simply the remaining part

Wc[γ] ≔ W[γ] −WH[γ] −Wx[γ] . (2.37c)

The correlation entropy is simply the difference between the entropies of the real system and in the fictitious non-

interacting system

S c[γ] ≔ S [γ] − S c[γ] . (2.38)
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2.5. Outline

To summarise, we will first introduce in detail the fermionic and bosonic Fock spaces in Sec. 3.1, then discuss the

creation and annihilation operators as well as Hamiltonian operators in Sec. 3.2. In Sec. 3.3 we provide the spaces of

the non-local potentials, before we recapitulate properties of finite-dimensional convex (concave) functions in Sec. 3.4.

In Sec. 3.5 and 3.6 we discuss the properties of the density-matrix operators and the 1RDMs. If we assume that the

partition function is finite and the universal functional is strictly convex then in Sec. 3.7 we show v-representability of

the 1RDMs. These assumptions will be proved to hold for the simple fermionic case in Sec. 4 and then for the more

advanced infinite-dimensional bosonic case in Sec. 5. This will be done in three successive steps, where in Sec. 5.1 we

first show that the bosonic grand potential has a minimum, in Sec. 5.2 we show under which conditions the bosonic

partition function is finite and then in Sec. 5.3 we show that the bosonic universal functional has a minimum and is

strictly convex. In Sec. 6 we discuss issues that arise if we build our theory on an infinite-dimensional one-particle

space. Finally, in Sec. 7 we give a concise recapitulation of the complete setting in which 1RDM functional theory

can be made mathematically rigorous before we discuss implications and future perspectives. In the appendices we

then provide further details of expressions and theorems employed for completeness.

We like to stress again that the mathematics to handle the bosonic case can be quite formidable and intimidating.

We would therefore advice the less mathematical inclined reader to focus on the fermionic case on a first time reading

and to only glance over the details of dealing with infinite dimensional spaces.

3. Setting the stage

3.1. Many-particle spaces

We will consider a quantum many-body system, where the particles can only occupy a finite number of single

particle states, |i〉, for i ∈ Nb ≔ {1, . . . ,Nb} and Nb < ∞. The single particle states are assumed to be orthonormal,

so 〈i| j〉 = δi j. From these orthonormal single-particle states, we can construct a one-particle Hilbert space H ≔
{|1〉, . . . , |Nb〉

}

, whose elements are linear combinations of the basis states, i.e. the single particle states {|i〉}

|ψ〉 =
Nb∑

i=1

|i〉ψi . (3.1)

Let us stress that we work with a spin-dependent basis, so the index i also runs over the different spin states.

The orthonormality of the basis states induces the following inner product on the one-particle Hilbert space

〈φ|ψ〉 ≔
Nb∑

i, j=1

φ∗i 〈i| j〉ψ j =

Nb∑

i=1

φ∗iψi , (3.2)

so the Hilbert space is isomorphic (surjective isometry) to the Nb-dimensional sequence or Euclidean spaces H �
l2(Nb) � CNb . The inner product yields the usual square norm ‖ψ‖ =

√

〈ψ|ψ〉.
To accommodate multiple particles, we will use tensor products of the one particle Hilbert space

HN
≔

N⊗

i=1

H = (H ⊗ · · · ⊗ H
︸          ︷︷          ︸

N times

)

. (3.3)

The basis states are readily constructed from the one particle basis as tensor products

|i1〉|i2〉 · · · |iN〉 ≔ |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN〉 , (3.4)

where N is the order of the tensor products, i.e. the number of particles we will be dealing with. There are different

ways how we can define the inner product, but the Dirac bra-ket notation appeals to the following definition

〈iN | · · · 〈i2|〈i1|| j1〉| j2〉 · · · | jN〉 ≔ 〈iN | · · · 〈i2|〈i1| j1〉| j2〉 · · · | jN〉

= 〈i1| j1〉〈iN | · · · 〈i2| j2〉 · · · | jN〉 =
N∑

k=1

〈ik | jk〉 . (3.5)
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The norm of |ΨN〉 ∈ HN
� l2(NN

b
) � CNN

b is defined in the same manner as in the one-particle Hilbert space via the

inner product as ‖ΨN‖ ≔
√
〈ΨN |ΨN〉.

The Hilbert space HN is suitable for the description of distinguishable quantum particles. The description of of

indistinguishable quantum particles, however, requires the states to be symmetric (bosons) or anti-symmetric (fermi-

ons). These states belong to one of the following subspaces ofHN

HN
± ≔ S ±

N⊗

i=1

H = S ±
(H ⊗ · · · ⊗ H
︸          ︷︷          ︸

N times

)

. (3.6)

The operator S + is a symmetriser and S − an anti-symmetriser, depending if we are dealing with bosons or fermions

respectively. Note that the anti-symmetry of the fermions implies that theHNb

− is the fermionic many-particle Hilbert

space with the largest number of fermions. This can be equivalently stated asHN>Nb = ∅.
The basis states of these N-particle Hilbert spaces are not merely tensor products of the one-particle states, but

should also exhibit (anti-)symmetry. There are several possibilities regarding normalisation and sign convention. We

will use the following definition to define a basis for the subspacesHN
± (Stefanucci and van Leeuwen, 2013)

|i1 . . . iN〉 ≔
1√
N!

∑

℘

(±)℘|℘(i1)〉 · · · |℘(iN)〉 , (3.7)

where ℘ is a permutation of i1, . . . , iN and (±)℘ = 1 for even permutations and (±)℘ = ± for odd permutations. Note

that these basis states are unique up to an arbitrary permutation of their indices which only might induce a change in

their phase factor. From the definition it is clear that the basis states are orthogonal if their indices are distinct. To be

more precise, from the inner product (3.5) it follows that the inner product of the basis states is

〈iN . . . i1| j1 . . . jN 〉 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

δi1 j1 . . . δi1 jN

...
. . .

...

δiN j1 . . . δiN jN

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣±

, (3.8)

where |A|+ denotes the permanent (bosons) and |A|− denotes the determinant (fermions).

We therefore find that the states (3.7) constitute an orthonormal basis in the fermionic case if we take for example

i1 < · · · < iN . (Allowing for arbitrary i1, . . . , iN would yield an overcomplete basis). For this particular choice, the

fermionic unit operator can be expressed as

1̂N =

Nb∑

i1=1

Nb∑

i2>i1

· · ·
Nb∑

iN>iN−1

|iN . . . i1〉〈i1 . . . iN | =
1

N!

Nb∑

i1=1

· · ·
Nb∑

iN=1

|iN . . . i1〉〈i1 . . . iN | . (3.9a)

To disentangle the summations, we used that fermionic states in which particles occupy the same one-particle state do

not exist, so drop out of the summation. Further, the factor 1/N! compensates for summing over equivalent states.

In the bosonic case, we also have the possibility that particles may occupy the same one-particle state. For these

states (3.8) reveals that those states are not normalised. The bosonic unit operator therefore becomes

1̂N =

Nb∑

i1=1

Nb∑

i2≥i1

· · ·
Nb∑

iN≥iN−1

|iN . . . i1〉〈i1 . . . iN |
〈iN . . . i1|i1 . . . iN〉

=
1

N!

Nb∑

i1=1

· · ·
Nb∑

iN=1

|iN . . . i1〉〈i1 . . . iN | . (3.9b)

Note that very conveniently, the number of equivalent states times the norm of the bosonic basis states (3.7) is exactly

N!, so disentangling the summations on the right-hand side yields the same form as in the fermionic case (3.9a).

An N-body quantum state for indistinguishable particles can now be expanded in terms of the basis states as

|ΨN〉 =
1

N!

Nb∑

i1=1

· · ·
Nb∑

iN=1

|i1 . . . iN〉ΨiN ...i1 , (3.10)
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whereΨiN ...i1 = 〈iN . . . i1|ΨN〉. A practical advantage of this construction is that even if we choose a sequence {ΨiN ...i1 } ∈
l2(NN

b
) that does not have the right (anti-)symmetry, the resulting |ΨN 〉 does. From the resolution of the identity (3.9)

it follows that the inner product for two state |ΦN〉, |ΨN〉 ∈ HN
± can be evaluated as

〈ΦN |ΨN〉 =
1

N!

Nb∑

i1=1

· · ·
Nb∑

iN=1

Φ
†
i1...iN
Ψ

iN ...i1
, (3.11)

where Φ
†
i1...iN
≔ Φ∗

iN ...i1
. The norm is defined in the usual manner via the inner product as ‖ΨN‖ ≔

√
〈ΨN |ΨN〉.

The special caseH0 = H0
± is defined to have one state: the vacuum state |0〉. SinceH0 contains only one state, it

is isomorphic to the complex numbers,H0
� C.

The bosonic/fermionic Fock space can now be constructed by adding all the N-particle Hilbert spaces

F± ≔
∞⊕

n=0

Hn
± . (3.12)

An important difference between bosons and fermions is that the Fock space allows for an arbitrary number of bosons,

so F+ is infinite dimensional. On the contrary, the highest number of fermions which can be accommodated in Nb

one-particle states is Nb, so the fermionic Fock space is finite dimensional (2Nb) and the sum in (3.12) only needs to

run up to n = Nb. This difference might not seem to be very important at this point, but we will see that the bosonic

case requires much heavier mathematics than the fermionic case to properly set up 1RDM functional theory.

The inner product on the Fock space is defined by adding the inner product in each particle sector. So given states

|Φ〉, |Ψ〉 ∈ F±

|Φ〉 = a0|0〉 ⊕ a1|Φ1〉 ⊕ · · · ⊕ an|Φn〉 ⊕ · · · ,
|Ψ〉 = b0|0〉 ⊕ b1|Ψ1〉 ⊕ · · · ⊕ bn|Ψn〉 ⊕ · · · ,

(3.13)

where |Φn〉, |Ψn〉 ∈ Hn, the inner product is naturally defined as

〈Φ|Ψ〉 ≔
∞∑

n=0

a∗n〈Φn|Ψn〉bn . (3.14)

The norm induced by the inner product is the usual square norm, ‖Ψ‖ =
√
〈Ψ|Ψ〉.

At this point we find the first real mathematical differences between fermions and bosons. Since the fermionic

Fock space is finite dimensional it is isomorphic to finite-dimensional sequence or Euclidean spaces F− � l2(2Nb) �

C2Nb
. Hence every possible state can be represented by a sequence of complex numbers |Ψ〉 � {a1, . . . , a2Nb } and is

guaranteed to have a finite square norm. Indeed, for the finite-dimensional case all norms are equivalent, as they agree

on the ordering of the vectors by length. This can be seen most easily for the case of the so-called lp-norms which are

defined by

‖Ψ‖p ≔




d∑

i=1

|ai|p




1/p

, (3.15)

where 1 < p < ∞ and d is the dimensionality of the sequence space. In the case of p = ∞ we choose ‖Ψ‖∞ ≔ supi|ai|.
If d < ∞ we have for q > p on the one hand ‖.‖p ≥ ‖.‖q and due to Hölder’s inequality ‖.‖p ≤ d1/p−1/q‖.‖q. Thus for

any two norms ‖·‖q ≤ ‖·‖p ≤ d1/p−1/q‖·‖q. Consequently, it does not really matter for the fermionic case which norm

we use in our calculations. If the norm of Ψ is finite in some norm, it will be finite in any norm.

On the contrary, for the bosonic case we have infinite dimensions and hence the square norm is no longer auto-

matically finite. An obvious example is the state we generated in the case of a single bosonic mode in Sec. 2.3, i.e.,

|ĤΨ〉 = ∑∞
n=1 ǫ|n〉, where we identify |11 . . . 1n〉 ≡ |n〉 for the one-particle Hilbert space H = {|1〉}. By retaining only

those |Ψ〉 for which ‖Ψ‖2 < ∞, we can turn the bosonic Fock space into a proper Hilbert space F+ � l2(N), i.e. it is

complete (every Cauchy sequence converges) with respect to the norm induced by the inner product. Further, for the
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bosonic case it matters which norm we choose. Obviously, while for the above state ‖ĤΨ‖2 → ∞ we clearly have

‖ĤΨ‖∞ = ǫ. Another example would be with 〈Φn|Φn〉 = 1 the state

|Φ〉 =
∞∑

n=1

1

nk
|Φn〉 , (3.16)

which only for k > 1/2 obeys ‖Φ‖2 < ∞. If we choose a different lp-norm, then we select a different set of states

since only for k > 1/p we have ‖Φ‖p < ∞. It also shows that for q > p we still have the inequality ‖·‖p ≥ ‖·‖q
but we do no longer have the second inequality to make the norms equivalent. Further, it implies that for q > p we

have lp(N) ⊂ lq(N) ⊆ l∞(N). So why don’t we use a different norm that allows for more general states? The reason

is that only for p = 2 the sequence space is a Hilbert space, i.e., has an inner product. And this structure allows

us to properly define self-adjoint operators in the infinite-dimensional case. That we have self-adjoint Hamiltonians

will become especially important when we want to define the exponentiation of an operator, e.g., for the canonical

density-matrix operators or Gibbs states.

3.2. Hamiltonians

Now let us turn our attention to the Hamiltonians on the Fock spaces. We will use creation and annihilation

operators to define the Hamiltonians and divide it into two categories: number conserving and number non-conserving

Hamiltonians. Again, the fermionic case will be trivial, while the bosonic case needs some more details.

We define the (formally adjoint) creation and annihilation operators6 by (Stefanucci and van Leeuwen, 2013)

â
†
i
|i1 . . . iN〉 = |i1 . . . iN i〉 , (3.17a)

â
i
|i1 . . . iN〉 =

N∑

k=1

(±)N+kδiki|i1 . . . ik−1ik+1 . . . iN〉 , (3.17b)

where the upper/lower sign refers to the bosonic/fermionic case and they obey the commutation/anti-communication

relations for bosons/fermions
[
â

k
, â
†
l

]

∓ = δkl and
[
â

k
, â

l

]

∓ = 0 (3.18)

on their common domain. Since the fermionic Fock space is finite, the operators on this Hilbert space are bounded

(and continuous) by construction and have the full Fock space as their domain

â
i
, â
†
i

: F− 7→ F−. (3.19)

This also makes the creation operator to be the adjoint of the annihilation operator, since no subtleties with respect to

domains arise. Further, bounded operators form an algebra and hence multiplication of bounded operators is again a

bounded operator. Therefore, in the fermionic case any combination of creation and annihilation operators will be a

bounded operator and thus defined on the full Fock space.

In the bosonic case this is no longer true. As an examplification we will use the state |Ψ〉 = ∑∞
n=1|n〉/n already

employed in Sec. 2.3. We then have for ‖âΨ‖22 = 〈Ψ|â†â|Ψ〉 =
∑∞

n=1 1/n → ∞, and thus we cannot have the full

infinite-dimensional bosonic Fock space as domain of â. This also holds for combinations of creation and anni-

hilation operators and thus for the bosonic Hamiltonians. Although in physics and chemistry often ignored, it is

indeed the domain of an operator that is decisive for the properties such as self-adjointness. Self-adjointness is im-

portant for the Hamiltonian, as it guarantees that its spectrum is real and that it has (generalised) eigenfunctions. The

existence of this eigendecomposition allows us to define the exponential needed in the evaluation of the partition func-

tion (2.25). A well-known example of an operator that is hermitian but not self-adjoint is the momentum operator in

a box (Ruggenthaler et al., 2015). A simple way to see this is that no eigenfunctions for the momentum operator with

zero boundary conditions exist. However, self-adjointness for a separable Hilbert space is equivalent to the existence

of a diagonal representation in terms of (possibly distributional) eigenfunctions with real eigenvalues. Therefore the

momentum operator in a box cannot be self-adjoint.

6Sometimes, the creation operator has a plus symbol instead of the dagger, so â+ rather than â†, to stress that â+ adds a particle.
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To analyse the bosonic situation in more detail, we use the approach by Cook (Cook, 1953; Emch, 1972). Consider

the subspace of the Fock space, F ⊆ F , which only contains vectors of finite, though arbitrary length. So in F we

only include Fock states of the following form, cf. (3.13)

|Φ〉 = a0|0〉 ⊕ a1|Φ1〉 ⊕ a2|Φ2〉 ⊕ · · · ⊕ an|Φn〉 , (3.20)

with n < ∞ and where |Φn〉 ∈ Hn. For each of these n-particle components we have â
†
i

: Hn → Hn+1 and â
i
: Hn →

Hn−1 respectively. So for Fock states of finite length this implies that acting with a creation or annihilation operator

on them yields a new state also of finite length, so we have â
†
i

: F→ F and â
i
: F→ F. So â

†
i

and â
i
can be defined to

have a common domainF on which they are each others adjoint and the commutation relations (3.18) are well defined.

As the ranges are also F, this implies that for any string of a finite number of creation and annihilation operators we

have

â
†
i1

â
†
i2
· · · â†

in
â

j1
â

j2
· · · â

jm
: F→ F . (3.21)

Though F is not complete (its completion is F , which also includes states with n = ∞, though finite norm), it has the

important property that it is dense in F . Dense in F means that any |Ψ〉 ∈ F can be arbitrarily closely approximated

by states in F. So we can always find a state |Φ〉 ∈ F such that ‖Φ − Ψ‖ < ǫ for any ǫ > 0. The fact that we can

define arbitrary strings of creation and annihilation operators on a dense subspace of F turns out to be very useful to

guarantee that Hamiltonians defined as combinations of such strings are self-adjoint.

To guarantee that the considered Hamiltonians are self-adjoint, we will make use of the following. Provided the

operator is bounded from below by some number λ ∈ R, hermitian and has a dense domain, then there exists a

self-adjoint extension of the operator called the Friedrichs extension Blanchard and Brüning (2003). As an example

consider the number operator defined as

N̂ ≔

Nb∑

i=1

â
†
i
â

i
. (3.22)

Since the number operator is defined by a linear combination of creation-annihilation operator strings of finite length,

N̂ : F → F, so is defined on a dense domain. It is obviously hermitian on this domain. Further, since 〈Ψ|N̂|Ψ〉 =
∑Nb

i=1
〈â

i
Ψ|â

i
Ψ〉 = ∑Nb

i=1
‖â

i
Ψ‖22 ≥ λ‖Ψ‖2 for λ = 0, N̂ is bounded from below. On the other hand, it is also obvious

that the operator is not bounded from above. As the number operator is bounded from below, is hermitian and has a

dense domain, we know that it has a self-adjoint realisation which has a spectral representation with real spectrum. In

fact, as the Fock space was constructed from the eigenstates of the number operator, we actually know its self-adjoint

realisation in its spectral form

N̂ =

∞⊕

n=0

n 1̂n . (3.23)

By constructing the Hamiltonians as linear combinations of creation-annihilation operator strings of finite length, we

immediately ensure that the Hamiltonians are defined on a dense domainF. Including only hermitian combinations of

strings immediately makes them hermitian. The only thing we still need to worry about in the bosonic case is whether

the Hamiltonians are bounded from below.

Let us consider these Hamiltonians in some more detail, to understand which kind of physical situations they can

describe. This will also allow us to give conditions which guarantee that the Hamiltonian is bounded from below, and

hence, has a self-adjoint realisation. The first step will be to split the Hamiltonians in a number conserving part Ĥc

and a non-conserving part Ĥnc

Ĥ = Ĥc + Ĥnc. (3.24)

The number conserving Hamiltonians have the general form

Ĥc =

n∑

n=0

Nb∑

i1,...,in=1
j1,..., jn=1

h
(n)

i1...in , jn... j1
â
†
i1
· · · â†

in
â

jn
· · · â

j1
, (3.25)

where 0 < n < ∞ is the maximum order of the interactions and h(n) ∈ C2nNb is hermitian in the sense that

(

h
(n)

j1... jn,in...i1

)∗
= h

(n)

i1...in, jn...i1
. (3.26)

16



This ensures that the particle-conserving part is hermitian. In the bosonic case, we additionally require that the matrix

elements of the maximum order of interaction obey

Nb∑

i1,...,in=1
j1,..., jn=1

u∗i1...in h
(n)

i1...in, jn... j1
u j1... jn > 0 (3.27)

for all u ∈ CnNb . In other words, in the bosonic case we require that h(n) is positive definite. Due to Theorem 24 we

know that dom(Ĥc) = dom(N̂n) is dense in F+, and according to corollary 25 we know that Ĥc will be bounded from

below. That the highest order interaction is supposed to be positive to assure boundedness from below in the bosonic

case is physically quite intuitive. Since if the highest order interaction would not be positive, the energy could be

lowered indefinitely by adding more and more particles.

Now, what do the different orders in Ĥc correspond to? The term with n = 0 corresponds to a constant in the

Hamiltonian which only shifts the eigenvalue spectrum. This could be the repulsion between the nuclei in a molecule

when we only describe the electrons quantum mechanically. The next order, n = 1, contains the one-body part

of the Hamiltonian. The one-body part comprises at least the kinetic energy (= hopping matrix elements) and can

also contain effects due to a one-body potential, e.g. a dipole field or the electrostatic field generated by nuclei. As

already mentioned before, in the grand canonical setting, the negative of the trace of the one-body potential acts as

the chemical potential. This is easily understood as the constant in the potential sets the potential relative to infinity,

which acts as the bath with which the particles can be exchanged. The second term, n = 2, contains the two-body

interactions, e.g. the Coulomb interaction between electrons or the Hubbard U onsite interaction. The higher-order

terms then correspond to more complicated many-body interactions.

Let us next turn to the number non-conserving parts of the Hamiltonian Ĥnc. We want to allow for Hamiltonians

which mix the states of different particle numbers. The major requirement for the number non-conserving terms is

that they are hermitian. That is obviously enough for the fermionic case to guarantee that the total Hamiltonian is self-

adjoint. For the bosonic case we again need to ensure that the full Hamiltonian is bounded from below. This roughly

means that we need to ensure that the non-conserving parts in the Hamiltonian do not become too large compared to

the conserving parts.

The lowest order non-conserving term is of the form of a source or 1/2-body operator (Dominicis and Martin,

1964)
∑

i

((

h
(1/2)

i

)∗
â
†
i
+ h

(1/2)

i
â

i

)

. (3.28)

In the context of photons, for instance, this term corresponds to the coupling to an external current or dipole (Greiner and Reinhardt,

2013; Grynberg et al., 2010).

The next higher order term is used in the Bardeen–Cooper–Schrieffer (BCS) Hamiltonian to model the formation

of Cooper pairs to explain superconductivity, the (anomalous) pairing field

∑

i j

(

D
†
i j

â
†
i
â
†
j
+ D

i j
â

i
â

j

)

. (3.29)

In Appendix Appendix C, we work out the solution of a non-interacting Hamiltonian of the most general form, i.e.

with both a source term (3.28) and a pairing field (3.29). The source term only shifts the spectrum as a whole, so no

additional restrictions on the source term are needed.

However, in the bosonic case, a too strong pairing field leads to an unbounded operator with a pure continuous

spectrum (Chruściński, 2003), so the pairing matrix D cannot be chosen arbitrarily large for bosons. This is readily

clarified by writing the pairing field in terms of position and momentum operators

ω

2

(

â†â† + ââ
)

=
1

2
mω2x2 − p̂2

2m
. (3.30)

Adding this perturbation to the harmonic oscillator Hamiltonian with strength d ∈ R, we find

Ĥ = ω â†â + d
ω

2

(

â†â† + ââ
)

= (1 − d)
p̂2

2m
+

1 + d

2
mω2 x2 =

p̂2

2mr

+
1

2
mrω

2
r x2 (3.31)
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Ĥ0 = ω â†â

V(x) = 1
2
mωx2

Ĥ0 − 1
2
mω(â†â† + ââ)

V(x) = − 1
2
mωx2

Figure 1: Plot of the potential when adding a too strong pairing field to the (bosonic) harmonic oscillator Hamiltonian Ĥ0. The particles will be

unbound and the spectrum of the perturbed Hamiltonian will completely continuous (Chruściński, 2003).

where

mr = m/(1 − d) and ωr = ω
√

1 − d2 . (3.32)

Hence, we find we get a renormalised version of the harmonic oscillator for |d| < 1. For d = −1, we exactly eliminate

the harmonic potential and the Hamiltonian of a free particle with half the original mass remains, mr = m/2. For

d = 1, the effective mass becomes infinite, mr = ∞ and we are left with a Hamiltonian without any kinetic energy and

only mω2x2 remains. The resulting operators for |d| = 1 are still self-adjoint, and it is clear that we have a completely

continuous spectrum. For |d| > 1 the system corresponds to an inverted harmonic oscillator, which only serves as a

scattering potential (see Fig. 1). One therefore expects a purely continuous spectrum (−∞,∞), which is indeed the

case, as demonstrated in Ref. (Chruściński, 2003).

Higher order non-conserving terms can be devised in a similar manner as the lowest order terms to ensure that the

Hamiltonian is hermitian. An example would be the term

∑

i jklm

(

di jklmâ
†
i
â
†
j
â
†
k
â

l
âm + d∗i jklmâ†mâ

†
l
â

k
â

j
â

i

)

. (3.33)

From the discussion on the bosonic pairing field it is clear that additional constraints on the strength of these general

non-conserving parts are needed in the bosonic case to ensure that the Hamiltonian is bounded from below and has a

discrete spectrum without accumulation points. Sufficient bounds are discussed in the specialised Section 5.2 and the

relevant inequalities are presented in Table 1.

3.3. One-body potentials

Since we expect a one-to-one correspondence between the 1RDM and (non-local) one-body potentials, we will

consider perturbations of the Hamiltonian by a one-body potential

Ĥv ≔ Ĥ + V̂v ≔ Ĥ +
∑

i j

vi jâ
†
i
â

j
, (3.34)

where v = v† to keep the full Hamiltonian Ĥv hermitian. To have a properly defined canonical density-matrix operator,

we need that the partition function is finite. We will therefore only use potentials in the following set

V ≔ {v ∈ H(Nb) : Z[v] < ∞} , (3.35)

where H(Nb) denotes the set of hermitian Nb × Nb matrices, i.e.

H(Nb) ≔
{

h ∈ Nb × Nb → C : h = h†
}

. (3.36)

Later we will show in theorem 27 that if the Hamiltonian has a highest order interaction, i.e. n < ∞, and is bounded

from below, then Z[v] < ∞. Let us therefore discuss when we can expect the perturbed Hamiltonian Ĥv to be bounded

from below. This will also guarantee that the resulting Hamiltonian is self-adjoint as discussed in Sec. 3.2.
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First note, that since the fermionic Fock space is finite dimensional, Ĥv will always be bounded from below (and

above). Thus the fermionic space of non-local potentials is just the full space of hermitian matrices,V− = H(Nb).

In the bosonic case, however, even if Ĥ is bounded from below, Ĥv might not be bounded from below for general

v ∈ H(Nb). Take, for instance, the non-interacting bosonic case where we have Ĥv =
∑

i j(h
(1)

i j
+vi j)â

†
i
â

j
. By choosing v

such that h(1) + v has a negative eigenvalue, we can lower the energy by an arbitrary amount by putting more and more

bosons in this negative energy state. Also a zero eigenvalue should be avoided, since this leads to an infinite number

of many-particle states with the same energy and prevent the partition function from being finite (see Sec. 2.3). So for

non-interacting bosons, we readily find that

Vnonint
+ =

{

v ∈ H(Nb) : h(1) + v > 0
}

, (3.37)

which makes Ĥv > 0. To have a properly defined reference system, we need v = 0 to be contained in Vnonint
+ , so one

would need h(1) > 0. The most natural choice is to use the kinetic energy operator for h(1), since that is a part we

usually cannot manipulate in the experiment and is strictly positive definite, i.e.

∑

i j

h
(1)

i j
â
†
i
â

j
= T̂ =

∑

i j

ti jâ
†
i
â

j
> 0 . (3.38)

It should be clear that other choices for h(1) are definitely possible under the aforementioned conditions.

In the interacting case we have due to the assumptions∞ > n > 1 and h(n) > 0 from Sec. 3.2 that a perturbation

in the first-order terms does not make Ĥv unbounded from below. Thus in the interacting bosonic case we have again

V+ = H(Nb).

3.4. Convex and concave functions

As mentioned in the introduction, most of the functions we will be dealing with are convex or concave. In the

finite dimensional case they have some convenient general properties which we can readily exploit, because we work

with a finite one-particle basis. These properties are very intuitive and will be illustrated with the help of some figures.

Rigorous mathematical proofs of these properties can be found in Appendix Appendix A. For definiteness, let us state

the definition of a convex (concave function).

Definition 1 (convex/concave function). Consider a set X. A function f : X → R∪ {−∞,+∞} is called convex if for

all x1, x2 ∈ X and λ ∈ [0, 1]

f (λx1 + (1 − λ)x2) ≤ λ f (x1) + (1 − λ) f (x2) .

The function is called strictly convex if there is only an equality for 0 < λ < 1 and x1 , x2 if f (x1) = −∞ or

f (x2) = −∞. A function f : X → R ∪ {−∞,+∞} is (strictly) concave if − f is (strictly) convex.

Note that usually the definition of a convex function f is only given on its domain, dom( f ) ≔
{

x ∈ X : | f (x)| < ∞}

.

By allowing a convex function to take on the values ±∞, the definition also works over the full set X. The following

property also holds in the infinite dimensional case.

Theorem 1 (Unimodality). Let f be a convex function on a convex subspace M, and let x∗ ∈ M ∩ dom( f ) be a local

minimiser of f on M

∃r > 0 : f (y) ≥ f (x∗) ∀y ∈ M, ‖y − x‖ < r .

Then x∗ is a global minimiser of f on M.

If f is strictly convex, then the set of minimisers on M is either empty or contains only one element (singleton).

Proof. We should proof that f (y) ≥ f (x∗) for all y ∈ M. If f (y) = +∞, there is nothing to proof, so assume y ∈ dom( f ).

Since x∗ is a local minimiser we have by definition x∗ ∈ dom( f ). Because f is convex, we have for all t ∈ (0, 1) and

xt = ty + (1 − t)x∗

f (xt) − f (x∗) ≤ (

f (y) − f (x∗)
)

.

Because x∗ is a local minimiser, the left-hand side is nonnegative for small enough t > 0, so the right-hand side needs

to be nonnegative for any y ∈ M ∩ dom( f ).
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Now we proof that if the minimiser exists that it is unique if f is strictly convex. We do this by reductio ad

absurdum. Suppose that two distinct minimisers exist: x∗ , x⋆. Then from strict convexity we have

f

(
1

2
x∗ +

1

2
x⋆

)

<
1

2

(

f (x∗) + f (x⋆)

)

= min
x∈M

f (x) .

Thus the point between x∗ and x⋆ would yield a lower value than the two minima at x∗ and x⋆. This is clearly a

contradiction, so our initial assumption that there can be multiple minima is incorrect.

In the following we will state some nice properties of convex (concave) in the finite dimensional case. Since

concavity of f is simply convexity of− f , we will only formulate these statements for convex functions. Note, however,

that the necessary general definitions we present in this subsection are not restricted to the finite-dimensional case.

Definition 2 (Compact set). Let X be a normed space and A ⊆ X. Then the following are equivalent

• A is compact

• A is complete (every Cauchy sequence converges) and can be covered by finitely many subsets with a finite

size.

• Every sequence in A has a convergent subsequence whose limit is in A.

Further, due to the Heine–Borel theorem a subset of an Euclidean space S ⊆ R
n is compact if and only if it is closed

and bounded. Compact can therefore be regarded as a generalisation of closed and bounded (sub)sets to normed spaces

(or when put in a more general setting, to topological spaces). Most of the time we will work in Euclidean spaces,

so compactness can simply be read as closed-and-boundedness. Only when dealing with the bosonic ensemble, we

actually need the more general notion as described in its definition 2.

Definition 3 ((local) Lipschitz continuity). Let X be a normed space. A function f : X → R is called (globally)

Lipschitz continuous, if there exists a constant K such that for all x, y ∈ X

| f (x) − f (y)| ≤ K‖x − y‖ .

If such a constant can only be found for any compact subspace of X, the function is called locally Lipschitz continuous.

Theorem 2. Let X be a finite dimensional vector space and f : X → R a convex function. The function f is Lipschitz

continuous on any compact subset of the interior of its domain, int dom( f ), i.e. the function is locally Lipschitz con-

tinuous.

Some terms in this theorem might be less familiar to the reader so let us discuss them briefly. As already stated

before in different contexts, the domain of a function f : X → R is the part of X where the function remains finite.

The interior of a set X, int(X), has a very intuitive appeal and it can be made more precise as all points x ∈ X such that

x is contained in an open subset of X.

One can readily convince oneself of the correctness of this theorem by sketching a convex function and considering

all straight lines one can draw between a some point x on the graph and all points in the neighborhood. Since these

lines never become vertical (except at the boundary of the domain), there is some maximum slope for these lines. This

is illustrated in Fig. 2. A more rigorous proof can be found in Appendix Appendix A.1.

An other important property of finite dimensional convex functions is that the directional derivative exists in each

direction.

Definition 4 (Directional derivative). A function f is differentiable at x in the direction h if the following limit exists

f ′h(x) ≔ lim
t↓0

f (x + h t) − f (x)

t
.

Theorem 3. Let X be a finite dimensional vector space and f : X → R a convex function. The function f is differen-

tiable in any direction at any point in the interior of its domain.
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R

f (x)

f ′−1
(x)

f ′
1
(x)f (x)

∂ f (x)

Figure 2: For a convex function we can always draw two straight lines

with a non-vertical slope on any region R in the interior of its domain

around x, so a convex function on a one dimensional space is locally

Lipschitz continuous. Note that at the boundary of its domain, the

convex function can jump, so a convex function is not necessarily con-

tinuous at the boundary of its domain.

Figure 3: Directional derivatives and subgradients at x of a 1-

dimensional convex function f . As there is a kink at x, there are mul-

tiple subgradients in the subdifferential ∂ f . The directional derivatives

are the subgradients with the highest slope in each direction.

This basically follows directly from the local Lipschitz continuity of finite dimensional convex functions. A more

detailed proof is given in Appendix Appendix A.2. Though a finite dimensional convex function is differentiable in

each direction, these derivatives f ′
h
(x) are not necessarily linear in h, so the gradient (Gâteaux derivative) of f might

not exist. A typical example is the function f (x) = |x|, which is not differentiable at x = 0. Still we have the following

directional derivatives: f ′−1
(0) = −1 and f1(0) = 1. However, it is possible to define a good surrogate for convex

functions.

Definition 5 (Subgradient and subdifferential of a convex function). Let X be a Banach space and f : X → R be a

convex function. Then h ∈ X∗ is called a subgradient of f at x ∈ dom( f ) if for any y ∈ dom( f ) we have

f (y) ≥ f (x) + 〈h|y − x〉 .

The set ∂ f (x) of all subgradients of f at x is called the subdifferential of f at x.

Here X∗ is the topological dual of the space X (see definition 6). In the finite dimensional situation we always have

X = X∗ but in the infinite dimensional case this is no longer the case. As an example, take the lp-spaces introduced

in Sec. 3.1. The dual space of lp is given by those functions |Φ〉 that induce a bounded (continuous) linear functional

by the inner product 〈Φ|Ψ〉 for all |Ψ〉 ∈ lp. Due to the the Hölder inequality |〈Φ|Ψ〉| ≤ ‖Φ‖q‖Ψ‖p for 1/p + 1/q = 1

the dual space to lp is lq. One here also sees that the Hilbert space l2 is exceptional, because it is its own dual space.

This self-duality is necessary for many properties of the standard setting of quantum physics, e.g., self-adjointness of

linear operators.

The subdifferential of a finite dimensional convex function has the following properties.

Theorem 4. Let X be a finite dimensional vector space and f : X → R be a convex function. Then

i) ∂ f (x) is nonempty,

ii) ∂ f (x) is compact (closed and bounded) and convex,

iii) for any h ∈ X, f ′
h
(x) = max{〈d|h〉 : d ∈ ∂ f (x)},

iv) f is differentiable if and only if the subdifferential contains only one element. In that case this element equals

the usual gradient: ∂ f (x) = {∇ f (x)}.

This theorem is illustrated in Fig. 3. At each point at the interior we can clearly draw a tangent line to the

graph of f which is completely below the graph (part 4.i). At the kink we can draw multiple subgradients, so the
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subdifferential contains more than one element. The directional derivatives are the subgradients with maximum slope

in each direction (part 4.iii). All subgradients are a convex combination of the directional derivatives, so ∂ f (x) is

convex. Since the directional derivatives are finite and contained in ∂ f (x), it is also compact (part 4.ii). At any other

point in the interior we clearly have only one tangent line, so one element in ∂ f (x), which obviously needs to be equal

to the derivative of f (part 4.iv).

Property iv of theorem 4 is particular useful for us. Since if we can show that a finite dimensional function is

convex, we only need to show uniqueness of the tangent to proof that the function is differentiable on the interior of

its domain. The only other task is then to characterise (the interior of) the domain.

At this point we would like to make a connection to the Gâteaux derivative often encountered in formal DFT. The

Gâteaux derivative is the directional derivative (Definition 4) with the additional requirement that it is linear and con-

tinuous in its direction h. In the finite dimensional case linearity automatically implies continuity, but in the infinite

dimensional case, continuity cannot be taken for granted anymore. It is exactly the continuity property which causes

most trouble. As pointed out by Lammert (Lammert, 2006b), this complication has been overlooked by Englisch

& Englisch in their proof for the differentiability of the universal function in DFT (Englisch and Englisch, 1984a,b)

and unfortunately repeated by many others (van Leeuwen, 1994; Eschrig, 1996; Farid, 1998, 1999; Holas and March,

2002; van Leeuwen, 2003; Lindgren and Salomonson, 2003; Eschrig, 2003; Lindgren and Salomonson, 2004; Zahariev and Wang,

2004; Ayers, 2006; Eschrig, 2010), see also (Dreizler and Gross, 1990, p. 50). Several remedies have been proposed

by introducing some regularization. The original problem is then approached by taking the limit to no regularization.

Lammert proposed to coarse-grain the density by partitioning the space into cells (Lammert, 2006a, 2010). In the

limit of small cells, the original system is recovered. Kvaal et al. proposed to use the Moreau–Yosida regularization,

which adds a smoothening term to the functional whose contribution is adjusted by a constant ǫ. For any ǫ > 0 the

functional is now differentiable and in the limit ǫ → 0+, the original system is recovered (Kvaal et al., 2014). Apart

from the issue of Gâteaux differentiability, there are several other difficulties which one needs to deal with in the

infinite dimensional case. Together with the differentiability issues, these difficulties are discussed later in Section 6.

3.5. Density matrix operators

We have already introduced the density-matrix operators in Sec. 2.3, but we will also need a norm (distance)

between them. The set of density-matrix operators on a Fock space F± space can be defined as

P± ≔
{

ρ̂ : F± → F± : ρ̂ = ρ̂†, ρ̂ ≥ 0,Tr{ρ̂} = 1
}

. (3.39)

The condition ρ̂ = ρ̂† means that the operator is self-adjoint, the condition ρ̂ ≥ 0 means that the density-matrix

operators are positive semidefinite (wi ≥ 0) and the last condition, Tr{ρ̂} = 1, means that the weights should sum to

one. Further, we will assume that the weights are arranged in decreasing order.

There are now many possibilities to define a norm onP±. We will use the observation that the set of density-matrix

operators can be regarded as a subspace of a larger space, the space of trace class operators

T± ≔
{

Â : F± → F± : ‖Â‖1 < ∞
}

, (3.40)

where the trace norm ‖·‖1 is a special case of the following norms for p ≥ 1

‖Â‖p =
(

Tr{|Â|}
)1/p

≔

(∑

i

〈Ψi|(Â†Â)
p/2|Ψi〉

)1/p

. (3.41a)

and p = ∞ we define to be the operator norm (maximum possible amplification)

‖Â‖∞ ≔ sup
{‖ÂΨ‖ : Ψ ∈ F± with ‖Ψ‖ ≤ 1

}

. (3.41b)

These norms are known as Schatten norms and are a generalisation of the lp norms (Sec. 3.1) to operators. The

Schatten norms obey the same sequence of inequalities as the lp norms ‖Â‖p ≥ ‖Â‖q for any 1 ≤ p ≤ q ≤ ∞. Thus

the unit trace condition immediately implies that the density-matrix operators are bounded, as 1 = ‖ρ̂‖1 ≥ ‖ρ̂‖∞. Thus

the density-matrix operator is defined on the whole Fock space and self-adjoint in both the fermionic and the bosonic

case.
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The inequality ‖Â‖1 ≥ ‖Â‖p also implies that T± is a subspace of all the other spaces induced by the according

p-norms, so we could use any of those norms. But the trace norm is the natural choice for P±, as it corresponds to

the unit trace condition on the density-matrix operators. Since ‖·‖1 is a proper norm on T±, we can also use it on the

subspace P± ⊂ T±. The set of density-matrix operatorsP± can then be classified as positive trace class operators with

‖Â‖1 = 1. In other words, the density-matrix operators live on the positive orthant of the surface of a ball with radius

1 in T±.

The norms with p > 1 can be used to separate the pure states from the mixed states. A pure state is a density-matrix

operator for which only one state is needed, i.e., which can be expressed as

ρ̂pure = |Ψ〉〈Ψ| . (3.42)

Mixed states are simply all other density-matrix operators. Only the pure states possess the property

‖ρ̂pure‖p = 1 for any 1 ≤ p ≤ ∞. (3.43a)

On the other hand, for mixed states we always have

‖ρ̂mixed‖p < 1 for any 1 < p ≤ ∞. (3.43b)

The difference between the pure and mixed states also becomes apparent in their value of the entropy (Wehrl, 1978)

S [ρ̂pure] = 0 and S [ρ̂mixed] > 0 . (3.44)

As already discussed at the end of Sec. 3.1, it does not really matter which norm we use in the case of a finite

dimensional space. Thus in the fermionic case all the norms are equivalent. In the bosonic case the choice does

matter. We further note, that not for all ρ ∈ P+ the operators Ĥvρ̂ and ρ̂ ln(ρ̂) are again trace class. Thus, the domain

of Ωv, i.e., Ωv[ρ] < ∞, will be a subset of P+. Indeed, an explicit characterisation is not so simple and we will see

in Theorem 20 that for any ρ̂ in the domain there is another density-matrix operator arbitrarily close that is not in the

domain. However, we will still be able to show that Ωv[ρ̂] is strictly convex.

3.6. The 1RDM

The 1RDM operator is defined as an Nb ×Nb matrix of operators γ̂i j ≔ â
†
j
â

i
: dom(γ̂i j)→ F . The 1RDM operator

is hermitian in the sense that γ̂† = γ̂, or worked out in components

γ̂
†
i j
= γ̂∗ji =

(

â
†
i
â

j

)∗
=

(

â
j

)∗(
â
†
i

)∗
= â

†
j
â

i
= γ̂i j , (3.45)

so includes the matrix transposition. The number operator is obtained by taking the trace over this matrix of operators

N̂ = tr{γ̂} ≔
Nb∑

i=1

γ̂ii . (3.46)

A number of properties of 1RDM operators are easy to derive (Löwdin, 1955). For expectation values we have for the

diagonal entries

0 ≤ ‖â
i
Ψ‖22 = 〈Ψ|â†i â

i
|Ψ〉 = 〈Ψ|γ̂ii|Ψ〉 = 〈Ψ|1 ± â

i
â
†
i
|Ψ〉 = 1 ± ‖â†

i
Ψ‖22 . (3.47)

Therefore, we find that the diagonal elements are positive and that for fermions they have a maximum value 1 (Pauli

principle: no state can be occupied by more than one particle). For bosons there is no upper bound.

Now let us derive a condition on the off-diagonal elements of the 1RDM operator, which is basically the proof of

the Cauchy–Schwarz inequality. Since for every state |Ψ〉 ∈ dom(γ̂i j) we have for any λ ∈ C that

0 ≤ ‖(â
i
− λâ

j

)

Ψ‖22 =
〈

Ψ
∣
∣
∣
(

â
†
i
− λ∗â†

j

)(

â
i
− λâ

j

)∣∣
∣Ψ

〉

= γii + |λ|2γ j j − λγ ji − λ∗γi j, (3.48)

where we used γi j = 〈Ψ|γ̂i j|Ψ〉 as an abbreviation. Now setting λ = γi j/γ j j, we find7

γiiγ j j ≥ |γi j|2 . (3.49)

7The choice λ = γi j/γ j j is problematic if γ j j = 0. This case is easily circumvented by interchanging the roles of i and j if γii , 0. In the case

also γii = 0, we immediately find that γi j = 0. Further, it is clear that |γ|i j = ∞ is only possible for any λ if also γii = γ j j = ∞.
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Consequently the off-diagonal elements are bounded by the diagonal elements. This is a necessary condition for a

matrix to be positive semidefinite. Indeed, since the expectation value of the 1RDM operator is obviously a hermitian

matrix, it can be diagonalised by a unitary transformation of the one-particle basis. Since the conditions derived

for the diagonal entries are valid in any one-particle basis, this implies that the 1RDM operator is always a positive

semidefinite matrix for any |Ψ〉 ∈ dom(γ̂i j). Hence, the 1RDM operator is a positive semidefinite operator, i.e., γ̂ ≥ 0,

and thus has a self-adjoint realisation. Due to the Pauli exclusion principle for fermions, we have additionally the

natural upper bound on the eigenvalues, ni ≤ 1, which can alternatively be expressed as n2
i
≤ ni. Since this applies to

any |Ψ〉 ∈ F−, the last inequality can be translated back to the 1RDM operator as γ̂2 ≤ γ̂ in the fermionic case.

The inequality (3.49) also allows us to identify the domain of the 1RDM operator with the domain of the number

operator.

Proposition 5. dom(γ̂) = dom(N̂).

Proof. First we show dom(γ̂) ⊆ dom(N̂). For any |Ψ〉 ∈ dom(γ̂), we have ∞ > tr{〈Ψ|γ̂|Ψ〉} = 〈Ψ|N̂|Ψ〉, because

γii < ∞ and the tr{·} only sums over a finite number of elements.

Now we show that dom(γ̂) ⊇ dom(N̂). Since we have for any state |Ψ〉 ∈ dom(N̂) that ∞ > 〈Ψ|N̂ |Ψ〉 =
tr{〈Ψ|γ̂|Ψ〉} ≥ 〈Ψ|γ̂ii|Ψ〉, because of the positivity of the 1RDM operator. The inequality (3.49) immediately gives

∞ > γiiγ j j ≥ |γi j|2 for any i, j ∈ Nb.

For a given density-matrix operator ρ̂ the 1RDM can then be found by γi j[ρ̂] = Tr{ρ̂ γ̂i j}. Again, for the bosonic

case this is not defined for every possible ρ̂ ∈ P+. However, with theorem 28, which implies that Tr{N̂ρ̂v} < ∞, and

with (3.49) we have |Tr{γ̂i jρ̂v}| < ∞. So the relevant space to consider for the 1RDMs are hermitian Nb × Nb matrices

with the appropriate constraints for bosons (+) and fermions (−)

N + ≔ {γ ∈ H(Nb) : γ ≥ 0} , (3.50a)

N − ≔
{

γ ∈ H(Nb) : γ ≥ 0, γ2 ≤ γ
}

. (3.50b)

Note that the fermionic 1RDMs are a subset of the bosonic 1RDMs, N − =
{

γ ∈ N + : γ2 ≤ γ
}

.

Per-Olov Löwdin gave the eigenvalues of the 1RDM a special name: natural occupation numbers (Löwdin, 1955).

The eigenstates he named the natural (spin-)orbitals. He conjectured that the natural orbitals would be the orbitals

which would yield the fastest convergence of a configuration(s) interaction (CI) expansion of the wave function.

Unfortunately, this is only a peculiar property of the the two-electron system and does not hold for general N-electron

systems (Bytautas et al., 2003; Giesbertz, 2014).

The most important use of the natural occupation numbers for our purpose is a famous theorem by Coleman

establishing ensemble integer N-representability of any fermionic 1RDM (Coleman, 1963), which is readily extended

to the bosonic case.

Theorem 6 (Coleman). Any γ ∈ N ± with Tr{γ} = N ∈ N is ensemble integer N-representable, i.e. there always

exists a density-matrix operator ρ̂ ∈ P± containing only N-particle states (exactly N creation operators acting on the

empty ket) such that γ = Tr{ρ̂ γ̂}.

Proof. Coleman originally considered the fermionic case, but the bosonic case is somewhat simpler, so let us consider

that one first. We can always assume that we work in the NO basis. That is, we perform a basis transformation in

the single-particle space H such that we diagonalise the Nb × Nb matrix γ. In this basis the 1RDM can be expressed

as an Nb dimensional vector containing occupation numbers n =
(

n1, n2, . . . , nNb

)

. Since the sum of the occupation

numbers is restricted to be N, all the N-particle 1RDMs with the same set of NOs (= ΓN
+ ), constitute a convex polytope.

This means that each 1RDM can be expressed as a linear combination of its extreme elements. Since these extreme

elements are readily identified as the 1RDMs which have one occupation number equal to N and all the other to zero,

the extreme elements are scaled unit vectors, Nei. So the set of all N-boson 1RDMs with a given set of NOs can be

expressed as

ΓN
+ =






Nb∑

i=1

λi Nei : λi ≥ 0,

Nb∑

i=1

λi = 1





,
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Figure 4: Bosonic and fermionic polytopes with Nb = 3. The fermionic polytope, ΓN
− is obtained from the bosonic polytope, ΓN

+ , by constraining it

to the unit cube.

which is just a scaled simplex. Next note that each extreme element is generated by a pure state in which one orbital

is occupied N-times, |0 . . . ni . . . 0〉〈0 . . .ni . . .0| → Nei, so the extreme elements are even pure state N-representable.

Because the map ρ̂→ γ is linear, this implies that for each N-bosonic 1RDM we can write a density-matrix operator

which generates this 1RDM as a linear combination of the pure states generating the extreme points

ρ̂(n) =

Nb∑

i=1

λi|0 . . .ni . . . 0〉〈0 . . . ni . . . 0| .

The same strategy works in the fermionic case, except that the polytope has a more complicated shape due to the ad-

ditional condition ni ≤ 1. The extreme points of the fermionic polytope are all possible permutations of N occupation

numbers set to one and all others set to zero

γ̄I ≔ γ̄i1...iN
≔ ei1 + · · · + eiN

,

for 1 ≤ i1 < · · · < iN ≤ Nb. The index I is a renumeration of i1 . . . iN and has K =
(

Nb

N

)

elements. The fermionic

polytope can now explicitly be given in terms of these extreme N-fermion 1RDMs as

ΓN
− =






K∑

I=1

λI γ̄I : λI ≥ 0,

K∑

I=1

λI = 1





.

The extreme elements can now be identified with all possible N-particle determinants, |I〉 ≔ |i1 . . . iN〉 → γ̄i1...iN
, so

they are also pure state N-representable. Using again that the mapping ρ̂ → γ is linear any N-fermion 1RDM can be

generated from a linear combination of the determinants generating the extreme points

ρ̂(n) =

K∑

I=1

λI |I〉〈I| .
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The polytopes used in the proof are illustrated in Fig. 4 for Nb = 3. Note that the fermionic polytopes can be

obtained from the bosonic ones by constraining them to the unit (hyper-)cube. Since multiple particles are needed to

bring out the exchange effects, Γ0
+ = Γ

0
− and Γ1

+ = Γ
1
−. In the N = 2 case, the Γ2

− is the small triangle within the Γ2
+

polytope. Because there is only one fermionic state with N = 3, the Γ3
− is just a single point in the Γ3

+ polytope.

Since every 1RDM with a fractional number of N particles can be created as a linear combination between an ⌊N⌋-
and ⌈N⌉-particle 1RDM, we have immediately the following corollary.

Corollary 7. Any γ ∈ N ± is ensemble N-representable, i.e. there always exists a density-matrix operator ρ̂ ∈ P±
such that γ = Tr{ρ̂ γ̂}.

This corollary is especially useful for the universal function (2.30), since it implies that we can always find at least

one ρ̂ → γ for all γ ∈ N . Since the extreme points in theorem 6 and corollary 7 span a finite dimensional space,

we have E[γ] < ∞, S [γ] < ∞ and F[γ] < ∞ for all γ ∈ N . It is therefore natural to consider F[γ] for γ ∈ N .

Later we will show that the infimum can be replaced by a minimum if the maximum order of the interactions in the

Hamiltonian is finite, n < ∞, and strictly positive definite. The existence of a minimum implies that F[γ] > −∞ for

all γ ∈ N , and N will be the domain of F[γ].

At this point it is important to note that the physically relevant 1RDMs are the ones that are associated with a Gibbs

state ρ̂v of a Hamiltonian Ĥv. Thus while we have now defined the most general space of (ensemble N-representable)

1RDMs N , it is the set of all v-representable 1RDMs

V ≔ {γ ∈ N : ∃ v ∈ V 7→ γ} (3.51)

that is central to our considerations. Though there might be many ρ̂ that produce a given γ ∈ V one of our goals is to

show that there is one and only one ρ̂v. A first obvious characterisation is that V ⊆ N .

3.7. General properties of the grand potential and implications on the universal functional

As we have shown in the introduction, the existence of a density-matrix operator which minimises the grand

potential cannot be taken for granted. In this section we discuss important consequences if the canonical density-

matrix operator (2.25) does exist, i.e. if Z[v] < ∞. Later we will show that this is the case for any potential in the

fermionic case in corollary 19. Some additional restrictions on the potential are needed in the bosonic case, as shown

in theorem 22. With this assumption it is easy to establish the following.

Theorem 8. For v ∈ V, the mapping Ĥv 7→ ρ̂v is invertible up to a constant in the Hamiltonian, i.e. h(0) in (3.25).

Proof. We can use (2.24) to proof the theorem in the same manner as the first Hohenberg–Kohn theorem (Hohenberg and Kohn,

1964). Assume that two different Hamiltonians, Ĥv and Ĥ′v, yield the same density-matrix operator ρ̂v. Since (2.24)

holds for both Ĥv and Ĥ′v with constants C and C′ respectively, we can subtract the two equations, which yields

Ĥv − Ĥ′v = C −C′ = constant.

Corollary 9. For v ∈ V, the mapping v 7→ ρ̂v is invertible.

A significantly more elaborate proof of this corollary can be found in (Baldsiefen, 2012, p. 28) and (Baldsiefen et al.,

2015, p. 3).

Another important observation is that the canonical density-matrix operator is strictly positive definite, ρ̂v > 0, so

these density-matrix operators reside in the following subspace of P±

P± ≔
{

ρ̂ : F± → F± : ρ̂ = ρ̂†, ρ̂ > 0,Tr{ρ̂} = 1
}

. (3.52)

This is consistent with the notion that at finite temperature, all eigenstates of the Hamiltonian |ΨI〉 contribute with a

Boltzmann weight wi = e−βEI /Z > 0. This justifies that we only took the constraint Tr{ρ̂} = 1 into account in the

minimisation procedure (2.24) and not the positivity of the ensemble weights. Note that P± forms the closure of P±.

This observation also implies that the corresponding 1RDMs have ni > 0 and in the fermionic case ni < 1 addi-

tionally. To show strict positivity, we work in the NO basis. First note that for any state |ΨI〉, we have 〈ΨI |â†i â
i
|ΨI〉 =

‖â
i
ΨI‖2 ≥ 0. As the eigenstates of the Hamiltonian form a complete basis in the Fock space, the NO i contributes to at
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least one of these eigenstates, so for at least one of these eigenstates |ΨI〉 we have ‖â
i
ΨI‖2 > 0. As wi = e−βEI /Z > 0,

we immediately find the following lower bound

ni =
∑

I

wI〈ΨI |â†i â
i
|ΨI〉 > 0 . (3.53)

In the case of fermions, the anti-commutation implies 〈ΨI |â†i â
i
|ΨI〉 = 1 − 〈ΨI |âi

â
†
i
|ΨI〉 = 1 − ‖â†

i
ΨI‖2 ≤ 1. Similarly,

as the eigenstates of the Hamiltonian form a complete basis in the Fock space, the i-th NO cannot be omnipresent in

all eigenstates. So for at least one of these eigenstates |ΨI〉 we have ‖â
i
ΨI‖2 < 1, which yields the following upper

bound for fermions

ni =
∑

I

wI〈ΨI |â†i â
i
|ΨI〉 < 1 . (3.54)

The 1RDMs produced by a potential therefore reside only in the interior of N ±

N+ ≔ int(N +) = {γ ∈ H(Nb) : γ > 0} , (3.55a)

N− ≔ int(N −) =
{

γ ∈ H(Nb) : γ > 0, γ2 < γ
}

. (3.55b)

We will show momentarily that the interior of the N-representable 1RDMs can actually be identified with the set of

v-representable 1RDMs, i.e. N = V . But first, we need to show some additional properties of the (canonical) grand

potential.

Let us consider the value of the grand potential evaluated at the canonical density-matrix operator, the canonical

grand potential

Ω[v] ≔ min
ρ̂∈P
Ωv[ρ̂] = min

ρ̂∈P
Ωv[ρ̂] = −β−1 ln

(

Z[v]
)

. (3.56)

Since Ω[v] is obtained by minimisation of Ωv[ρ̂], it is readily shown to be concave (Eschrig, 2010).

Theorem 10. Ω[v] is strictly concave in v.

Proof. Concavity trivially follows from its expression as a minimisation (3.56). So for v1 , v2 and 0 < t < 1 we have

Ω[tv1 + (1 − t)v2] = min
ρ̂∈P

Tr

{

ρ̂
(

tĤv1
+ (1 − t)Ĥv2

+
1

β
ln(ρ̂)

)}

(3.57)

> t min
ρ̂1∈P

Tr

{

ρ̂1

(

Ĥv1
+

1

β
ln(ρ̂1)

)}

+ (1 − t) min
ρ̂2∈P

Tr

{

ρ̂2

(

Ĥv2
+

1

β
ln(ρ̂2)

)}

= tΩ[v1] + (1 − t)Ω[v2] ,

where the strict inequality follows from the fact that the minimiser of Ωv[ρ̂] is unique (corollary 9).

From corollary 9, Mermin’s generalisation of the Hohenberg–Kohn theorem (Mermin, 1965) follows directly.

Theorem 11 (Mermin). For v ∈ V, the map v 7→ γv is invertible, i.e. the potential which generates a particular

1RDM is unique.

Proof. The proof goes by reductio ad absurdum, so assume that there are two different potentials, v1 , v2 7→ ρ̂1 , ρ̂2

which both yield the same 1RDM, γ.

Ω[v1] = Ωv1
[ρ̂1] = Ωv2

[ρ̂1] + Tr{γ(v1 − v2)}
> Ωv2

[ρ̂2] + Tr{γ(v1 − v2)} = Ω[v2] + Tr{γ(v1 − v2)} .

Now turning the roles of v1 and v2 around and adding the two equations to each other we find the inconsistency

Ω[v1] + Ω[v2] > Ω[v2] + Ω[v1] .

Hence, our assumption that there are two one-body potentials which yield the same 1RDM is false.
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Now we would like to show strict convexity of the universal functional, F[γ]. For this, we need to show strict

convexity of Ωv[ρ̂]. As the energy (2.21) is linear, we only need to show that the entropy (2.22) is strictly concave

(Ruelle, 1969; Lieb, 1975; Wehrl, 1978).

Theorem 12. The entropy is strictly concave. That is, for any ρ̂λ = λρ̂0 + (1 − λ)ρ̂1 ∈ P with λ ∈ [0, 1] we have

S [ρ̂λ] ≥ λS [ρ̂0] + (1 − λ)S [ρ̂1]. For λ ∈ (0, 1) and ρ̂0 , ρ̂1 we only have an equality if S [ρ̂0] = ∞ or S [ρ̂1] = ∞.

Proof. If S [ρ̂λ] = ∞, we immediately find the inequality and only when S [ρ̂0] = ∞ or S [ρ̂1] = ∞, we have an

equality.

Now consider the situation when S [ρ̂λ] < ∞. Let ρ̂λ =
∑

k wk |Ψk〉〈Ψk |. Strict concavity of the entropy now follows

directly from the strict concavity of the function s(x) = −x ln(x).

S [ρ̂λ] = −
∑

k

wk ln(wk) =
∑

k

s
(〈Ψk |ρ̂λ|Ψk〉

)

=
∑

k

s
(

λ〈Ψk |ρ̂0|Ψk〉 + (1 − λ)〈Ψk |ρ̂1|Ψk〉
)

> λ
∑

k

s
(〈Ψk |ρ̂0Ψk〉

)

+ (1 − λ)
∑

k

s
(〈Ψk |ρ̂1Ψk〉

)

≥ λ
∑

k

〈Ψk |s(ρ̂0)Ψk〉 + (1 − λ)
∑

k

〈Ψk |s(ρ̂1)Ψk〉 = λS [ρ̂0] + (1 − λ)S [ρ̂1] .

The last inequality follows from Jensen’s inequality (Lemma 38), which is simply extending the convexity (concavity)

definition over a convex combination of more than two points.

Corollary 13. The grand potential Ωv[ρ̂] is strictly convex in the density-matrix operator, ρ̂.

Note that the strict convexity of Ωv[ρ̂] implies that its minimiser ρ̂v is unique if it exists (see Theorem 1) which

is in agreement with Theorem 8 and Corollary 9 . Indeed, from a minimalists point of view we could have avoided

to proof Theorem 8 in the usual Hohenberg–Kohn way and just stated it as a corollary at this point. But for the sake

of simplicity we kept it separate. From the strict convexity of the grand potential Ωv[ρ̂], we can readily establish the

desired property of the universal functional

Theorem 14. The universal functional F[γ] is strictly convex on N .

Proof. Let γλ = λγ1 + (1 − λ)γ2. Using the strict convexity of Ωv[ρ̂], we find

λF[γ1] + (1 − λ)F[γ2] = λ inf
ρ̂1→γ1

Ω0[ρ̂1] + (1 − λ) inf
ρ̂2→γ2

Ω0[ρ̂2]

> inf
ρ̂1→γ1

inf
ρ̂2→γ2

Ω0[λρ̂1 + (1 − λ)ρ̂2] = inf
ρ̂→γλ
Ω0[ρ̂] = F[γλ] .

Since F : N → R is convex, it will have all the nice properties discussed before in 3.4 on the interior of its domain

N (3.55). If we can additionally show that the infimum can be replaced by a minimum, then we have the very nice

property of γ ∈ N are not only N-representable, but that there even exists a canonical density-matrix operator which

generates them, ρ̂v 7→ γv. So every γ ∈ N is even v-representable, which implies that the universal function is

differentiable. This is the main result of this work and is made more precise in the following theorem.

Theorem 15. If the minimum in (2.30) is attained, then a) N = V and b) the universal functional F[γ] is differenti-

able on the interior of its domain N .

Proof. As F is convex, it has at least one subgradient, h ∈ ∂F[γ] for any γ ∈ N . So F[γ̃] + 〈−h|γ̃〉 ≥ F[γ] + 〈−h|γ〉
for all γ̃ ∈ N . This implies that

F[γ] + 〈−h|γ〉 = min
γ̃∈N

(

F[γ̃] + 〈−h|γ̃〉) = Ω[−h] .

Hence, the negative of any subgradient, −h, yields a potential generating γ. However, from Mermin’s theorem 11, we

have that only one such potential exist, so any γ ∈ N is uniquely v-representable. This implies also, that there is only

one subgradient, ∂F[γv] = {−v}, so F[γ] is differentiable for all γ ∈ N and equals minus the potential which yielded

γ, i.e. ∇F[γv] = −v.
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F[γ] is differentiable

on N (Thm 15b)

v→ γ is unique

(Mermin, Thm 11)

N = V (Thm 15a)
inf → min in F−[γ]

(Thm 18 & Cor. 19)

Ω−v [ρ̂] is continuous

(Thm 2)

P− is finite

dimensional

Ωv[ρ̂] is convex

(Cor. 13)

existence of

subgradient (Thm 4)

F[γ] convex

(Thm 14)
F[γ] < ∞ on N

(Thm 6 & Cor. 7)

inf → min in F+[γ]

(Thm 37)

Ω+
0
[ρ̂] is weak-* lower

semicontinuous (Cor. 36)

Z[0] < ∞ (Thm 27)

h(n) > 0 (Sec. 3.3)

P+ is compact in the

weak-* topology

(Banach–Alaoglu, Thm 30)

general fermionsbosons

Figure 5: Overview how the most important theorems lead to the differentiability of the universal functional. Note the simplicity in the fermionic

case due to the finite dimension of the fermionic Fock space F− and hence of P+. To prove the existence of the minimum in the bosonic case

additional assumptions are needed (h(n) > 0) and more powerful mathematics.

At this point it becomes useful to take a look at the scheme in Fig. 5 which presents an overview of the most

important theorems and how they are connected. So far we have, been dealing with the general part of the theory.

From the scheme it is clear, that to make the theory fly, we still need to show that the infima can be replaced minima.

The simplicity of the scheme for the fermions stresses again that the fermionic case will be relatively straightforward,

whereas the bosonic will be more complicated.

4. The fermionic case

In this section we specialise to the fermionic case. In this finite-dimensional setting we will show that the infima

can be replaced by minima. These results are needed to substantiate the previous section. Since the fermionic Fock

space is finite dimensional, we immediately have from Theorem 2

Corollary 16. The fermionic energy, entropy and grand potential are locally Lipschitz continuous.

For the energy, we even have a somewhat stronger continuity property.
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Proposition 17. The fermionic energy Ev[ρ̂] is (globally) Lipschitz continuous.

Proof. Since the Hamiltonian acts on a finite Hilbert space, it has a largest singular value, ‖Ĥv‖∞ < ∞. So for any

sequence of density-matrix operators ρ̂n → ρ̂ for n→ ∞, we have

|Ev[ρ̂n] − Ev[ρ̂]| =
∣
∣
∣Tr{Ĥv(ρ̂n − ρ̂)}

∣
∣
∣ ≤ ‖Ĥv‖∞

∣
∣
∣Tr{(ρ̂n − ρ̂)}

∣
∣
∣ ≤ ‖Ĥv‖∞‖ρ̂n − ρ̂‖1 .

So for ‖ρ̂n − ρ̂‖1 → 0 we find that |Ev[ρ̂n] − Ev[ρ̂]| → 0. Since the convergence is linear with respect to ‖ρ̂n − ρ̂‖1 with

a global constant, ‖Ĥv‖∞, the fermionic energy is even Lipschitz continuous with the Lipschitz constant ‖Ĥv‖∞.

Since the grand potential is strictly convex with respect to ρ̂ and the universal functional with respect to γ, we

know that the respective minimisers will be unique if they exist. The existence of the minimisers in the fermionic case

is guaranteed by the following theorem, because P− is compact (closed and bounded).

Theorem 18 (Extreme value). Let f : X → R be a continuous function and M ⊆ X a compact (closed and bounded)

set. Then f must attain a minimum and maximum at least once.

Proof. First we proof that a continuous function f : X → R is bounded on a compact space M ⊆ X. We do this by

reductio ad absurdum for the upper bound, so suppose that f is not bounded above on M. Then for every natural

number n there exists an xn ∈ M such that f (xn) > n, so we have a sequence {xn}. Since M is compact, this sequence

has a convergent subsequence {xnl
} with a limit x ∈ M, cf. definition 2. Because f is continuous, f (xl) converges

to f (x) ∈ R. But f (xnl
) > nl for all l implies that f (xnl

) diverges to +∞, so a contradiction. Therefore the initial

assumption that f would be unbounded is incorrect. We can repeat the proof in a similar manner to proof that f has a

lower bound on M.

Since any converging sequence converges in a compact space, also any converging sequence {xn} to the maximiser

(minimiser) converges to some x ∈ M. So the maximum (minimum) is attained for some x ∈ M.

As P− is finite dimensional it is compact. Thus, from the extreme value theorem we immediately have the follow-

ing corollary.

Corollary 19. The minimum in the fermionic grand potential Ω−[v] and fermionic universal functional F−[γ] are

achieved, so the infima in (2.29) and (2.30) can be replaced by minima. Additionally, the replacing the infima by

minima in (3.56) is justified in the fermionic case.

5. The bosonic case

The bosonic case is more complicated, because we need to deal with an infinite dimensional Fock space. However,

the infinity is only caused by an unbounded number of particles, so we can keep everything relatively well under

control. This section is split in three parts. First we will show that the bosonic grand potential has a minimum if and

only if Z[v] < ∞. In the second part we will show that if the Hamiltonian has a maximum order interaction 0 < n < ∞
which is strictly positive definite, that Z[v] < ∞ and 〈Nk〉v = Tr{ρ̂vN̂k} < ∞. The case k = 1 is important for our

theoretical setting, as it guarantees that all v ∈ V yield a proper 1RDM with finite entries, γ ∈ N . The last part of

this section is attributed to showing that the minimum in the bosonic universal functional is achieved.

5.1. When does the minimum of the grand potential exist?

Let us again consider the entropy first. Though we have shown concavity of the bosonic entropy, it does not imply

continuity. Because the domain P+ is infinite dimensional, theorem 2 does not apply anymore. As a matter of fact,

the bosonic entropy is even not continuous (in trace norm), because it is unbounded in every neighbourhood (Wehrl,

1978).

Theorem 20. Let ρ ∈ P+ and ǫ > 0. Then there always exist another density-matrix operator ρ̂′ such that ‖ρ̂− ρ̂′‖ < ǫ
and S [ρ̂′] = ∞.
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Proof. The proof goes by construction. If ρ̂ has an infinite number of weights wk , 0, we can always find a sufficiently

large index l, such that L = 1−∑l
k=1 wk < ǫ/2. So if we set w′

1
= w1, . . . ,w

′
l
= wl, then we already have that ‖ρ̂−ρ̂′‖ < ǫ.

Now set the remaining weights as

w′k =
A

k(ln k)2
for k > l, (5.1)

where A > 0 is a normalisation constant such that ‖ρ̂′‖ = 1. That such a constant exists, i.e. that ‖ρ̂′‖ < ∞ follows

from ∞∑

k=r

A

k(ln k)2
≤ A

r(ln r)2
+

∫ ∞

r

dk
A

k(ln k)2
=

A

r(ln r)2
+

∫ ∞

ln r

du
A

u2
=

A

r(ln r)2
+

A

ln r
< ∞ ,

for any r > 1. On the other hand we can partition the contribution to the entropy as

∞∑

k=r

−A

k(ln k)2
ln

(
A

k(ln k)2

)

=

∞∑

k=r

(−A ln(A)

k(ln k)2
+

A

k ln k
+

2A ln(ln k)

k(ln k)2

)

.

We have already seen that the first sum converges. The third sum also converges, since

∞∑

k=r

ln(ln k)

k(ln k)2
≤ C +

∫ ∞

ln r

du
ln u

u2
= C +

∫ ∞

ln r

du
ln u

u2
= C +

∫ ∞

ln(ln r)

dx xe−x = C +
1 + ln(ln r)

ln r
< ∞ ,

for r > e and C = ln(ln r)/
(

r(ln r)2
)

. However, the second sum diverges, because

∞∑

k=r

A

k ln k
≥

∫ ∞

r

dk
A

k ln k
=

∫ ∞

ln r

du
A

u
= ∞.

Hence, we have S [ρ̂′] = ∞.

In the case ρ̂ has m non-zero weights, i.e. wk = 0 for k > m, we can set w′
1
= w1, . . . ,w

′
m−1
= wm−1 and

w′m = max(0,wm − ǫ/2), such that again ‖ρ̂ − ρ̂′‖ < ǫ. By choosing the other weights as before (5.1), we can now

repeat the same argument.

Since the bosonic entropy can jump to +∞ for an arbitrary small variation in the density-matrix operator, it cannot

be continuous. However, we actually do not need to use any continuity property to show when the infimum in (2.29)

and (3.56) can be replaced by a minimum. Instead, we will use a different route via the relative entropy. To this end,

consider Klein’s inequality.

Theorem 21 (Klein’s inequality). Let f be a convex (concave) function and A, B ∈ T. Then

Tr{ f (B) − f (A)} ≥(≤) Tr{(B − A) f ′(A)} .

A proof for Klein’s inequality is given in Appendix Appendix D.1. If we take f (x) = −x ln(x), Klein’s inequality

yields

Tr
{

A
(

ln(A) − ln(B)
)} ≥ Tr{A − B} . (5.2)

For density-matrix operators, the right hand side vanishes, so the expression on the left is positive. The left hand side

is called the relative entropy, which is defined for density-matrix operators ρ̂ and σ̂ as

S [ρ̂|σ̂] ≔ Tr
{

ρ̂
(

ln(ρ̂) − ln(σ̂)
)}

. (5.3)

A necessary condition for S [ρ̂|σ̂] < ∞ is that ker(σ̂) ⊆ ker(ρ̂) (Lindblad, 1973).

The relative entropy is particularly useful in our investigation of the grand potential. If we take the Gibbs state

ρ̂v ≔ e−βĤv/Tr
{

e−βĤv
}

for σ̂ (thus ker(σ̂) = ker(ρ̂v) = ∅), we recover the grand potential

S [ρ̂|ρ̂v] = β
(

Ωv[ρ̂] −Ωv[ρ̂v]
)

. (5.4)

Because of Klein’s inequality (5.2), we have S [ρ̂|σ̂] ≥ 0, which implies immediately that

Ωv[ρ̂] ≥ Ωv[ρ̂v] = −β−1 ln
(

Z[v]
)

= Ω[v] . (5.5)

Via Klein’s inequality we therefore find that the Gibbs state ρ̂v is a minimum.
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Theorem 22. The grand potential has a minimum if and only if Z[v] < ∞. If Z[v] < ∞, then ρ̂v is the unique

minimiser.

Proof. Obviously, when Z[v] < ∞, ρ̂v ∈ P ⊂ T and (5.5) shows that it yields a minimum. Since by corollary 13,

Ωv[ρ̂] is strictly convex, the minimum is unique (theorem 1).

If Z[v] = ∞, then we can construct a sequence of density-matrix operators ρ̂n = P̂≤ne−βĤ/Zn ∈ P, where Zn =

Tr
{
P̂≤ne−βĤ

}
and P̂≤n are finite dimensional projectors on the part of the Fock space with n or less particles. In the

limit n→ ∞ we have Zn ր Z[v] = ∞. Hence, we make Ω[ρ̂n] arbitrarily low by taking n large enough, i.e. the grand

potential is unbounded from below.

Theorem 22 is the first main result of this section on the bosonic grand potential. It tells us that bosonic 1RDM

functional theory at finite temperature is only sensible if we choose a potential (Hamiltonian) such that Z[v] < ∞.

5.2. Boundedness of the partition function

In this part we will show that if the Hamiltonian is bounded from below and has a maximum order of interaction

n < ∞ that its partition function is finite. For this purpose we will first consider the following lemma.

Lemma 23. If the highest order interaction in the Hamiltonian Ĥ is of order 0 < n < ∞, i.e. the maximum number of

creation/annihilation operators is 2n, then dom(Ĥ) ⊇ dom(N̂n).

Proof. First observe that from the inequality for operators, 0 ≤ |Â − B̂|2 it follows that on their common domain

Â†B̂ + B̂†Â ≤ |Â|2 + |B̂|2 .

By using different strings of creation and annihilation operators for Â and B̂ (see Tab. 1), one finds that all terms in

the Hamiltonian can be bounded by

Ĥ ≤ C +

Nb∑

i1=1

Ci1 |âi1
|2+ · · · +

Nb∑

i1,...,in=1

Ci1 ...in |âi1
· · · â

in
|2

≤ M(0) + M(1)N̂ + M(2)N̂2 + · · · + M(n)N̂n ,

where all |M(i) | < ∞, because the number of parameters in the Hamiltonian is finite. Repeating the same for −Ĥ leads

to a similar lower bound on Ĥ. Therefore, if N̂n has a finite value then also Ĥ has and thus dom(Ĥ) ⊇ dom(N̂n)

In the following it becomes advantageous to define a splitting of the Hamiltonian. We do so by first defining

P̂≤n as the projection operator which projects on all states with maximum n particles. The Hamiltonian is then split

as Ĥ = ĤP̂≤n + Ĥ(1 − P̂≤n). The first part is bounded, so dom(ĤP̂≤n) = F+ for any finite n. By choosing n large

enough, the nth order interaction becomes the dominant part. Hence, there exist constants |Kl|, |Kh| < ∞ such that

KlN̂
n(1 − P̂≤n) ≤ Ĥ(1 − P̂≤n) ≤ KhN̂n(1 − P̂≤n) for large enough n.

Theorem 24. If the highest order interaction in the Hamiltonian is positive definite, i.e. if there exists a Kl > 0, then

dom(Ĥ) = dom(N̂n).

Proof. As there exists a constant Kl > 0 such that KlN̂
n(1 − P̂≤n) ≤ Ĥ(1 − P̂≤n), we have for any |Ψ〉 ∈ F

〈Ψ|N̂n(1 − P̂≤n)|Ψ〉 ≤ K−1
l 〈Ψ|Ĥ(1 − P̂≤n)|Ψ〉 ,

so dom(N̂n) ⊇ dom(Ĥ). Combined with Lemma 23 with have dom(Ĥ) = dom(N̂n).

Theorem 25. If the highest order interaction in the Hamiltonian is positive semidefinite, i.e. if there exists a Kl ≥ 0,

then Ĥ is bounded from below on dom(N̂n).
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Proof. If the highest order interaction is positive semidefinite, we have for large enough n that Kl ≥ 0 (defined after

the proof of lemma 23). Hence, for large enough n we have

E0 = inf
Ψ

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 ≥ inf

Ψ

〈Ψ|ĤP̂≤n|Ψ〉
〈Ψ|Ψ〉 + inf

Ψ

〈Ψ|Ĥ(1 − P̂≤n)|Ψ〉
〈Ψ|Ψ〉 ≥ En + Kl ≥ En ,

where En is the lowest eigenvalue of ĤP̂≤n. As ĤP̂≤n only acts within a finite dimensional part of the Fock space, we

have En > −∞ and hence, E0 > −∞.

For the partition function to be bounded, we do not only need the Hamiltonian to be bounded from below, but also

the absence of accumulation points. So we will consider Hamiltonians with a strictly positive definite highest order

interaction.

Proposition 26. A Hamiltonian with a highest order interaction 0 < n < ∞ has no accumulation point in its spectrum

if the highest order interaction is strictly positive definite, i.e. if there exists a Kl > 0.

Proof. As the highest order interaction is strictly positive definite, we have Kl > 0 for large enough n. This implies that

the energy difference for n → ∞ behaves asymptotically as ∼ Kln
n which does not converge and has no converging

subsequence.

That a strictly positive definite highest order interaction is sufficient to have a bounded partition function is for-

mulated in the following theorem.

Theorem 27. The partition function, Z[v] is finite if the Hamiltonian Ĥv has a maximum order of interaction 0 < n <

∞ which is strictly positive definite, i.e. if there exists a Kl > 0.

Proof. First consider a non-interacting Hamiltonian, Ĥv =
∑

i j vi jâ
†
i
â

j
, so n = 1. Without loss of generality, we can

assume that we work in the one-particle basis which diagonalises v and can identify Kl with the lowest eigenvalue of

v. Now we can put the following bound on the bosonic partition function

Z[v] = Tr
{

e−βĤv
} ≤ Tr

{

e−βKlN̂
}

=

∞∑

n=0

(

n + Nb − 1

n

)

e−βKln =
1

(1 − e−βKl )Nb
,

where the second equality follows from counting the number of states in the n-particle sector and last equality follows

from working out the Nb-th order derivative of the geometric series. Hence, if the potential is strictly positive definite,

Kl > 0, the bosonic partition function is finite for all temperatures.

This result for the non-interacting case also applies to non-interacting Hamiltonians with additional non-conserving

terms. The source term only adds a shift to the creation and annihilation operators and leaves the spectrum invariant

(see the first part of Appendix Appendix C). In contrast, the pairing field affects the positive definiteness of the inter-

action (see the last part of Appendix Appendix C) and care should be taken not to spoil the positive definiteness of the

Table 1: Creation/annihilation operator inequalities.

Â B̂ inequality

αâ
i

1 α∗â†
i
+ α â

i
≤ |α|2â

†
i
â

i
+ 1

αâ
i

â
k

α∗â†
i
â

k
+ α â

†
k
â

i
≤ |α|2â

†
i
â

i
+ â
†
k
â

k

αâ
i

â
†
k

α∗â†
i
â
†
k
+ α â

k
â

i
≤ |α|2â

†
i
â

i
+ â

k
â
†
k

αâ
i
â

j
1 α∗â†

j
â
†
i
+ α â

i
â

j
≤ |α|2â

†
j
â
†
i
â

i
â

j
+ 1

αâ
†
i
â

j
1 α∗â†

j
â

i
+ α â

†
i
â

j
≤ |α|2â

†
j
â

i
â
†
i
â

j
+ 1

αâ
i
â

j
â

k
α∗â†

j
â
†
i
â

k
+ α â

†
k
â

i
â

j
≤ |α|2â

†
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â
†
i
â

i
â

j
+ â
†
k
â

k

αâ
i
â

j
â
†
k

α∗â†
j
â
†
i
â
†
k
+ α â

k
â

i
â

j
≤ |α|2â

†
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†
i
â

i
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j
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k
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†
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highest order interaction. One could use the third inequality in Table 1 to put some sufficient bounds on the variation

in the potential v, though they can typically be weakened.

Now consider a Hamiltonian with some proper interaction, i.e. n > 1. In that case the partition function can be

bounded as

Z[v] ≤ Tr
{

e−βKlN̂
n }

= C +

∞∑

n=0

(

n + Nb − 1

n

)

e−βKln
n

≤ C +

∞∑

n=0

(

n + Nb − 1

n

)

e−βKln = C +
1

(1 − e−βKl)Nb
,

where C is some finite positive constant and Kl is the constant defined after the proof of Lemma 23. Hence, the

partition function is finite if Kl > 0, i.e. if the highest order interaction is strictly positive definite. Note that Kl does

not depend on the one-body potential v, so if the partition function is finite of an interacting system (n > 1), it is finite

for any one-body potential v.

Again, this result also applies to general Hamiltonians that mix the number of particles. We only need to take care

that the non-conserving terms of order 2n do not spoil the positive definiteness of the highest order interaction.

Theorem 27 is the second important result of this section. As we typically model a physical system with some

finite order of positive interaction between the particles, we have Z[v] < ∞ without much difficulty. ThusV+ is either

the full space H(Nb) for the interacting situation, or in the non-interacting case as discussed in Sec. 3.3, we have

Vnonint
+ =

{

v ∈ H(Nb) : h(1) + v > 0
}

.

We can proceed somewhat further along these lines to show that also most expectation values will be finite.

Theorem 28. The expectation value of any finite power of the number operator is finite, i.e. 〈Nk〉v = Tr{N̂ke−βĤv }/Z[v] <

∞ for k < ∞, if the Hamiltonian Ĥv has a maximum order of the interaction which is strictly positive definite, i.e. if

there exists a Kl > 0.

Proof. Basically we need to repeat the previous proof. So first for the non-interacting case, we have

Z[v] 〈N̂k〉v = Tr
{

N̂ke−βĤv
} ≤ Tr

{

N̂ke−βKlN̂
}

=

∞∑

n=0

(

n + Nb − 1

n

)

nke−βKln

= ∂k
−βKl

1

(1 − e−βKl )Nb
=

(

Nbe−βKl
)

k

(1 − e−βKl )Nb+k
< ∞ ,

where (x)k = Γ(x + k)/Γ(x) denotes the Pochhammer symbol. Hence, if a non-interacting Hamiltonian is strictly

positive definite, Kl > 0, also 〈N̂k〉v < ∞ for any finite k. For an interacting system (n > 1) we have analogous to the

previous proof

Z[v] 〈N̂k〉v ≤ Tr
{

N̂ke−βKlN̂
n } ≤ Ck +

(

Nbe−βKl
)

k

(1 − e−βKl )Nb+k
< ∞ ,

where Ck is some finite positive constant and Kl > 0 is again the constant defined after the proof of Lemma 23.

Theorem 28 effectively means that any reasonable expectation value is finite. In particular, the 1RDM is finite,

since γi j ≤ Tr{γ} = 〈

N̂
〉

< ∞, so any γ[v] ∈ N . The same argument applies to any higher order reduced density-

matrix

Γ
(n)

i1...in, jn... j1
≤ Tr

{

Γ(n)} =
〈

N̂
(

N̂ − 1
) · · · (N̂ − n + 1

)〉 ≤ 〈

N̂n〉 < ∞ . (5.6)

Additionally, due to the bounds on the energy used in the proof of lemma 23 and the fact thatΩ[ρ̂v] = −β−1 ln
(

Z[v]
)

<

∞, we immediately have the following corollary.

Corollary 29. The entropy S [v] and energy E[v] are finite, if the Hamiltonian has a maximum order of the interaction

which is strictly positive definite.
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xl yl xu yu

Figure 6: Plot of a function which is lower semicontinuous at xl and yl . It is upper semi-continuous at xu and yu. The solid dots indicate where the

function attains it value and the open dots where it does not.

5.3. Existence of minimum in the bosonic universal function

Now we will turn our attention to the question whether the infimum is attained in the bosonic universal func-

tion (2.30). In the fermionic case we used the extreme value theorem 18, but it is not applicable for two reasons. 1) As

we have already seen, the bosonic grand potential is not continuous. 2) The set of bosonic ρ̂ is not compact in the

trace norm, as the unit ball in an infinite dimensional space is not compact in the usual norm, i.e. the trace norm in our

case.

To resolve these issues, we follow the same strategy as used by Lieb to show the existence of the minimum in the

universal functional in DFT (Lieb, 1983) and repeated by others (Eschrig, 1996, 2003; van Leeuwen, 2003; Lammert,

2006b,a, 2010) and in the first attempt for a rigorous finite temperature 1RDM functional theory by Baldsiefen et al.

(Baldsiefen, 2012; Baldsiefen et al., 2015). We first focus on the latter problem, i.e. that the space P+ is not compact

and neither {ρ̂ ∈ P+ : ρ̂→ γ}. To resolve this issue, we will introduce a weaker norm under which the unit ball will be

compact. For this we first need to properly introduce the notion of the dual space, as was already briefly exemplified

in Sec. 3.4.

Definition 6 (Dual space). The space of all continuous linear functionals f : X → C is called the dual space of X and

denoted as X∗. These functionals typically denoted with a bracket in quantum mechanics as f (x) = 〈 f |x〉.

Definition 7 (Weak-* convergence). We say that a sequence fn ∈ X∗ converges in the weak-* topology if for all

x ∈ X, fn(x)→ f (x). We will denote this as fn
∗
⇀ f

Weak-* convergence is useful for our purposes, since we know that the space of trace-class operators is the dual

of the space of compact operators, K∗ = T, so the weak-* topology is well defined for the trace-class operators

(and density-matrix operators). A trace-class operator T ∈ T is identified with a continuous linear functional on the

compact operators as Tr{T ·}. Additionally, the weak-* topology is weak enough to make the unit ball compact as

stated by the following famous theorem.

Theorem 30 (Banach–Alaoglu). Let X be a normed space and X∗ its dual. The closed unit ball in X∗ is compact with

respect to the weak-* topology.

Now we have a new topology such that the closed unit ball is compact, so that every sequence has a convergent

subsequence in the closed unit ball (see definition 2). We then need to turn our attention to the lack of continuity. It

turns out that it is sufficient to use a weaker property: lower semi-continuity.

Definition 8 (Lower/Upper semi-continuity). Consider a topological space X and a function f : X → R∪{−∞,+∞}.
A function f is called lower semi-continuous at x0 if for every ǫ > 0 there exists a neighborhood U of x0 such that

f (x) ≥ f (x0) − ǫ for all x ∈ U.

Upper semi-continuity at f (x0) is simply lower semi-continuity of − f (x0).

If a function f is lower (upper) semi-continuous at every point in its domain, f is called lower (upper) semi-

continuous.

The concepts of lower and upper semi-continuity are illustrated in Fig. 6. Obviously, a function is continuous if

and only if it is lower and upper semi-continuous. An other convenient property is the following.
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Proposition 31. The supremum over a collection of lower semi-continuous functions, f (x) = supi fi(x), is also lower

semi-continuous.

Proof. By definition of the supremum we have in a neighborhood around x0

f (x) = sup
i

fi(x) ≥ sup
i

fi(x0) − ǫ = f (x0) − ǫ .

The relevance of lower (upper) semi-continuity in this context is that the extreme value theorem is readily adapted

to these weaker forms of continuity.

Theorem 32. Let f : X → R be a lower (upper) semi-continuous function and M ⊆ X a compact set. Then f must

attain a minimum (maximum) at least once.

Proof. As we only used lower (upper) semi-continuity in the existence of a lower (upper) bound in the proof of the

extreme value theorem, it is basically the same.

The next step is to demonstrate lower semi-continuity of the relevant functionals. As we would like to use com-

pactness of the unit ball, we should show lower semi-continuity with respect to the weak-* topology. To differentiate

this from lower semi-continuity with respect to the usual norm, we will call this weak-* lower semi-continuity.

Theorem 33. The entropy is weak-* lower semi-continuous.

Proof. Wehrl (1978) To show this, we will use the fact that any finite rank operator is compact, so in particular every

finite dimensional projection operator P̂. Therefore, weak-* convergence of ρ̂n to ρ̂ means that Tr
{

P̂ρ̂n

}→ Tr
{

P̂ρ̂
}

for

any P̂. Since the function s(x) = −x ln(x) is continuous, we have Tr
{

P̂
(

s(ρ̂n) − s(ρ̂)
)} → 0. Further, Tr{P̂Â} ≤ Tr{Â}

for Â ≥ 0, so Tr{Â} = supP̂ Tr{P̂Â}. We therefore have that

S [ρ̂] = sup
P̂

Tr{P̂s(ρ̂)}

is lower semi-continuous by proposition 31.

Theorem 34. The energy is weak-* lower semi-continuous.

Proof. The proof is the same as for the entropy.

The grand potential is linear combination of a weak-* lower semi-continuous functional (the energy) and a up-

per semi-continuous functional (minus the entropy), so we can not say anything directly. Again, the relative en-

tropy (5.3) comes to our aid. There is an alternative expression for the relative entropy, which avoids the product of

non-commuting operators (Lindblad, 1973, Lemma 4)

S [ρ̂|σ̂] = sup
0<λ<1

λ−1S λ[ρ̂|σ̂] , (5.7)

where S λ[ρ̂|σ̂] ≔ S [λρ̂ + (1 − λ)σ̂] − λS [ρ̂] − (1 − λ)S [σ̂]. The proof for the equality in (5.7) has been deferred to

Appendix Appendix D.2. With this alternative expression, we can readily establish the following theorem.

Theorem 35. The relative entropy is weak-* lower semi-continuous.

Proof. Using the alternative expression for the relative entropy (5.7), we can repeat the proof for weak-* lower semi-

continuity of the entropy (theorem 33). The only change is that the supremum is now also taken over λ.

Corollary 36. The grand potential Ωv[ρ̂] is weak-* lower semi-continuous if and only if Z[v] < ∞.

Now we are almost done. Since the grand potential is weak-* lower semi-continuous and the infimum in F[γ] =

infρ̂→γΩ0[ρ̂] is taken over the shell of a unit ball in T, a minimising sequence ρ̂n

∗
⇀ ρ̂ exists and converges within the

unit ball, so Tr{ρ̂} ≤ 1. If we can show that this implies that ρ̂n → ρ̂ strongly, i.e. Tr
{

ρ̂
}

= 1, we are done. We need

this to be sure that we do not end up with a ρ̂ < P and it also ensures that the resulting density-matrix operator yields

the requested 1RDM.
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Theorem 37. The minimum in the bosonic universal functional F+[γ] is achieved if Z[0] < ∞, so the infimum can be

replaced by a minimum.

Proof. As ρ̂n

∗
⇀ ρ̂, we have P̂ρ̂n → P̂ρ̂ strongly (in the 1-norm) for any finite dimensional projection P̂. For any

0 < ǫ ≤ 1 we can find a finite dimensional projection operator such that

ǫ > Tr
{

ρ̂n

(

1 − P̂
)} ⇒ Tr

{

ρ̂nP̂
} ≥ 1 − ǫ .

Since P̂ρ̂n → P̂ρ̂, this implies that Tr
{

ρ̂
} ≥ 1 − ǫ, and therefore Tr{ρ} = 1.

6. Discussion on the extension to an infinite dimensional 1-particle space

Within the setting of a finite one-particle basis to generate the Fock space, we have provided a rigorous framework

for 1RDM functional theory at finite temperatures. The main advantage is that the ‘interface’ quantities of the theory

(v and γ) are always finite dimensional, i.e. the potentials and 1RDMs are finite dimensional matrices. As all relev-

ant functionals are convex, this immediately implies convenient properties such as Lipschitz continuity, directional

differentiability and the existence of a subgradient. The quantity under the hood (ρ̂) is still allowed to be infinite di-

mensional, as we have no desire to prove any differentiability properties. We only need that the miniminiser of Ωv[ρ̂]

exists to establish the connection between subgradients and potentials.

The situation becomes much more involved if one desires to provide a rigorous framework for 1RDM functional

theory at elevated temperatures allowing for an infinite dimensional one-particle space. To extend the present approach

the infinite dimensional case, one needs to face at least the following difficulties.

6.1. Characterisation of the proper set of potentials

To prove the boundedness of the partition function for a Hamiltonian with a strictly positive definite interaction

in the bosonic case, we used that each particle sector is finite dimensional. In the infinite dimensional case this is not

true anymore, even for fermions. The situation is even somewhat more involved, as Z[v] < ∞ does not imply that

〈N〉v < ∞, so that the potential would yield a proper 1RDM with finite trace. From the discussion on the bosonic case

in the finite dimensional 1-particle space in Sections 3.3 and 5.2, one expects that the set of potential 〈N〉v < ∞ also

depends on the other terms in the Hamiltonian, e.g. repulsive interactions. As discussed in Section 2.3, one should at

least put the system in some box or other confining potential to avoid Z = ∞ already in the 1-particle sector.

An alternative route might be to abandon the direct use of the partition function altogether via an algebraic

approach to quantum field theory. The algebraic approach gives a generalisation of the Gibbs state which avoids

the use of the partition function: the Kubo–Martin–Swinger (KMS) state (Haag et al., 1967; Emch, 1972). The

KMS states are defined to be the density-matrix operators satisfying the KMS boundary conditions (Kubo, 1957;

Martin and Schwinger, 1959). Nevertheless, as there is no finite valued grand potential to work with in general, we

lack a global value which is being minimised. One would therefore need a completely different route to construct a

1RDM functional theory, as all quantities should be formulated directly in terms of the KMS states.

6.2. The domain of the universal functional

In the finite dimensional setting we could easily show that any ensemble N-representable 1RDMs, γ ∈ N , yields a

finite value for the universal functional, F[γ] < ∞. The argument relied on the fact that there always exists a compact

density-matrix operator, ρ̂γ which generates this 1RDM. As this density-matrix operator is compact, one immediately

has E[ρ̂γ] < ∞, S [ρ̂γ] < ∞ and Ωv[ρ̂γ] < ∞. In the infinite dimensional case we cannot use this argument anymore

and F
[

γ ∈ N
]

< ∞ is not expected to hold. This set is expected to depend crucially on the other terms in the

Hamiltonian like in DFT, where finiteness of the kinetic energy operator requires the density not only to be integrable,

but also ∇√n ∈ L2 (Lieb, 1983, Thms 3.8 and 3.9)
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6.3. Lack of smootheness of the universal functional

We loose all convenient properties implied by the convexity of the functionals in the infinite dimensional case.

So convexity of F[γ] does not imply Lipschitz continuity, the existence of a directional derivative in any direction

or the existence of a subgradient anymore. Nevertheless, the Hahn–Banach theorem does guarantee the existence

of a tangent functional (Lieb, 1983, p. 259). This means that for each γ0 ∈ N there exists a linear functional

Lγ0
such that F[γ1] ≥ F[γ0] + Lγ0

[γ1 − γ0]. For the tangent functional to be a subgradient, it also needs to be

continuous (Lammert, 2006b, p. 1945). Analogous to DFT (Lieb, 1983; Englisch and Englisch, 1984b), one would

expect that exactly at v-representable 1RDMs the tangent functional would be continuous, unique and of the form

−Tr{v ·} where v 7→ γ. So a unique subgradient would exist at those 1RDMs and equal −v. Unfortunately, the

existence of a unique subgradient does not imply differentiability anymore. From an optimizational perspective,

the existence of a subgradient is sufficient to formulate first order optimality conditions. To proof actual (Gâteaux)

differentiability, one would probably need a more constructive approach as Lammert did in the T = 0 DFT setting

(Lammert, 2006b) or use the Moreau–Yosida regularisation as proposed by Kvaal et al. (Kvaal et al., 2014).

7. Conclusion

In this review we have provided a self-contained, rigorous formulation of 1RDM functional theory for a finite

one-particle space and arbitrary number of particles at finite temperatures.

For the fermionic case, as the Fock space F− (3.12) is finite dimensional, any hermitian Hamiltonian Ĥ is allowed

and the universal functional F−[γ] (2.30) has a unique minimum. For any hermitian matrix v ∈ H(Nb) (3.36) defining a

non-local external potential that is added to the universal part of the Hamiltonian, the grand potentialΩ−[v] (2.29) has

a unique minimum as well. The mapping v 7→ γ from H(Nb) to V− =N− (3.55) is bijective and F−[γ] is differentiable

in V− such that ∂F[γ]/∂γ = −v holds.

For the bosonic case, where the Fock space F+ (3.12) is infinite-dimensional, a difference between simple hermiti-

city and self-adjointness arises, partition functions Z[v] (2.25) and other observables might become undefined and the

existence of Gibbs states is no longer guaranteed. Therefore, we have to impose restrictions. First of all, only those

Hamiltonians are allowed that have a highest order number-conserving interaction (3.25) that is strictly positive or in

the case of a non-interacting Hamiltonian the single-particle Hamiltonian has to be strictly positive. Non-conserving

parts in the Hamiltonian can be allowed, provided that they do not effectively destroy the strict positivity of the highest

order interaction, cf. Table 1. This is always guaranteed if the non-conserving part is of lower order in the annihilation

and creation operators than the highest order interaction. Under these conditions, the universal functional F+[γ] (2.30)

is guaranteed to have a unique minimum. For the grand potential Ω+[v] we need to make a distinction between the

interacting and non-interacting case. In the interacting case, any hermitian matrix v ∈ H(Nb) (3.36) yields to a unique

minimum and the mapping v 7→ γ from H(Nb) to V+ = N+ (3.55) is bijective and F+[γ] is differentiable in V+ such

that ∂F+[γ]/∂γ = −v holds. Similar results hold in the non-interacting case, however, only those v ∈ H(Nb) are

allowed that leave the total single-particle Hamiltonian strictly positive (3.37). This set of allowed external non-local

potentials we denoted byVnonint
+ .

In both the fermionic as well as the bosonic case we can therefore also set up a KS-type scheme where instead

of solving for the interacting problem, a non-interacting auxiliary problem with a Hartree-exchange-correlation func-

tional that contains interaction and entropic terms is solved. No non-interacting v-representability issues known from

the T = 0 situation arise, which makes the minimisation for approximate functionals straightforward. Also, the non-

interacting universal functional F±s [γ] is known explicitly in contrast to DFT. Therefore, 1RDM functional theory

does not only put DFT for a finite basis set on rigorous grounds but is also an appealing alternative, at least in the

grand-canonical setting investigated here.

As we have pointed out in detail, the case of an infinite-dimensional single-particle space or the case of T = 0 is

not so easy to handle in terms of the 1RDM. The mathematical issues that arise have so far hampered the development

of more accurate and reliable approximate functionals for 1RDM functional theory. In this respect the current review

poses a clear and comprehensive starting point to also investigate this other setting and learn more about the funda-

mental issues of v-representability and properties of the functionals involved. In the end, an explicit and at the same

time simple characterisation of the involved spaces of non-local potentials and 1RDMs is a necessary prerequisite to

make such a functional approach work also in these other cases.

38



In this work, we mainly gave a theoretical motivation for the finite temperature formalism. However, in many

experiments, temperature effects play an important role, so the proposed theoretical framework provides an im-

portant extension of the zero temperature formalism. Important examples are metal-insulator transitions in trans-

ition metal oxides (Yoo et al., 2005; Rueff et al., 2005; Patterson et al., 2004; Mita et al., 2005, 2001; Noguchi et al.,

1996), (high Tc) superconductors (Nagamatsu et al., 2001; Bednorz and Müller, 1986) and protein folding (Anfinsen,

1972; Takai et al., 2008; Nicholls et al., 1991). More extreme examples are rapid heating of solids via strong laser

fields (Gavnholt et al., 2009), dynamo effect in giant planets (Redmer et al., 2011), shock waves (Root et al., 2010;

Militzer, 2006), warm dense matter (Kietzmann et al., 2008) and hot plasmas (Dharma-wardana and Perrot, 1982;

Perrot and Dharma-wardana, 2000; Dharma-wardana and Murillo, 2008). Therefore the finite temperature framework

is clearly of physical importance beyond our rather technical requirements.

While so far 1RDM functional theory was mainly concerned with fermionic problems, the extension to include

the bosonic case is particularly timely. In the recent years investigations at the interface between quantum chemistry,

solid-state physics and quantum optics uncovered interesting situation where a strong coupling between photons and

matter, for instance, when molecules are put in a high-Q optical cavity or on metallic nano structures, dramatically

change the chemical and physical properties of matter (Ebbesen, 2016; Sukharev and Nitzan, 2017). The emergent

hybrid light-matter states, so called polaritons, can lead to, e.g., a change of chemical reactions (Hutchison et al.,

2012) or lead to exciton-polariton condensates (Byrnes et al., 2014). Since a detailed description of all constituents

is necessary (Flick et al., 2017b,a), first-principles approaches extended to fermion-boson systems become important

(Ruggenthaler et al., 2011; Tokatly, 2013; Ruggenthaler et al., 2014; Ruggenthaler, 2015; de Melo and Marini, 2016).

The current work lays the foundation of an extension of 1RDM to matter-photon systems.
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Appendix A. Convex and concave functions

In this part of the appendix we give rudimentary proof of the properties of convex (concave) functions in finite

dimensions. Most of these proofs have been taken from (Juditsky, 2015). To do so we first need to introduce some

additional definitions, propositions and lemmas.

Proposition 38 (Jensen’s inequality). Consider a convex (concave) function f . Then for any convex combination

x ∈





N∑

i=1

λixi : λi ≥ 0,

N∑

i=1

λi = 1





,

where N ∈ N ∪ {∞}, one has

f (x) ≤(≥)

N∑

i=1

λi f (xi) .

Proof. Simply apply the definition of a convex (concave) function in definition 1 repeatedly (induction).

Appendix A.1. Proof of theorem 2

To show local Lipschitz continuity of finite dimensional convex functions, we will use the following lemma.

Lemma 39. Let X be a finite dimensional vector space and f : X → R a convex function. The function f is bounded

on any compact (closed and bounded) set contained in the interior of its domain, int dom( f ).
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Proof. Consider a simplex, ∆ ⊆ int dom( f )

∆ =






d∑

i=0

λixi : λi ≥ 0,

d∑

i=0

λi = 1





,

where d is the dimension of the domain of f . By Jensen’s inequality we have

f





d∑

i=0

λi xi




≤

d∑

i=0

λi f (xi) ≤ max
i

f (xi) ,

where we the maximum exists, because we work in a finite dimensional space. Since any compact set in the interior

of the domain of f can be covered by a finite number of simplexes, f has an upper bound on any compact set in the

interior of its domain.

Now we need to show that the upper bound implies also a lower bound. Consider a closed ball around x̄, Br(x̄) =

{x : ‖x − x̄‖ ≤ r}, with its radius r sufficiently small such that Br(x̄) ⊆ int dom( f ). Let x ∈ Br(x̄), so also x′ = 2x̄ − x ∈
Br(x̄). Since x̄ = (x + x′)/2, so by convexity of f we have

f (x) ≥ 2 f (x̄) − f (x′) ≥ 2 f (x̄) −max
y∈Br(x̄)

f (y)

for all x ∈ Br(x̄). Since any compact set can be covered by a finite number of balls, this implies that f is bounded on

any compact set in the interior of its domain.

Now we are ready to proof theorem 2

Proof. Consider Br(x̄) ∈ int dom( f ). By lemma 39 we have that f is bounded on Br(x̄) by some constant, | f | ≤ Cr.

For any x , x′ ∈ Br/2(x̄) extend the line segment from x to x′ to the boundary of Br(x̄) and call this point x′′, so

‖x − x′′‖ = r and λ = ‖x′ − x‖/‖x′′ − x‖ ∈ (0, 1). Convexity of f now implies

f (x′) − f (x) ≤ λ( f (x′′) − f (x)
) ≤ f (x′′) − f (x)

‖x′′ − x‖ ‖x
′ − x‖ ≤ 4Cr

r
‖x′ − x‖ .

Interchanging the roles of x′ and x we find the desired inequality

| f (x′) − f (x)| ≤ 4Cr

r
‖x′ − x‖ .

Appendix A.2. Proof of theorem 3

Proof. Let x ∈ int dom( f ) and consider the function

φ(t) =
f (x + ht) − f (x)

t
, 0 < t ≤ ǫ ,

where ǫ is small enough such that x + ǫh ∈ int dom( f ). For 0 < λ ≤ 1 we have by convexity of f that f (x + λht) ≤
(1 − λ) f (x) + λ f (x + ht). Hence

φ(λt) =
f (x + λht) − f (x)

λt
≤ f (x + ht) − f (x)

t
= φ(t)

for any 0 < λ ≤ 1, so φ(t) is decreasing as t ↓ 0. Due to the local Lipschitz property of finite dimensional convex

functions (theorem 2), φ(t) is bounded from below, so the limit exists.
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Appendix A.3. Proof of theorem 4

To proof theorem 4 it is convenient to work with an alternative definition of a convex function in terms of its

epigraph.

Definition 9 (Epigraph). The epigraph of a function f : X → R is defined as the set of points lying above its graph

epi( f ) ≔ {(x, µ) : x ∈ X, µ ∈ R, µ ≥ f (x)} ⊆ X × R .

A function f is convex if and only if its epigraph is a convex set.

Additionally we need the following very intuitive theorem from geometry for which we do not supply a proof.

Theorem 40 (Hyperplane separation). Let X and Y two nonempty convex sets of Rn such that int(X) ∩ int(Y) = ∅.
Then there exists a nonzero vector v and a real number c such that

〈v|x〉 ≥ c and 〈v|y〉 ≤ c

for all x ∈ X and y ∈ Y. In other words, the hyperplane 〈v|·〉 = c with normal vector v separates (the interiors of) X

and Y.

Further we need the following properties of the directional derivative to be able to establish the part iii) of the-

orem 4

Proposition 41. Let f be a convex function over a finite dimensional space and x ∈ int dom( f ). Then f ′
h
(x) is a convex

positive homogeneous (of degree 1) function of h and for any y ∈ dom( f )

f (y) ≥ f (x) + f ′y−x(x) .

Proof. Homogeneity in h is trivially shown by working out for τ > 0

f ′τh = lim
t↓0

f (x + τht) − f (x)

t
= τ lim

α↓0

f (x + hα) − f (x)

α
= τ f ′h(x) .

Convexity in h follows directly from the convexity of f . Indeed, for any h1, h2 ∈ Rn and λ ∈ [0, 1] we have

f ′λh1+(1−λh2)(x) = lim
t↓

t−1[ f (x + (λh1 + (1 − λh2))t) − f (x)
]

≤ lim
t↓

t−1[λ
(

f (x + th1) − f (x)
)

+ (1 − λ)
(

f (x + th2) − f (x)
)]

= λ f ′h1
(x) + (1 − λ) f ′h2

(x) .

To proof the last part let t ∈ (0, 1], x, y ∈ dom( f ) and yt = (1 − t)x + ty. Hence, by convexity of f we have

f (yt) ≤ t f (y) + (1 − t) f (x) which can be rearranged as

f (y) ≥ f (yt) +
1 − t

t

(

f (yt) − f (x)
)

.

By taking the limit t ↓ 0, we find the desired equality.

Now we are ready to proof theorem 4.

Proof. i) That ∂ f (x) is nonempty follows directly from the separating hyperplane theorem for convex sets in finite

dimensional spaces applied to epi( f ) and the point
(

x, f (x)
)

.

ii) Closedness and convexity are obvious from its definition 5. Now we show that ∂ f (x) is bounded. Since ∂ f (x)

is nonempty, there exists a (d,−α) ∈ X × R such that

〈d|y〉 − ατ ≤ 〈d|x〉 − α f (x)

for any (y, τ) ∈ epi( f ). Since (x, τ) ∈ epi( f ), we find α ≥ 0.
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We even have that α > 0, since f is locally Lipschitz (theorem 2). If we confine y ∈ Bǫ(x) ⊆ int dom( f ) with

ǫ > 0, there exists a finite constant Mǫ such that

〈d|y − x〉 ≤ α( f (y) − f (x)
) ≤ αMǫ‖y − x‖ .

If we now set y = x + ǫd we get ‖d‖2 ≤ αMǫ‖d‖. If ‖d‖ , 0, we have α ≥ ‖d‖/Mǫ > 0 and otherwise if ‖d‖ = 0, we

have α > 0, because (d,−α) , 0. Thus, we can normalise the normal vector such that α = 1 to obtain

〈d|y − x〉 ≤ f (y) − f (x) .

Without loss, assume d , 0 and choose y = x + ǫd/‖d‖. Then

ǫ‖d‖ = 〈d|y − x〉 ≤ Mǫ‖y − x‖ = Mǫǫ ,

so ‖d‖ ≤ Mǫ for any ǫ > 0. Since this inequality applies to any d ∈ ∂ f (x), this implies boundedness of ∂ f (x).

iii) First note that since f ′
0
(x) = 0 identically, we have

f ′h(x) − f ′0(x) = f ′h(x) = lim
t↓0

f (x + ht) − f (x)

t
≥ 〈h|d〉 ,

for any d ∈ ∂ f (x). The subdifferential of f ′
h
(x) therefore exists at h = 0 and ∂ f (x) ⊆ ∂h f ′

0
(x).

Because f ′
h
(x) is convex in h, we have for any d ∈ ∂h f ′

0
(x)

f ′y−x(x) = f ′y−x(x) − f ′0(x) ≥ 〈d|y − x〉 .

Hence, for any y ∈ dom( f ) and d ∈ ∂h f ′
0
(x) we can establish the following inequality

f (y) ≥ f (x) + f ′y−x(x) ≥ f (x) + 〈d|y − x〉 .

Thus, ∂h f ′
0
(x) ⊆ ∂ f (x), so by the previous result we have ∂h f ′

0
(x) = ∂ f (x).

Let now dh ∈ ∂h f ′
h
(x), so for any v ∈ X∗ and τ > 0

τ f ′v (x) = f ′τv(x) ≥ f ′h(x) + 〈dh|τv − h〉 .

Then for τ→ ∞ we find f ′v (x) ≥ 〈dh|v〉, so dh ∈ ∂h f ′
0
(x) = ∂ f (x). Taking the limit τ→ 0 we obtain 0 ≥ f ′

h
(x)− 〈dh|h〉,

so 〈dh|h〉 = f ′
h
(x). Hence the directional derivative is attained as the maximum over the subdifferential as stated in part

iii) of theorem 4.

iv) First suppose that ∂ f (x) only contains one element. By part iii) we have f ′
h
(x) = 〈d|h〉, which is linear in h.

Hence f is differentiable at x and ∇ f (x) = d.

To show the converse, if d ∈ ∂ f (x), then by definition

f (y) − f (x) ≥ 〈d|y − x〉 .

Now set y = x + th with t > 0 and divide both sides of the inequality by t. Taking the limit t ↓ 0 we obtain

〈∇ f |h〉 ≥ 〈d|h〉 .

Since this inequality should be valid for all h, we find d = ∇ f (x).

Appendix B. Non-interacting systems

The partition function of a non-interacting fermionic system is readily calculated by expressing the determinants

in the eigenbasis of 〈i|ĥ j〉

Z−s =
1∑

n1,...,nNb
=0

〈n1, . . . , nNb
|

Nb∏

i=1

e−βǫin̂i |n1, . . . , nNb
〉 =

Nb∏

i=1

(

1 + e−βǫi
)

. (B.1)
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For a bosonic system we get the following result

Z+s =

∞∑

n1,...,nNb
=0

〈n1, . . . , nNb
|

Nb∏

i=1

e−βǫin̂i |n1, . . . , nNb
〉 =

Nb∏

i=1

∞∑

n=0

(
e−βǫi

)n
=

Nb∏

i=1

1

1 − e−βǫi
. (B.2)

The grand potential can be worked out as

Ω±s = ±
1

β

Nb∑

i=1

ln
(
1 ∓ e−βǫi

)
. (B.3)

The occupation numbers are readily found as the 1RDM is diagonal in this basis

n±i =
∂Ωs

∂ǫi

=
e−βǫi

1 ∓ ǫ−βǫi
=

1

ǫβǫi ∓ 1
, (B.4)

which can be inverted to yield the NO energies as functions of the occupation numbers

ǫ±i =
1

β
ln

(
1 ± ni

ni

)

. (B.5)

We can insert this expression back into the grand potential to obtain it as a function of the occupation numbers

Ω±s = ∓
1

β

Nb∑

i=1

ln(1 ± ni) . (B.6)

The energy is can be calculated as

E±s =
Nb∑

i=1

niǫi =
1

β

Nb∑

i=1

ni ln

(
1 ± ni

ni

)

. (B.7)

The entropy is readily obtained by subtracting the grand potential from the energy

S ±s = β
(
E±s − Ω±s

)
=

Nb∑

i=1

[
(ni ± 1) ln(1 ± ni) − ni ln(ni)

]
. (B.8)

As we have now also the energy and entropy explicitly, the non-interacting universal function is readily constructed

to be

F±s = E±0,s −
1

β
S ±s =

Nb∑

i=1

[

ni

(

ǫ0,s
i
+

1

β
ln(ni)

) − 1

β
(ni ± 1) ln(1 ± ni)

]

, (B.9)

where ǫ
0,s
i

are the eigenvalues of the reference one-body hamiltonian h
(1)

s,0
.

Appendix C. Solving a general non-interacting Hamiltonian

In this appendix we solve a general non-interacting system including both a source term and a pairing field. Hence,

the Hamiltonian under consideration is of the general form

Ĥ =
∑

i j

ωi jâ
†
i
â

j
+

∑

i

(

h∗i â
†
i
+ hiâi

)

+
∑

i j

(

D
†
i j

â
†
i
â
†
j
+ D

i j
â

i
â

j

)

, (C.1)

where DT = ±D for bosons (upper sign) and fermions (lower sign). The first step is to transform the source term

away. This step is identical for the both the bosonic and the fermionic case. This is readily done by adding a constant

to the annihilation and creation operators

b̂
i
= â

i
+ h̃∗i ⇒ b̂

†
i
= â

†
i
+ h̃i . (C.2)
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The vector h̃ should be chosen such that the source term disappears, so

Ĥ +Ch =
∑

i j

ωi jb̂
†
i
b̂

j
+

∑

i j

(

D
†
i j

b̂
†
i
b̂
†
j
+ D

i j
b̂

i
b̂

j

)

. (C.3)

One readily finds that the vector h̃ needs to satisfy the following linear equation

∑

j

(

ωi jh̃ j +
(

D ± DT )

i jh̃
∗
j

)

= hi . (C.4)

This system is guaranteed to be solvable as the effective matrices will be normal (symmetric for the real part of h̃ and

anti-symmetric for the imaginary part) and the assumed positivity of the spectrum, as we want the system to have a

ground state. The corresponding constant shift in the Hamiltonian will be

Ch = h̃†ωh̃ + h̃†Dh̃∗ + h̃D†h̃ = 1
2

(

h̃†h + h†h̃
)

. (C.5)

To transform the pairing field away, we need a general Bogoliubov transform (Bogoliubov, 1947; Valatin, 1958;

Bogoljubov, 1958). The Bogoliubov transform is a generalisation of a unitary transformation between the one-particle

states to linear combinations of creation and annihilation operators

ĉ
k
=

Nb∑

r=1

(

Ukrb̂r + Vkrb̂
†
r

)

, (C.6a)

ĉ
†
k
=

Nb∑

r=1

(

U∗krb̂
†
r + V∗krb̂r

)

. (C.6b)

The transformation between the annihilation and creation operators can be written in a more compact manner by col-

lecting the creation and annihilation operators in a column vector. This allows us write the Bogoliubov transformation

as (

ĉ

ĉ†

)

=

(

U V

V∗ U∗

) (

b̂

b̂†

)

, (C.7)

where U and V are Nb × Nb matrices. By working out the (anti-)commutation relations for bosons (fermions), one

finds that the Bogoliubov transformation needs to satisfy

(

U V

V∗ U∗

) (

1 0

0 ∓1

) (

U† VT

V† UT

)

=

(

1 0

0 ∓1

)

, (C.8)

where 1 is the unit matrix and the upper (lower) sign refers to bosons (fermions) respectively. Thus we find that the

Bogoliubov transform is unitary for fermions with respect to the Euclidian metric, so corresponds to an element of the

definite unitary group: U(2Nb). On the other hand, the bosonic transformation is unitary with respect to an indefinite

metric and corresponds to an element of the indefinite unitary group: U(Nb,Nb).

With the help of the commutation relation [â
k
, â
†
l
]∓ = δkl, the Hamiltonian can be rewritten in the following form

Ĥ +Ch =
(

b̂† b̂
)
(

ω/2 D†

D ±ω/2

) (

b̂

b̂†

)

∓ 1

2
Tr{ω} . (C.9)

Inserting the unit matrix on both sides of the matrix and using (C.8), we find

Ĥ +Ch =
(

ĉ† ĉ
)
(

U ∓V

∓V∗ U∗

) (

ω/2 D†

D ±ω/2

) (

U† ∓VT

∓V† UT

) (

ĉ

ĉ†

)

∓ 1

2
Tr{ω} . (C.10)

So to bring the Hamiltonian to diagonal form, we simply need to diagonalise it with respect to the appropriate metric

(

ω/2 D†

D ±ω/2

) (

U† ∓VT

∓V† UT

)

=

(

1 0

0 ∓1

) (

U† ∓VT

∓V† UT

) (

E/2 0

0 Ẽ/2

)

. (C.11)
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where E and Ẽ are diagonal.

Now let us derive some properties of the eigenvalues and eigenvectors. For the k-th eigenvector, we can work out

the eigenvalue equation as
(

ω/2 D†

D ±ω/2

) (

uk

vk

)

= ǫk

(

uk

∓vk

)

(C.12)

Since the matrix is hermitian, we have

ǫl

(

u
†
k

v
†
k

)
(

ul

∓vl

)

=
(

u
†
k

v
†
k

)
(

ω/2 D†

D ±ω/2

) (

ul

vl

)

= ǫ∗k
(

u
†
k
∓v
†
k

)
(

ul

vl

)

. (C.13)

This expression can be rearranged to yield

(ǫ∗k − ǫl)〈k|l〉∓ = 0 , (C.14)

where 〈k|l〉∓ denotes the inner product between the two eigenvectors with respect to the indefinite metric for bosons

(−) and with respect to the usual Euclidean metric for fermions (+). Now let us first consider the case k = l. In the

fermionic case we have a proper metric, so 〈k|k〉+ = 0 only for the zero vector, which is no eigenvector. Hence, we

find that the eigenvalues need to be real in the fermionic case.

In the bosonic case, however, we have an indefinite metric, so 〈k|k〉− = 0 is also possible for a non-zero vector. so

we need to distinguish two cases

〈k|k〉− , 0 ⇒ ǫk ∈ R , (C.15a)

〈k|k〉− = 0 ⇐ ǫk < R . (C.15b)

Now let us consider the case k , l. In the fermionic case condition (C.14) implies that non-degenerate eigenvectors

are orthogonal, as the eigenvalues are real. As only degenerate eigenvectors may be non-orthogonal, we can always

orthogonalise them, as any linear combination degenerate eigenvectors is again an eigenvector.

The situation is again more complicated in the bosonic situation. For the eigenvectors with real eigenvalues and

finite norm we get the same result as in the fermionic case: non-degenerate eigenvectors are orthogonal and degenerate

eigenvectors can be chosen to be orthogonal.

As the eigenvectors are related in pairs, one expects the eigenvalues E/2 and Ẽ/2 to be related. This is indeed the

case. To establish this relationship, will assume ω to be a real diagonal matrix. If it is not diagonal, it can always be

brought to diagonal form by a simply unitary transformation and its eigenvalues will be real, as the matrix is hermitian.

Now we work out the eigenvalue equation for the first set of eigenvectors

1
2
ωU† − D∗V† = U†E/2 ,

D U† − 1
2
ωV† = V†E/2 .

(C.16a)

By taking the complex conjugate of the second set of eigenvectors, we find

1
2
ωU† − D∗V† = −U†Ẽ∗/2 ,

D U† − 1
2
ωV† = −V†Ẽ∗/2 ,

(C.16b)

where we used that ω can be assumed to be real (and diagonal). Hence, we find that Ẽ = −E∗.
After solving the (generalised) eigenvalue equation (C.11), by using the commutation relations again, the Hamilto-

nian can be written as

Ĥ +Ch =
(

ĉ† ĉ
)
(

E/2 0

0 ±E∗/2

) (

ĉ

ĉ†

)

∓ 1

2
Tr{ω} = ĉ†ℜE ĉ ± 1

2
Tr{E∗ − ω} . (C.17)

As the spectrum of Ĥ should be real, we see that complexE is not permissible in the bosonic case. It simply means that

the Hamiltonian under consideration is not self-adjoint. Using the inequalities in Table 1, we can put some sufficient

inequalities on the matrix elements ω and D for E to be real.
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It would be desirable to only calculate one set of the eigenvectors, so we need to cut the dimension of the eigenvalue

problem down by a factor two. If the matrix D only contains real entries, this is readily achieved by adding and

subtracting the equations in (C.16a), which yields

(ω/2 ± D)
(

U† ∓ V†
)

=
(

U† ± V†
)E/2 . (C.18)

We can now eliminate the even or odd combination by multiplying from the right by E/2, and substituting for the

unwanted combination, which yields

(ω/2 ± D)(ω/2 ∓ D)
(

U† ± V†
)

=
(

U† ± V†
)E2/4 . (C.19)

In the case that the pairing matrix D has complex entries, we can always find a unitary matrix to make it real. As the

matrix D is symmetric for bosons and anti-symmetric for fermions, we need to show this for both cases separately.

Let us first consider the bosonic case.

Theorem 42. (bosonic case) Given a symmetric matrix D ∈ Cn × Cn, it can be brought to diagonal form by the

transformation UTCU, where U is a unitary matrix which diagonalises C†C. The diagonal entries can be chosen to

be the square root of the eigenvalues of C†C.

Proof. The matrix product C†C is obviously hermitian and also positive semidefinite. Therefore, it is diagonalizable

by a unitary matrix U and has ai ∈ R+ as its eigenvalues (spectral theorem)

aiδi j =
(

U†C†CU
)

i j =
(

U†C†U∗UTCU
)

i j =
(

C̃†C̃
)

i j =
∑

k

C̃∗ikC̃ jk ,

where C̃ = UTCU = C̃T . Now multiplying by C̃∗
jl

and summing over j we find

aiC̃
∗
il =

∑

j

aiδi jC̃
∗
jl =

∑

k j

C̃∗ikC̃ jkC̃
∗
jl =

∑

k

C̃∗ikakδkl = C̃∗ilal ,

which can be rearranged to

(ai − a j)C̃i j = 0 for all i, j.

So if C†C only has non-degenerate eigenvalues, we find that C̃ needs to be diagonal with diagonal entries
√

aie
iφi ,

where φi is complex phase factor which is undetermined in the diagonalization of C†C. So we can choose φi = 0 to

make the matrix C̃ real and positive semidefinite.

In the case some of the eigenvalues of C†C are degenerate, C̃ is only block diagonal. So we need to show that

we can each of these blocks can be brought to diagonal form by QT C̃Q. Let B = BT denote one of these degenerate

blocks. Such a degenerate block has the special property that B†B = a1, where 1 denotes the unit matrix. This implies

that B is a normal matrix so B†B = BB†. Splitting the real and imaginary parts as B = R + iI, we can work this out as

0 = B†B − BB† = (R − iI)(R + iI) − (R + iI)(R − iI) = 2i(RI − IR) = 2i[R, I] .

As the real and imaginary parts of B commute they can be brought to diagonal form by the same orthogonal trans-

formation Q. Hence, also B will be brought to diagonal form by the same orthogonal transformation Q

QT BQ =
√

a diag
(

eiφi
)

.

The phase factors can be transformed away by the remaining freedom, i.e. Q→ Q diag
(

e−iφi/2
)

.

We see that Theorem 42 even shows that D can be brought to a diagonal and real form, so the Hamiltonian can be

assumed to be of the following simple form

Ĥ + Ch =
∑

i j

ωi jb̂
†
i
b̂

j
+

∑

i

dii

(

b̂
†
i
b̂
†
i
+ b̂

i
b̂

i

)

, (C.20)

where di ∈ R+ are the eigenvalues of D. It is therefore tempting to perform the Bogoliubov transform for each

1-particle state

ĉ
i
= cosh(θi)b̂i

+ sinh(θi)b̂
†
i
, (C.21)

where 2θi = arctanh(2di/ωii). Unfortunately, the resulting cross-terms give rise to a new pairing field, so this method

does not work. Now let us prove a similar theorem for the fermionic case.
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Theorem 43. (fermionic case) Given an anti-symmetric matrix D ∈ Cn×Cn, it can be brought to 2×2 block-diagonal

form by the transformation UTCU, where U is a unitary matrix which diagonalises C†C. The off-diagonal entries

can be chosen to be the square root of the eigenvalues of C†C. If the dimension is odd, a 0 column and row should be

added to the 2 × 2 block-diagonal form.

Proof. The proof is basically the same as the proof of Theorem 42, though C̃ = UTCU = −C̃T , as C is now anti-

symmetric and we also have

aiC̃
∗
il = C̃∗ilal .

However, as C̃ is anti-symmetric, C̃ii = 0, so it cannot be diagonal. Hence we need at least a two-fold degeneracy

in all the eigenvalues of C†C. For the moment, assume that we only have a two-fold degeneracy. The off-diagonal

elements of C̃ are
√

aie
iφi , where φi is complex phase factor which is undetermined in the diagonalization of C†C. So

we can choose φi = 0 to make the matrix C̃ real.

In the case of higher order degeneracies, we can use the same argument as in the symmetric case. Let B = −BT

denote one of these degenerate blocks. Again such a block is normal, so the real and imaginary parts commute, so can

be brought to block diagonal form by the same orthogonal transformation. Further, the eigenvalues of anti-symmetric

matrices come in pairs, so the degeneracy of the eigenvalues ai > 0 can only be even. If the degeneracy would be

odd, B would have at least one zero eigenvalue, which would correspond to ai = 0. So only the block corresponding

to ai = 0 can have odd dimensionality.

Appendix D. Additional proofs for the bosonic case

Appendix D.1. Proof of Klein’s inequality (Thm. 21)

Proof. Given a bounded hermitian operator B̂ and a convex (concave) function f : R → R, we have by Jensen’s

inequality (Proposition 38)

〈φ| f (B̂)|φ〉 =
∑

i

〈φ|ψi〉 f (bi)〈ψi|φ〉 ≥(≤) f

(∑

i

|〈φ|ψi〉|2bi

)

= f
(〈φ|B̂|φ〉) .

Because convex (concave) function always has a subgradient (see Definition 5 and Theorem 4.i), we have

f (y) − f (x) ≥(≤) (y − x) f ′(x) ,

where f ′(x) ∈ ∂ f (x). So for all eigenvectors φi of the operator Â with eigenvalues αi, we have

Tr
{

f (B̂) − f (Â)
}

=
∑

i

(〈φi| f (B̂)|φi〉 − 〈φi| f (Â)|φi〉
)

≥
(≤)

∑

i

(

f (〈φi|B̂|φi〉 − 〈φi| f (αi)|φi〉
)

≥
(≤)

∑

i

(〈φi|B̂|φi〉 − αi) f ′(αi) = Tr
{

(B̂ − Â) f ′(Â)
}

.

Appendix D.2. The relative entropy as a limit (Eq. (5.7))

Here we will present the proof that the relative entropy can be expressed as a commutator as in Ref. (Lindblad,

1973, Lemma 4). A very brief sketch can also be found in (Wehrl, 1978, Eq. (3.8)). We will change the notation

slightly and aim to show that

lim
λ→0

λ−1S λ[ρ̂1|ρ̂0] = S [ρ̂1|ρ̂0] . (D.1)

Proof. First we rewrite S λ as

S λ[ρ̂1|ρ̂0] = λS λ[ρ̂1|ρ̂λ] + (1 − λ)S λ[ρ̂0|ρ̂λ] ,

where ρ̂λ = λρ̂1 + (1 − λ)ρ̂0.

First we note that

lim
λ→0

S [ρ̂1|ρ̂λ] = S [ρ̂1|ρ̂0] .
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This can be seen by considering the partial sums

gn(λ) =

n∑

i=1

(

wi ln(wi) − wi〈Ψi| ln(ρ̂λ)|Ψi〉 + 〈Ψi|ρ̂λ|Ψi〉 − wi

)

,

where wi and |Ψi〉 are the eigenvalues and eigenstates respectively of ρ̂1. The functions gn(λ) are continuous in λ = 0:

gn(0) = limλ→0 gn(λ), because ker(ρ̂1) ⊆ ker(ρ̂0). As ln(x) is concave, the functions gn(λ) are convex in λ and {gn(λ)}
form a monotonic non-decreasing sequence, gn(λ)→ g(λ) = S [ρ̂1|ρ̂λ], since each term is non-negative due the Klein’s

inequality, cf. (5.2). Hence, limλ→0 g(λ) = g(0) is unique. Using the same arguments, we also have

lim
λ→0

S [ρ̂0|ρ̂λ] = S [ρ̂0|ρ̂0] = 0 .

From convexity of x ln(x) it follows that S λ[ρ̂1|ρ̂0] is concave in λ, so λ−1S λ[ρ̂1|ρ̂0] is monotonically increasing when

λ → 0 (see Sec. Appendix A.2), so limλ→0 λ
−1S λ[ρ̂1|ρ̂0] is uniquely defined. This implies that also limλ→0(λ−1 −

1)S [ρ̂0|ρ̂λ] ≥ 0 exists and obviously

lim
λ→0

λ−1S λ[ρ̂1|ρ̂0] ≥ S [ρ̂1|ρ̂0] . (D.2)

If S [ρ̂1|ρ̂0] = ∞, Eq. (D.1) is correct. If not, we can write

S λ[ρ̂1|ρ̂0] = λS [ρ̂1|ρ̂0] − S [ρ̂λ|ρ̂0] ,

so we find

lim
λ→0

λ−1S λ[ρ̂1|ρ̂0] = S [ρ̂1|ρ̂0] − lim
λ→0

λ−1S [ρ̂λ|ρ̂0] ≤ S [ρ̂1|ρ̂0] ,

so combined with its lower bound (D.2) we find the required equality. As we have shown that λ−1S λ[ρ̂1|ρ̂0] is mono-

tonically increasing for λ→ 0,we can replace the limit in (D.1) by the supremum in (5.7).
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