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DEPENDENCE OF U IN GROUND-STATE
OCCUPATIONS

In order to show that the change in U is linked to
the change in orbital occupations, we also performed
DFT+U calculations with constrained occupations. We
employed a coarser 14 × 14 × 7 k-point grid for these
calculations, as we are not interesting in converging the
HHG spectra.
In order to constrain the occupations, we follow the ap-
proached developed in Refs. [1, 2], in which the constrain
of the occupations of the localized orbitals is performed
by adding a localized potential with a weight α. Here
we do not use this approach to determine the value of
U from a LDA calculation, but we rather use it together
with the ACBN0 functional, such that the potential given
by Eq.(2) in the main text becomes

ˆ̄V
σ

U [n, {nσmm′}] = V̂ σU [n, {nσmm′}] + αPσm,m . (1)

We implemented this method in the Octopus code [3].
For each value of α, we first performed a ground-state cal-
culation with the ACBN0 functional. Then we added the
constrain α and performed again a fully self-consistent
calculation, such that the system can adapt to the per-
turbation. Our analysis, summarized in Fig. 1 shows that
the change in Ueff is directly controlled by the constrained
α, which constrains properly the occupations (see right
panel of Fig. 1). This ground-state analysis confirm that

Supplementary Fig. 1. Effective on-site U for the 3d orbitals
of Ni (left panel) and occupations of these orbitals (right
panel) versus the constrained α.

the variation of Ueff depends on the occupation of the
localized orbitals.

POPULATION ANALYSIS OF THE LOCALIZED
ORBITALS

Supplementary Fig. 2. 3d orbital character for the first Ni
atom for spin up (left) and spin down (right). The size of the
dots indicates the orbital character.

By taking the diagonal elements of the density matrix
of the localized subspace nσ, we have access to the popu-
lation of the localized orbitals with respect to time. Our
results, shown in Fig. 3 and Fig. 4 are only reported for
one atom, as the other atom gives the same results, but
with an opposite spin (due to the antiferromagnetic or-
der).
Even at the higher intensity considered in the main text
(used in Fig. 3 and Fig. 4), we do not observe the sat-
uration of the population on a time-scale of 20fs, in op-
position to what is observed for the time-dependent U .
Our results are found to be fully compatible with the
excitation by a laser. The 2p populations decrease, and
behave the same for each atom, as the oxygen atoms are
not spin-polarized. For the Ni atoms we found that the
population of the t2g orbitals, which are initially fully
occupied (Nt2g(t0) ∼ 3), decreases with time. This is
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also true for the eg orbitals for spin up, but as these or-
bitals are further away from the Fermi energy, thus the
population of the orbitals is less affected by the laser. On
the other side, the population of the eg orbitals for spin
down, which correspond mainly to the almost flat con-
duction band, is found to increase while we are injecting
electrons in the conduction bands.

Supplementary Fig. 3. Time evolution of the U for the 2p
orbitals for the first O atom (middle panel) and the corre-
sponding orbital occupations (bottom panel), for the driv-
ing vector potential (top panel) with an intensity of I0 =
5 × 1012W cm−2.

The quick saturation of U is explained by the change
of the on-site screening, as explained in the next section.

ON-SITE SCREENING AND SATURATION OF
THE TIME-DEPENDENT U

In order to understand more deeply the physical mech-
anism leading to a saturation in the change of U , we an-
alyze here the one-site screening which is included in the
ACBN0 functional [4].
In the ACBN0 functional, the electron-electron interac-
tion which is added to the DFT Hamiltonian is

Eee =
1

2

∑
{m}

∑
α,β

P̄αmm′ P̄
β
m′′m′′′(mm

′|m′′m′′′)

−1

2

∑
{m}

∑
α

P̄αmm′ P̄αm′′m′′′(mm′′′|m′′m′) , (2)

In Eq. 2, the renormalized occupation matrices P̄ I,n,l,σmm′

and the renormalized occupations N̄ I,n,l,σ
ψnk

are respec-

Supplementary Fig. 4. Same as in Fig. 3, but for the 3d or-
bitals of Ni. Here we considered separately the eg and t2g
orbitals. The eg orbitals for spin up are initially fully occu-
pied, and the ones for spin down are initially not occupied, in
agreement with the orbital-resolved bandstructure shown in
Fig. 2.

tively given by [4]

P̄ I,n,l,σmm′ =
∑
nk

wkfnkN̄
I,n,l,σ
ψnk

〈ψσnk|φI,n,l,m〉〈φI,n,l,m′ |ψσnk〉 ,

(3)

N̄ I,n,l,σ
ψnk

=
∑
{I}

∑
m

〈ψσnk|φI,n,l,m〉〈φI,n,l,m|ψσnk〉 , (4)

where I is an atom and n, l and m are the quantum
number defining the localized orbitals. These subscripts
are omitted below for conciseness.
The key idea of the ACBN0 functional is to define U
and J by comparing Eq. 2 with the usual expression of
DFT+U,

Eee[{nI,σmm′}] =
U

2

∑
m,m′,σ

Nσ
mN

−σ
m′ +

U − J
2

∑
m6=m′,σ

Nσ
mN

σ
m′ .

(5)

Doing this, one obtains the ab initio U and J of the
ACBN0 functional

Ū =

∑
{m}

∑
αβ P̄

α
mm′ P̄

β
m′m′′(mm′|m′′m′′′)∑

m 6=m′
∑
αN

α
mN

α
m′ +

∑
{m}

∑
αN

α
mN

−α
m′

, (6)
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J̄ =

∑
{m}

∑
α P̄

α
mm′ P̄αm′m′′(mm′′′|m′′m′)∑

m6=m′
∑
αN

α
mN

α
m′

, (7)

with Nα
m = nI,n,l,αmm . This are these expressions that are

evaluated in the present work.
However, we can take a different point of view. Eq. 2
could be compared to another expression, which is the
one that would be used if one would compute the screened
Coulomb matrix Umm′m′′m′′′

Eee =
1

2

∑
{m}

∑
α,β

nαmm′n
β
m′′m′′′Umm′m′′m′′′

−1

2

∑
{m}

∑
α

nαmm′nαm′′m′′′Umm′′′m′′m′ , (8)

In this expression, the U matrix is evaluated computing
the matrix elements of the dynamical screened Coulomb
interaction W (ω) = ε−1(ω)v, where v is the unscreened
Coulomb interaction, and ε−1(ω) is the inverse of the dy-
namical dielectric screening experience by the electrons
in the localized subspace. This is what would be evalu-
ated for instance using the cRPA method [5–8].
We now define the effective on-site screening which is
taken into account in our simulations. For this, we
start from Eq. 8 in which we make explicit the screened
Coulomb interaction.

Eee =
1

2

∑
{m}

∑
α,β

nαmm′n
β
m′′m′′′〈mm′′|W (ω)|m′m′′′〉

−1

2

∑
{m}

∑
α

nαmm′nαm′′m′′′〈mm′′|W (ω)|m′′′m′〉 , (9)

where

〈mm′′|W (ω)|m′m′′′〉 =

∫
d3r

∫
d3r′ε−1(r, r′, ω)

×
φ†m(r)φ†m′′(r′)φm′(r)φm′′′(r′)

|r− r′|
.

By omitting the dynamical features of the screened
Coulomb interaction, and further assuming the screen-
ing can be approximated by an effective on-site screen-
ing, i.e., averaged spatially on the correlated subspace,
we obtain

Eee =
1

2

∑
{m}

∑
α,β

nαmm′n
β
m′′m′′′ε

−1
eff 〈mm

′′|v|m′m′′′〉

−1

2

∑
{m}

∑
α

nαmm′nαm′′m′′′ε−1
eff 〈mm

′′|v|m′′′m′〉.

By comparing this expression to Eq. 2, we arrive to
the definition of the effective on-site screening taking into
account in the ACBN0 functional as

ε−1
eff =

P̄αmm′ P̄
β
m′′m′′′

nαmm′n
β
m′′m′′′

. (10)

In this expression, the effective screening appears as spin
and orbital dependent. However we checked that com-
puting the effective screening for the different orbitals
yields very similar results for each orbitals, as expected.
In Fig. 5 and Fig. 6, we report the time-evolution of the
effective on-site screening for the 3d orbitals and the 2p
orbitals, computing by taking the average over the or-
bitals and spin channels of Eq. 10.

Supplementary Fig. 5. Time-evolution of the effective on-site
screening for the t2g and eg orbitals of the Ni atoms (bottom
panel), compared to the laser field (top panel) and the time-
dependent Ueff . See the main text for details

We obtained that the effective on-site screening is quite
different of the t2g and eg orbitals. From the population
analysis above, we found that the laser depletes the t2g
orbitals and increases the population in the eg orbitals
for the spin down channel. The spin-up channel for the
eg, the population mostly does not change, as these or-
bitals are deeper in energy. The changes obtained for the
on-site screening are fully compatible with the previous
population analysis. We obtain in particular that the
time-scale on which U changes is dictated by the effec-
tive on-site screening of the t2g orbitals, which are the
most relevant orbitals here, as they are fully occupied in
the ground state. Note that the eg on-site screening is
found to change on the same time-scale as the laser pulse
or the orbital occupations.

For the 2p orbitals, we obtained that the on-site effec-
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Supplementary Fig. 6. Time-evolution of the effective on-
site screening for the 2p orbitals of the O atoms (bottom
panel), compared to the laser field (top panel) and the time-
dependent Ueff .

tive screening is also changing on the same time-scale as
the on-site Ueff .
To summarize our findings, we found that the time-scale
on which the on-site effective screening evolves and then
saturates is the same as for the on-site Ueff , explaining
the reported saturation of U at high field strength.

COMPARISON OF HHG SPECTRUM OF NIO
FOR PBE AND ACBN0 FUNCTIONAL

We computed the HHG spectrum of NiO from the PBE
functional [9] compared to the ACBN0 functional [4] as
used in the main text. Due to the smaller band-gap
predicted by PBE, we used a much smaller intensity of
I0 = 1×1011W cm−2. As shown in Fig. 7, the HHG from
NiO is clearly overestimated, as the gap is much smaller
(1.26eV for PBE compared to 4.14 eV with ACBN0 func-
tional, the latter been very close to the experimental one
[10]).

HHG SPECTRA WITH AND WITHOUT
TIME-DEPENDENT U FOR VARIOUS

INTENSITIES

We also report the HHG spectrum of NiO for lower
intensity (I0 = 5 × 1011W cm−2, Fig. 8) and higher in-
tensity (I0 = 5× 1012W cm−2, Fig. 10) which also shows

Supplementary Fig. 7. Comparison of the HHG from NiO
for PBE (red line) and ACBN0 (black line) functional for
I0 = 1 × 1011W cm−2.

that freezing the Hubbard U underestimate the harmonic
yield.

Supplementary Fig. 8. Effect of the time-evolution of the
effective Hubbard U on the HHG spectrum of NiO. The HHG
spectrum obtained from the full time-evolution is shown in
black, whereas the spectra obtained when fixing the Hubbard
U to its ground-state value is shown in red. The red vertical
line indicates the calculated band-gap of NiO. The intensity
is taken here as I0 = 5 × 1011W cm−2.

EFFECT OF THE PULSE LENGTH ON THE
DECREASE OF U

It is important to note that the dynamics of U not
only depends on the intensity, but also depends on the
shape and the length of the applied laser pulse. As an
example, we obtained that a shorter pulse of 12.5fs yield
a reduction of U of 0.53eV instead of 0.58eV for 25fs
(see Fig.2 in the main text), for the same intensity of
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Supplementary Fig. 9. Same as Fig. 8 but with I0 = 1 ×
1012W cm−2

Supplementary Fig. 10. Same as Fig. 8 but with I0 = 5 ×
1012W cm−2

I0 = 5× 1011W cm−2.

EFFECT OF DYNAMICAL U ON LOW-ORDER
SUSCEPTIBILITIES

One interesting question is how much the low-order
susceptibilities are affected by the dynamical U and how
much they change compared to the intensity of the driv-
ing field. As the main purpose of our paper is not to
calculate these susceptibilities, we cannot extract precise
values from our simulations. This would require longer
time propagations to make the finite pulse-length effect
less important. However, we can still extract some val-
ues from the simulations, to discuss a general trend and
compare with available experimental values for the third-
order susceptibilities χ3. In order to evaluate the first-
and third-order susceptibilities from our simulations, we
follow the method proposed in Ref. [11], and we assume

Supplementary Fig. 11. Self-consistent dynamics of Hubbard
U for the Ni 3d orbitals (top panel), and the oxygen 2p orbitals
(bottom panel) for different pulse length as indicated. The
intensity is taken here as I0 = 5 × 1011W cm−2.

a quasi-chromatic driving field Fδ, sharply peaked at a
central frequency ω0 = 0.43eV. This is an assumption
which is not fully fulfilled here, as only ultrashort driv-
ing pulses are considered.
The third order polarization is given (for three fields
along the same direction) by [11]

P (3)(3ω0) ≈ χ(3)(−3ω0;ω0, ω0, ω0)

×
∫ wc

−wc

dω′dω′′

(2π)2
Fδ(w0 − w′ − w′′)Fδ(w0 + w′)Fδ(w0 + w′′).

(11)

Assuming no intraband currents, we can link the polar-
ization to the electronic current by

j(3)(3ω0) = 3iω0P
(3)(3ω0)

= 3iω0χ
(3)(−3ω0;ω0, ω0, ω0)F

(3)
eff ,

where F
(3)
eff refers to the double integral in Eq. 11.

The assumption of no intraband current is clearly here
a strong approximation, as we consider strong driving
fields. However, going beyond this approximation for the
evaluation of χ3 and clearly splitting the contribution
to the electronic current into interband and intraband
contributions goes beyond the scope of the present work.
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Supplementary Fig. 12. Extracted effective dielectric function
(left panel) and third-order susceptibility (right panel) versus
driver intensity. For evaluating χ3, we used ωc ≈ 0.14 eV and
we checked that changing this value to a larger one does not
affect significantly the extracted values. The experimental
values are indicated by horizontal lines on the right panel, see
main text for details.

In Fig. 12 we show the extracted effective dielectric
function (left panel) and third-order susceptibility (right
panel) versus driver intensity. As expected, in the low in-
tensity region, the frozen and dynamical U results agrees
well, whereas the difference becomes more and more im-
portant while intensity increases. For the third-order
susceptibility, our result (1.07m2/V 2 for an intensity of
1011W/cm2) seem to agree reasonably well with experi-
mental values taken from Ref. [12] (horizontal solid lines,
1.49m2/V2 and 1.94m2/V2) and from [13] (horizontal
dashed lines, 4.9m2/V2), showing that our TDDFT+U
calculation can yield reasonably good values for third-
harmonic generation. Performing the same estimate for
the PBE calculation shown in Fig. 7 yield a value of
χ(3)(−3ω0;ω0, ω0, ω0) two orders of magnitude larger,
due to the much smaller gap given by PBE. We found
that for lower intensities, no reliable χ3 can be extracted,
as the pulse length is too short to lead to sizable third-

harmonic generation.
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