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Abstract. The exact factorization approach, originally developed for electron-nuclear dynamics, is ex-
tended to light-matter interactions within the dipole approximation. This allows for a Schrödinger equation
for the photonic wavefunction, in which the potential contains exactly the effects on the photon field of its
coupling to matter. We illustrate the formalism and potential for a two-level system representing the matter,
coupled to an infinite number of photon modes in the Wigner-Weisskopf approximation, as well as a single
mode with various coupling strengths. Significant differences are found with the potential used in con-
ventional approaches, especially for strong-couplings. We discuss how our exact factorization approach for
light-matter interactions can be used as a guideline to develop semiclassical trajectory methods for efficient
simulations of light-matter dynamics.

PACS. XX.XX.XX No PACS code given

1 Introduction

The interaction of light with matter involves the corre-
lated dynamics of photons, electrons, and nuclei. Even
at a non-relativistic level the solution of Schrödinger’s
equation for the coupled subsystems is a daunting com-
putation. In a given situation however, one is often mea-
suring properties of only one of these subsystems. For
example, one might be wanting to know how the electri-
cal conductivity of a molecule is affected by the photons,
as in the recent experiment showing the increased con-
ductivity of organic semiconductors due to hybridization
with the vacuum field [1]. On the other hand, one might
want to understand how molecular dissociation after elec-
tronic excitation is affected in the presence of light, as
in the recent study of light-induced versus intrinsic non-
adiabatic dynamics in diatomics [2]. Or, one might want
to measure the superradiance from a collection of atoms
[3]. In each of these three cases, the observable of inter-
est involves one of the subsystems alone, electronic, nu-
clear, and photonic, respectively, yet to capture the dy-
namics of the relevant subsystem, clearly the effects of all
subsystems are needed. The question then arises: can we
write a Schrödinger equation for one of the subsystems
alone, such that the solution yields the wavefunction of
that subsystem? The potential appearing in the equation
would have to incorporate the couplings to the other sub-
systems as well as to any externally applied fields.

Hardy Gross, with co-workers, in fact already
answered exactly these questions [4,5,6] when the pho-
tonic system is treated as a classical light field neglect-
ing the magnetic field contribution. That is, for systems
of electrons and nuclei, interacting with each other via a
scalar potential (usually taken as Coulomb), and in the
presence of an externally applied scalar potential, such
as the electric field of light, it was shown that one can
exactly factorize the complete molecular wavefunction
into a wavefunction describing the nuclear system, and
a wavefunction describing the electronic system that is
conditionally dependent on the nuclear subsystem [4,5,
6,7]: Ψ(r,R, t) = χ(r, t)ΦR(r, t), where r = r1, ...rNe and
R = R1...RNn represent all electronic and nuclear coor-
dinates respectively. The equation for the nuclear subsys-
tem has a Schrödinger form, with scalar and vector po-
tentials that completely account for the coupling to the
electronic system. One can reverse the roles of the elec-
tronic and nuclear subsystems, to instead get a Schrö-
dinger equation for the electronic system, which is partic-
ularly useful when one is most interested in the electronic
properties [8], e.g. in field-induced molecular ionization.

Recently rapid experimental and theoretical advances
have however drawn attention to fascinating phenom-
ena that depend on the quantization of the light field in
its interaction with matter. This includes few-photon co-
herent nonlinear optics with single molecules [9], direct
experimental sampling of electric-field vacuum fluctua-
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tions [10,11], multiple Rabi splittings under ultrastrong
vibrational coupling [12], exciton-polariton condensates
[13,14], polaritonically enhanced superconductivity in cav-
ities [15], or frustrated polaritons [16] among others. Op-
tical cavities can be used to tune the effective strength of
the light-matter interaction, and, in the strong-coupling
regime in particular, one finds for example non-radiative
energy transfer well beyond the Förster limit between
spatially separated donors and acceptors [17], strong cou-
pling between chlorosomes of photosynthetic bacteria and
confined optical cavity modes [18], photochemical reac-
tions can be suppressed with cavity modes [19], the posi-
tion of conical intersections can be shifted or they can be
removed [20,2], or state-selective chemistry at room tem-
perature can be achieved by strong vacuum-matter cou-
pling [21]. Strong vacuum-coupling can change chemi-
cal reactions, such as photoisomerization or a prototypi-
cal deprotection reaction of alkynylsilane [21,22] This has
given rise to the burgeoning field now sometimes called
”polaritonic chemistry” [23,24,25,26]. In addition, novel
spectroscopies have been proposed which explicitly ex-
ploit correlated states of the photon field. For example the
use of entangled photon pairs enables one to go beyond
the classical Fourier limit [27], or correlated photons can
be used to imprint correlation onto matter[20,28,29]

In this paper, we extend the exact factorization ap-
proach to non-relativistic coupled photon-matter systems
within the dipole approximation. We focus particularly
on finding the potential driving the system in the present
study. One motivation is towards developing mixed
quantum-classical methods for the light-matter system.
The observation that in a matter-free system, the pho-
tonic Hamiltonian is a sum over harmonic Hamiltonians
for each mode of the radiation field suggests that a classi-
cal treatment of the photonic system would be accurate:
if the system begins in a Gaussian wavepacket, classical
Wigner dynamics exactly describes the motion [30]. Cou-
pling to matter within the dipole approximation where
the coupling operator is linear in the photonic variable
preserves the quadratic nature of the Hamiltonian, and
one might then think that again a classical Wigner treat-
ment would be exact. However, recently it was found
that, although accurate, it was not exact [31]. This implies
that the true potential driving the photonic motion is in
fact not quadratic. The exact factorization approach de-
fines exactly what this potential should be. In this paper
we explain the formalism and give some examples of this
potential, that clearly show deviations from harmonic be-
haviour throughout the dynamics.

The theory is described in Sec. 2, presenting the Hamil-
tonian that we will consider, and the formalism of the
factorization approach. Section 3 demonstrates the ap-
proach on two examples, that we choose as the simplest
cases for this initial study. The matter system is described
by a two-level system while the photonic system is cho-
sen to either be an infinite number of modes treated within
the Wigner-Weisskopf approximation, or a single cavity
mode chosen to be resonant with the spacing of the two
levels, explored over a range of coupling strengths. We

find and interpret the potential driving the photonic sys-
tem, which depends significantly on whether the initial
state of the system is chosen correlated or fully factor-
ized. Finally in Sec. 4 we summarize and discuss the rel-
evance of this approach for future investigations of light-
matter dynamics.

2 Theory

2.1 QED-Hamiltonian

In this work, we consider the non-relativistic limit of a
system ofNe electrons,Nn nuclei, andNp quantized pho-
ton modes, treated within the dipole approximation in
Coulomb gauge [32,33,34]. For now, we do not consider
any classical external fields, and neglect spin-coupling.
The Hamiltonian of this coupled system is then defined
by [35,20,36,37,38]

Ĥ(q, r,R) = Ĥp+Ĥe+Ĥn+Ĥep+Ĥnp+Ĥen+Ĥpen, (1)

which operates in the space of: r = {r1..ri..rNe}
representing all electronic spatial coordinates,
R = {R1..RI ..RNn} representing all nuclear coordinates,
and q = {q1..qα..qNp} representing all photonic displace-
ment coordinates. The first term characterizes the cavity-
photon Hamiltonian

Ĥp(q) =
1

2

2Np∑
α=1

p̂2
α + ω2

αq̂
2
α

 = T̂p(q) + V̂p(q). (2)

Here q̂α =
∑
α

√
~

2ωα
(â+
α + âα) defines the photonic dis-

placement coordinate for theαth mode, with creation(a+)
and annihilation(a) operators [35,36], and the commuta-
tion relation [q̂α, p̂α′ ] = ı~δα,α′ . The photonic displace-
ment coordinate is directly proportional to the mode- pro-
jected electric displacement operator, D̂α = ε0ωαλαq̂α,
while p̂α is proportional to the magnetic field [36,37]. The
αth mode has frequency ωα = kαc = απc/V , with kα the
wavevector and V the quantization volume. The electron-
photon coupling strength is given by

λα =
√

4πSα(kα · X)eα, (3)

where Sα denotes the mode function, e.g. a sine-function
for the case of a cubic cavity [39,36], kα the wave vector,
and X the total dipole of the system. In particular, we em-
phasize at this point that the mode functions introduce
a dependence of the coupling constants on the quanti-
zation volume of the electromagnetic field. By confining
this volume, for example with an optical cavity, one can
tune the interaction strength. Finally, we note that the
sum in Eq. (2) goes from 1 to 2Np, to take the two po-
larization possibilities of the electro-magnetic field into
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account. The second term of Eq. (1) denotes the electronic
Hamiltonian

Ĥe(r) =

Ne∑
i=1

p̂2
i

2me
+

e2

4πε0

Ne∑
i>j

1

|ri − rj |

= T̂e(r) + V̂ee(r) , (4)

where me defines the electronic mass, p̂i the electronic
momentum operator conjugate to r̂i. The third term in
Eq. (1) denotes the nuclear Hamiltonian

Ĥn(R) =

Nn∑
I=1

P̂I
2

2MI
+

e2

4πε0

Nn∑
i>j

ZIZJ
|RI −RJ |

(5)

= T̂n(R) + V̂nn(R); , (6)

with analogous identifications to the electronic Hamilto-
nian and eZI here being the nuclear charge.

The remaining terms in Eq. (1) denote the couplings
between the subsystems. The electron-nuclear coupling
appears as the usual Coulombic interaction:

Ĥen = −
Ne∑
i=1

Nn∑
J=1

e2Z

|ri −RJ |
(7)

The electron-photon coupling, in dipole approximation,

Ĥep = −
2Np∑
α=1

ωαq̂αλα ·
Ne∑
i=1

eri (8)

(where e is the magnitude of the electronic charge) bi-
linearly couples the total electric dipole moment with the
electric field operator for each mode of the photonic field.
Similarly, the nuclear-photon coupling is

Ĥnp =

2Np∑
α=1

ωαq̂αλα ·
Nn∑
I=1

eZIRI (9)

Finally,Hpen represents the dipole self-energy of the mat-
ter in the radiation field:

Ĥpen =
1

2

2Np∑
α=1

λα ·

(
Nn∑
I

ZIRI −
Ne∑
i

ri

)2

(10)

This self-energy term is essential for a mathematically
well defined light-matter interaction. Without this term
the Hamiltonian is not bound from below, and loses in
addition translational invariance (in case of a vanishing
external potential) [40].

The dynamics of such a coupled system is given by
the solution of the time-dependent Schrödinger equation
(TDSE)

ĤΨ(r,R,q, t) = i∂tΨ(r,R,q, t), (11)

where Ψ(r,R,q, t) is the full matter-photon wavefunc-
tion, that contains the complete information of the cou-
pled system. However it is difficult to obtain an intuitive

understanding and interpretation of such a coupled sys-
tem from the high-dimensional Ψ(r,R,q, t), and more-
over, we may not be interested in all the information as
we might be interested in one of the subsystems. If one
of these subsystems varies on a much slower time-scale
than the others (in particular the nuclei), what is often
done in coupled electron-nuclear systems is a Born- Op-
penheimer adiabatic approximation where the faster
time-scale subsystem (in particular the electrons) are as-
sumed to instantaneously adjust to the positions of the
nuclei, and hence if they begin in an eigenstate, they re-
main in an eigenstate parameterized by the nuclear coor-
dinate. The eigenenergy maps out a Born-Oppenheimer
potential energy surface (PES) which provides the poten-
tial for the nuclear dynamics. These potential-energy sur-
faces (PES) are clearly an approximation within the adia-
batic ansatz, but in fact an exact PES can be defined quite
generally without the need for any adiabatic approxima-
tion, which brings us to the main point of this paper. For
the electron-nuclear problem, these arise from the exact
factorization approach mentioned earlier in the introduc-
tion. In the next section we will extend the idea of the
exact factorization for electron-nuclei systems to coupled
photon-matter systems.

Before moving to this, we note that Eq. (1) is the most
general form of Hamiltonian that we will consider in the
present work. In later sections, in particular in the ex-
plicit examples, we will simplify to just a two-level elec-
tronic system interacting with the photonic field in a cav-
ity. In that case, many of the terms in Eq. (1) are zero, and
we simplify the remaining terms even further to a model
Hamiltonian

Ĥ = −ω0

2
σ̂z+

∑
α

(
−1

2

∂2

∂q2
α

+
1

2
ω2
αq

2
α

)
+
∑
α

ωαλαq̂α(degσ̂x),

(12)
Here σi are the Pauli matrices. The first term is the two-
level system that replaces the electronic Hamiltonian (in-
cluding the dipole self-energy, which simplifies to a con-
stant energy shift for a two-level system), where the
energy-level difference is ω0, and deg , appearing in the
third term, is the dipole moment of the transition. The
second term describes the free photon field, as in Eq. (2),
while Eq. (8) reduces to the third term with λα as the cou-
pling strength evaluated at the position of the atom in the
cavity. The TDSE also simplifies, to

i~
∂

∂t

−→
Ψ (q, t) =

(
−ω0

2 + Ĥp(q)
∑
α ωαλαq̂αdeg∑

α ωαλαq̂αdeg
ω0

2 + Ĥp(q)

)
−→
Ψ (q, t)

(13)
where we use the notation

−→
Ψ (q, t) being a 2-vector de-

fined at every q and t. A cartoon of the problem is given
in Fig. 1.
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Fig. 1. Cavity-setup: Particle (green) trapped in a cavity and
coupled by coupling strength λα to the α photon mode with
the photonic frequency ωα, where α = {1, 2, ..., 2np}.

2.2 Exact Factorization Approach

The exact factorization (EF) may be viewed as a refor-
mulation of the quantum mechanics of interacting cou-
pled systems where the wavefunction is factored into a
marginal amplitude and a conditional amplitude [7,4,5,
6]. With non-relativistic electron-nuclear systems in mind,
the equations for these amplitudes were derived for Hamil-
tonians of the form

Ĥ = T̂e + T̂n + V̂ (14)

where V̂ is a scalar potential that includes coupling be-
tween the electrons and nuclei (usually Coulombic) and
any externally applied fields. Here T̂e,n are kinetic energy
operators of the electronic and nuclear equations, just as
in Eq. 4 and 6, that have the form of −

∑
i(I)∇2

i(I)/2mi(I)

(that is, no vector potential). The EF then proves that the
exact full molecular wavefunction can be factored as

Ψ(r,R, t) = χ(R, t)ΦR(r, t) . (15)

The equation for the nuclear amplitude χ has a TDSE
form [5,6,41,42], equipped with a time-dependent scalar
potential ε(R, t) and a time-dependent vector potential
AI(R, t) that include entirely the effects of coupling to
the electronic system as well as external fields. The equa-
tion for the conditional electronic amplitude ΦR has a
more complicated form, involving a coupling operator
Ûen, that acts on the parametric dependence of ΦR. The
factorization is unique, provided ΦR satisfies the ”partial
normalization condition” (PNC),

∫
dr|ΦR(r, t)|2 = 1, up

to a gauge-like transformation; under such a transforma-
tion, ε and A transform as scalar and vector potentials
do in electrodynamics. The nuclear Nn-body probability
density and current-density can be obtained in the usual
way from the nuclear amplitude χ(R, t), so in this sense,
can be identified as the nuclear wavefunction of the sys-
tem.

The form of the EF Eq.(15) is similar to the Born- Op-
penheimer (BO) approximation, however with the im-
portant difference that Eq.(15) is an exact representation

of the wavefunction, not an approximation, and further
that it is valid for time-dependent systems, with time-
dependent external fields, as well. The BO approxima-
tion assumes that the electronic system remains always
in the instantaneous ground (or eigen)-state associated
with the nuclear configuration R, and therefore misses
all the physics associated with non-adiabatic effects, in-
cluding wavepacket branching and decoherence. These
effects are contained exactly in the coupling terms in the
EF equations: the scalar and vector potentials and the
coupling operator of the electronic equation. It is impor-
tant to note that there is no assumption of different
timescales in the EF approach, in contrast to the BO ap-
proximation.

As the scalar potential plays a role analogous to the
BO PES, but now for the exact system, it is denoted the
time-dependent potential energy surface (TDPES), while
the vector potential (TDVP) is an exact time-dependent
Berry connection. The gauge-freedom is a crucial part of
the EF approach: in particular, whether a gauge exists in
which the vector potential can be transformed into part
of the TDPES has been explored in some works [43,44],
especially since the common understanding is that Berry
phases appear only out of an adiabatic separation of time-
scales, while the EF is exact and does not assume any
such separation. In fact, equally valid is the reverse fac-
torization [8], Ψ(r,R, t) = χ(r, t)Φr(R, t), which is par-
ticularly useful when one is interested in the electronic
system, since in this factorization, the electronic system
follows a TDSE in which the potentials can be analysed
and interpreted.

2.3 Exact Factorization Approach for QED

Here, we extend the exact factorization to systems of cou-
pled photons, electrons, and nuclei. Since all the kinetic
operators in the Hamiltonian within the dipole approx-
imation, Eq. (1), are of similar form to those that were
considered in the original EFA, Eq. (14), the mathemati-
cal structure of the equations and coupling terms will be
similar when we make a factorization into two parts.

There are three possibilities for such a factorization,
and we expect each to be useful in different contexts. One
possibility, which is perhaps the most natural extension
of the factorization of Ref. [5,6], is to take the nuclear sys-
tem as the marginal one,

Ψ(q, r,R; t) = χ(R; t)ΦR(q, r; t) . (16)

with the PNC

〈ΦR(t)|ΦR(t)〉q,r ≡
∫
dqdr|ΦR(q, r; t)|2 = 1 (17)

for every nuclear configuration R at each time t. This
would yield a TDSE for the nuclear system, much like
in the original EFA, but now the TDPES and TDVP in-
cludes not only the effects on the nuclei of coupling to the
electrons, but also to the photons. This would be a par-
ticularly useful factorization for studying light-induced
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non-adiabatic chemical dynamics phenomena, when the
quantum nature of light is expected to play a role. In
fact, an approximation based on the normal Born- Op-
penheimer approximation for the electron-ion dynamics
has been used to study the cavity-induced changes in the
potential energy surfaces in the strong coupling regime
[45]. This would be a particularly useful factorization for
studying light-induced non-adiabatic phenomena, when
the quantum nature of light is expected to play a role.

A second possibility is the natural extension of the re-
verse factorization [8], where the electronic system is the
marginal amplitude

Ψ(q, r,R; t) = χ(r; t)Φr(q,R; t) , (18)

with the PNC 〈Φr(t)|Φr(t)〉q,R ≡
∫
dqdR|Φr(q,R; t)|2 =

1, for all t and every electronic configuration r, which
would yield a TDSE for electrons, with the e-TDPES and
e-TDVP now incorporating the full effects on the elec-
trons of coupling to the nuclei as well as the photons.
This could be particularly useful for studying, for exam-
ple, the impact of vacuum field on electrical conductivity
in a molecule or semiconductor.

This leaves the third possibility, where the photonic
system is chosen as the marginal:

Ψ(q, r,R; t) = χ(q; t)Φq(r,R; t) , (19)

with the PNC

〈Φq(t)|Φq(t)〉r,R ≡
∫
drdR|Φq(r,R; t)|2 = 1 , (20)

for each field-coordinate q and all times t. This is the fac-
torization we will focus on in the present paper: it gives
a TDSE for the photonic system, within which the scalar
potential, which we call the q-TDPES, and vector poten-
tial, the q-TDVP, contain the feedback of the matter-system
on the radiation field. In free space, the potential acting
on the photons is quadratic as is evident from Eq. (2),
however, in the presence of matter, the potential deter-
mining the photonic state deviates from its harmonic form
due to interactions with matter. The cavity-BO approach
introduced in Ref. [33] has demonstrated these deviations
within the BO approximation. The EF approach now ren-
ders this concept exact, beyond any adiabatic assump-
tions.

The equations for each of these three factorizations
follows from a straightforward generalization of the orig-
inal EF equations, as the non-multiplicative operators (the
kinetic operators) have the same form; hence the deriva-
tion proceeds quite analogously to that given in Ref. [5,6,
41]. In particular, for the factorization Eq. (19), we obtain(
Ĥm(r,R,q; t)− ε(q; t)

)
Φq(r,R; t) = i∂tΦq(r,R; t),

(21)(
2np∑
α

1

2

(
i
∂

∂qα
+Aα(q; t)

)2

+ ε(q; t)

)
χ(q; t) = i∂tχ(q; t),

(22)

where the matter Hamiltonian Ĥm is given by

Ĥm(r,R,q; t) = ĤqBO + Ûep. (23)

with

ĤqBO = Ĥe+ Ĥn+ Ĥen+ Ĥpen+ Ĥep+ Ĥnp+
1

2

2Np∑
α=1

ωαq̂
2
α

(24)
defined in an analogous way to the BO Hamiltonian, but
now for the photonic system. The electron-photon cou-
pling potential Ûep is given by

Ûep[Φq, χ] =

2np∑
α

[
(−i∂qα −Aα(q; t))2

2
+ (25)(

−i∂qαχ(q; t)

χ(q; t)
+Aα(q; t)

)(
−i∂qα −Aα(q; t)

)]
,

the q-TDPES by

ε(q; t) =
〈
Φq(t)

∣∣∣ Ĥm(r,R,q; t)− i∂t
∣∣∣Φq(t)

〉
r,R

, (26)

and the q-TDVP by

Aα(q; t) = 〈Φq(t)| − i∂qαΦq(t)〉
r,R

. (27)

with the notation 〈...|..〉r,R meaning an integration over
electronic and nuclear coordinates only in the expectation
values (as in Eq. (20)). The factorization (19) is unique
up to a gauge-like transformation, provided the PNC,
Eq. (20) is satisfied. The gauge-like transformation has
the structure of the usual one in electromagnetism, ex-
cept here the scalar and vector potentials arise due to
coupling, rather than due to external fields, and they are
potentials on the photonic system, not on the matter sys-
tem. The equations are form-invariant under the follow-
ing transformation:

Φq(r,R, t)→ Φq(r,R, t) exp(iθ(q, t))

χ(q, t)→ χ(q, t) exp(−iθ(q, t))

Aα(q; t)→ Aα(q; t) + ∂αθ(q, t)

ε(q; t)→ ε(q; t) + ∂tθ(q, t) (28)

Further, one can show that the displacement-field den-
sity represented by χ reproduces that of the full wave-
function, i.e.

|χ(q; t)|2 =

∫
drdR|Ψ(q, r,R; t)|2 , (29)

and that the phase of χ together with the q-TDVP provide
the displacement-field probability current in the natural
way:

Im〈Ψ |∂αΨ〉 = |χ(q; t)|2Aα(q; t) + ∂αS(q; t) , (30)
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where χ(q; t) = |χ(q; t)| exp(iS(q, t)). This means, that
observables associated with multiplication by q can be
obtained directly from χ(q, t), for example, the electric
field

E(r; t) =
∑
α

ωαλα(r, t)

∫
dq qα|χ(q; t)|2 , (31)

while the magnetic field is

B(r; t)=
∑
α

c

ωα
∇×λα(r, t)

∫
dq|χ(q; t)|2Aα(q; t)+∂αS(q; t).

(32)

2.4 Exact Factorization for Simplified Model
Hamiltonian: Two-Level System in Radiation Field

For our exploration of the QED factorization in this pa-
per, we will turn to the simplified model Hamiltonian of
Eq. (12), where the matter system’s Hamiltonian is a 2×2
matrix. First, it is useful to write Eq.( 12) as

Ĥ =
∑
α

1

2
∂2
qα12 + ĤqBO ,where (33)

ĤqBO =−ω0

2
σ̂z+

∑
α

1

2
ω2
αq

2
α12+

∑
α

ωαλαq̂α(degσ̂x).(34)

Here ĤqBO is analogous to the BO Hamiltonian in the
usual electron-nuclear case. We can define qBO-states as
normalized eigenstates:

ĤqBO
−→
Φ (1,2)

q = ε
(1,2)
qBO(q)

−→
Φ (1,2)

q (35)

with
−→
Φ i,†

q ·
−→
Φ j

q = δij . and these can be used as a basis to

expand the fully coupled wavefunction, i.e.
−→
Ψ (q, t) = χ1(q, t)

−→
Φ (1)

q + χ2(q, t)
−→
Φ (2)

q (36)

which would be analogous to the Born-Huang expansion
but now for the cavity-matter system.

Now in the EF approach, the fully coupled wavefunc-
tion is instead factorized as a single product:

−→
Ψ (q, t) = χ(q, t)

−→
Φ q(t) (37)

where the PNC becomes
−→
Φ †q(t) ·

−→
Φ q(t) = 1 , (38)

and holds for every q and each time t.
We note that there are two useful bases for this prob-

lem. One is obtained from diagonalizing the field-free
two-level system, i.e. that defined by eigenvectors of the
Pauli-σz matrix. The other basis is the qBO basis, defined
by the eigenvectors of ĤqBO, as in Eq.( 35).

The EF equations follow directly from Eqs (21–27) but
with the much simplified ĤqBO above, and all 〈...〉mean-
ing simply a 2×2 vector-multiply.

2.5 Photonic Time-Dependent Potential Energy
Surface

Unlike the original electron-nuclear factorization, the q-
TDVP can always be gauged away due to the one- di-
mensional nature of each photon-displacement mode.
This means that one can always transform to a gauge in
which the q-TDPES contains the entire effect of the cou-
pling of the matter system on the radiation field, i.e. it is
the only potential that is driving the photonic dynamics.
For the matter system, both the q-TDPES and the photon-
matter coupling operator incorporate the effect of the pho-
tonic system on the matter. In the original electron-nuclear
factorization, the TDPES proved to be a powerful tool to
analyze and interpret the dynamics of the system in cases
ranging from dynamics of molecules in strong fields [5,
6,8,46,47,48,49], non-adiabatic proton-coupled electron-
transfer [50,51] to nuclear-velocity perturbation theory
[52,53] and dynamics through a conical intersection [54,
55]. It provides an exact generalization of the adiabatic
BO-PES.

In the present work, we will study the q-TDPES ε(q, t)
of Eq.(26) for the case of the radiation field coupled to
a two level-system, using the model Hamiltonian (12).
Given a solution

−→
Ψ (q, t) for the coupled system, found

from Eq. (13), we will extract the exact q-TDPES by in-
version.

To do this, we first ensure that we work in the gauge
where Aα = 0. Similarly to previous work [6,51], this
gauge can be fixed by choosing the phase S(q, t) of the
photonic wavefunction, χ(q, t) = |χ(q, t)| exp(iS(q, t)),
to satisfy

∂qαS(q, t) =
Im[〈
−→
Ψ (t)|∂qα

−→
Ψ (t)〉]

|χ(q, t)|2
. (39)

Then, from the given solution
−→
Ψ (q, t), we compute

−→
Φ q(r) =

−→
Ψ (q, t)

|χ(q, t)|eiS(q,t)
with|χ| =

√
−→
Ψ †(q, t) ·

−→
Ψ (q, t)

(40)
and insert into the q-TDPES

ε(q, t) =
−→
Φ †q(t) · ĤqBO ·

−→
Φ q(t)

+
∑
α

|∂α
−→
Φ q(t)|2 +

−→
Φ †q(t) · (−i∂t

−→
Φ q(t))

= εwBO(q, t) + εkin(q, t) + εGD(q, t) . (41)

where we have noted that in this gauge the electron-photon
coupling operator reduces to Uep =

∑2np
α ∂2

α/2. We have
identified here the first term in Eq. (41) as εwBO, a ”weighted
qBO” surface, weighted by the probabilities of being in
the qBO eigenstates: using the expansion Eq. (36), εwBO =(
|χ1(q, t)|2ε(1)

qBO(q, t) + |χ2(q, t)|2ε(2)
qBO(q, t)

)
/|χ(qt)|2. The
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second term arises from kinetic effects from the paramet-
ric dependence of the conditional matter wavefunction,
hence we denote it as εkin. Both those terms are invari-
ant under different gauge choices, while the last term is
gauge-dependent, hence its name εGD.

3 Results and Discussion

We will consider two extremes within the simplified
model Hamiltonian Eq. (12). The first is the Wigner-
Weisskopf limit where the two-level system is coupled
to an infinite number of cavity modes. The second is the
two-level system coupled to a single resonant mode. As
initial condition, we consider the photon modes in the
vacuum state, and the two level system in the excited
state. In the latter case, we will compare the effect of start-
ing in a purely factorized matter-photonic state with that
of starting in a qBO state.

We notice that the dipole matrix element and cou-
pling parameter appear only together as a product in this
model, degλ. Physically, these are fixed by the problem at
hand, specifically the volume of the cavity and the dipole
coupling between the two levels in the atom, apart from
fundamental constants. But here, in this model we choose
them arbitrarily, and compare dynamics for different degλ
that range from relatively weak coupling to strong cou-
pling.

3.1 Wigner-Weisskopf Limit

We first consider the Wigner-Weisskopf limit, in which
our two-level system is coupled to an infinite number of
modes. In this limit, the accepted well-known approxi-
mate solution for the coupled system is known analyti-
cally, which makes the q-TDPES particularly straightfor-
ward to find.

The solution for
−→
Ψ of the coupled problem can be

found in the standard literature [56]. The initial state is
taken to be a purely factorized state of the electron in the
excited state and all photon modes in their ground states,
i.e.

−→
Ψ (q, 0) = χ0(q)

(
1
0

)
, (42)

where

χ0(q) =
∏
α

(ωα
π~

) 1
4

e−ωαq
2
α/2~ , (43)

which follows from the harmonic nature of the free pho-
ton field. The coupling in the off-diagonal elements of
Eq. (12) then cause Ψ to evolve in time, as

−→
Ψ (q, t) = a(t)χ0(q)

(
1
0

)
+
∑
α

bα(t)χα(q)

(
0
1

)
(44)

under the reasonable assumption that the coefficients of
the two-photon and higher states are negligible. Here the

one-photon states of the photonic system are

χα(q) =

√
2ωα
~
qα
∏
β

(ωβ
π~

) 1
4

e−ωβq
2
β/2~ . (45)

The coefficients a(t) and bα(t) can be found by substi-
tuting Eq. (44) into the TDSE Eq. (13). After making the
Wigner-Weisskopf approximations (taking the continuum
limit so V → ∞, taking a(t) to change with a rate much
slower than the resonant frequency ω0 and performing a
Markov rotating-wave approximation, and neglecting a
divergent Lamb shift), we arrive at

a(t) = e−
iω0t
~ e−

Γt
2 , (46)

bα(t) = eiωα
igα(ei(ωα−ω0)t−Γt/2 − 1)

i(ωα − ω0)− Γ/2
. (47)

where gα =
√

πωα
2~ λαdeg and the decay (spontaneous emis-

sion rate), Γ = (degλ)2ω2
0
V
~c3 . The Wigner-Weisskopf so-

lution is accurate for weak coupling, so that in this limit
the solution also generates accurate q-TDPES.

With this Wigner-Weisskopf solution, we can then find
the corresponding ”exact” q-TDPES, Eq. (41), using
Eq. (40) and (39). However, this yields an infinite dimen-
sional surface, since q = (q1..qα...q∞), which is challeng-
ing to visualize. Instead, we plot some one-dimensional
cross-sections of the q-TDPES, along the ith mode, set-
ting qα 6=i = 0. In the following, we use q̄ to denote all
modes not equal to qi. We will abbreviate quantities such
as ε(qi, q̄ = 0, t) by ε(qi, t), understood to be looking at
the cross-section where the displacement-coordinate of
all other modes is zero. We will choose two different
modes to look along: one resonant with ω0, and the other
slightly off-resonant. With this choice of cross-sections
through the origin of all modes but one, it can be shown
that the phase of the nuclear wavefunction that satisfies
the zero-q-TDVP condition, Eq. (27), S(qi, t) ≡ 0. This
leads to some simplification in the components of ε(qi, t).

In Fig.2 we plot the autocorrelation function

AΦ(t) =
∣∣∣∫ dqi(

−→
Φ †(qi; t = 0) ·

−→
Φ (qi; t))

∣∣∣2. (48)

as this gives an indication of what to expect for time-
scales for the behavior of the q-TDPES ε(qi, t) for differ-
ent coupling strengths degλ = {0.01, 0.1, 0.4}. In the up-
per panel, we have chosen to plot the q-TDPES along the
mode of the radiation field that is resonant with the two-
level system. In this case, the decay of the autocorrelation
depends primarily on (degλ)2, through Γ , i.e. AΦ(t) ∝
e−Γt, although there are some small polynomial correc-
tions.

In the slightly off-resonant case, we have chosen ωi =
0.411 while ω0 = 0.4. In fact, we observe partial revivals
in in the autocorrelation function for very long times in
the case of the weakest coupling shown (degλ = 0.01), as
shown in the inset, with the amplitude decreasing with
each revival. However the initial decay follows a sim-
ilar degλ-scaling pattern to that of the on-resonant sec-
tion through the autocorrelation function. In either case,

7



the dynamics of the decay is essentially the same for all
coupling strengths, provided the time is scaled appropri-
ately, and their q-TDPES’s also map on to each other at
the corresponding times. In the following we show the
graphs for degλ = 0.01 for the cross-section taken along
the on-resonant mode in Fig. 3, and that along the off-
resonant mode in Fig. 4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300
t

AΦ,On(t)
dl = 0.01
dl = 0.1
dl = 0.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200
t

AΦ,Off(t)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  1000 2000 3000 4000

t

Zoom-Out

Fig. 2. The autocorrelation function AΦ(t) where the different
colors describe the different coupling strengths of the system.
The upper panel shows the decay of this function when we
choose to look on-resonance ωi = ω0 = 0.4. The lower panel
illustrates the decay when looking along a slightly-off reso-
nant mode ωi = ω0 + 0.01. The zoom-out shows the same off-
resonance decay for a longer time.

In Fig. 3 and Fig.4 we show the different components
of the q-TDPES ε(qi, t) for different time snapshots which
are illustrated by the colored dots in the decay-plot. The
displacement-field density, |χ(qi, t)|2 = |χ(qi, q̄ = 0, t)|2
at these time-snapshots is shown in the top middle panel,
and we observe the gradual evolution from the vacuum
state towards the state with one photon during the de-
cay. This is also seen in the conditional probability am-
plitudes shown in the top right panel, which we obtain
from

|C1(2)(qi, t)|2 =
−→
Φ

(1(2))
qi,q̄=0 ·

−→
Φ qi,q̄=0(t) (49)

These are the coefficients of expansion of Φqi(t) in the
BO basis and are equal to the coefficients in Eq. (36) via
Cj(qi, t) = χj(qi, t)/χ(qi, t). C(1)(qi, t) and C(2)(qi, t) be-
gin close to 0 and 1, respectively, as expected, and as the
coupling kicks in and the atom decays, one might expect
them to evolve to 1 and 0, respectively. This is in fact cor-
rect for almost all qi, however non-uniformly in qi. As

expected from the nature of the bilinear coupling Hamil-
tonian Eq. (12), the conditional electronic amplitude asso-
ciated with larger photonic displacements qi couple more
strongly than those associated with smaller ones, so the
conditional amplitude on the upper surface falls away
from 1 starting on the outer edges and then moving in.
In fact, the conditional amplitude at q = 0 remains for-
ever stubbornly at the upper surface, unaffected by the
coupling to the field.

This non-uniformity is reflected in the q-TDPES, and
leads to a strong deviation from the harmonic form it has
in the absence of matter. The potential, driving the pho-
tonic motion, loses its harmonic form in the initial time
steps as the decay begins, peeling away starting from the
outer qi. The potential nearer qi = 0 remains harmonic
for the initial stages, but as time goes on, more of the
surface peels away from the upper surface, while a peak
structure develops near qi = 0 that gets increasingly lo-
calized and increasingly sharp as the atom decay pro-
cess completes and the photon is fully emitted. It is this
peak structure in the potential driving the photonic sys-
tem that excites the system from the zero-photon state
towards the one-photon state.

We turn now to the components of this exact surface.
In the weighted BO surface, εwBO(qi, t) that is plotted in
the middle right panel, we see the same peeling away
from the outer edges, but sticking resolutely to the origi-
nal upper surface at qi = 0. As the decay occurs, εwBO(qi, t)
gradually melts to the lower surface everywhere except
for a shrinking region near the origin that sticks to the
upper surface. The peak seen in the full q-TDPES on the
other hand comes from εkin(qi, t), plotted in the lower left
panel, which gets sharper and sharper as the photon is
emitted. Mathematically, this structure follows from the
change in the conditional-dependence of Φq near qi = 0,
as the electronic state associated with qi = 0 remains
on the upper qBO surface while away from q = 0, in a
shrinking region, the electronic state is associated with
the lower surface. This gets sharper as χ(qi = 0, t) gets
smaller and smaller there. One can show from the ana-
lytic solution, that, in the long-time limit, the surface at
qi = 0 grows exponentially with t at a rate determined
by Γ , while for q 6= 0, εkin(qi 6= 0, t→∞)→ 0.

These features of εwBO and εkin are very similar for
both the cross-section that cuts along the resonant mode
(Fig. 3) and that cutting along the slightly off-resonant
(Fig. 4). The remaining component of the q-TDPES, εGD

is much smaller than the other components, and has a
different structure in the two cases. In fact, it is straight-
forward to show from the analytic solution that εGD(qi =
0, t) is independent of t, and that uniformly shifting
εGD(qi, t) so that εGD(qi = 0, t) ≡ 0 yields εGD(qi 6= 0, t�
Γ ) → ω0 − ωi for qi large. That is, there is a symmetric
step-like feature in εGD, of the size of the difference in the
mode frequency of interest and the resonant mode, and
as t gets larger, this feature sharpens.

Thus, we can see that in the Wigner-Weisskopf limit,
the potential driving the photonic modes deviates signif-
icantly from its initial harmonic form during the decay,
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Fig. 3. Wigner-Weisskopf model, looking on-resonance ω0 =
ωk. The top left panel shows the decay AΦ(t), where the differ-
ent colored dots depict the times of the different time snapshots
of the dynamics shown within this plot. The middle and right
panels along the top show the photonic distribution |χ(q, t)|2
and each coefficient of the conditional electronic distribution
|C(1)(qi; t)|2 (dashed), |C(2)(qi; t)|2 (solid) at the corresponding
time snapshots. The middle and lower panels show the differ-
ent components of the ε(qi; t) as well as the full scalar potential
at the given time snapshots. In the middle panels, the qBO sur-
faces are shown in blue for reference.

although once again becoming harmonic almost every-
where (except at q = 0) in the long-time limit. The atom-
photon correlation is required to capture these effects,
and if one wanted to model this exact q-TDPES, the con-
ditional dependence of the electronic amplitude is crucial
to include.

3.2 Two-Level System Coupled to a Single Resonant
Mode

We now turn to the other limit, and tune the cavity so
that there is just one mode that couples appreciably to the
two-level atom, with a mode frequency that is resonant
with the atomic energy difference.

The q-BO surfaces can be easily found by diagonaliz-
ing HqBO of Eq. (34), keeping only one mode with ωα =
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Fig. 4. As for Figure 3 but looking along the slightly-off resonant
mode in the Wigner-Weisskopf model.

ω0 in the field:

εqBO(q) =
1

2
ω2

0q
2 ∓

√
ω2

0/4 + (degλω0)2q2 (50)

For couplings λdeg � 1/2, the q-BO surfaces are approx-
imately parallel and harmonic except at large q (see also
Ref. [33]). So in this case if the initial photonic state is a
vacuum, then the ensuing dynamics is driven by a largely
harmonic potential, without much perturbation from the
atom, except at larger q. Deviations from parallel har-
monic surfaces, and hence non-qBO behavior, occurs at
larger q and as the coupling increases. We will investi-
gate the exact q-TDPES driving the photonic dynamics
for three different coupling strengths, (dl = {0.01, 0.1, 0.4})
and will include a plot of the two qBO surfaces with our
results for comparison with the exact q-TDPES.

In Figure 5 we plot the exact q-TDPES for coupling
strength degλ = 0.01 beginning with the atom in the ex-
cited BO level, multiplied by the photonic ground-state.
On the upper panel (left) we plot the autocorrelation func-
tion

AΨ (t) =

∣∣∣∣∫ dq
−→
Ψ †(q, 0) ·

−→
Ψ (q, t)

∣∣∣∣2 (51)
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Fig. 5. The ε(q, t) for the excited BO initial state and coupling
strength dl = 0.01. The top left panel shows AΦ(t), where the
different colored dots depict the times of the dynamics within
this plot. The top middle and right plots show the photonic
distribution |χ(q, t)|2 and the electronic coefficients in the BO
basis, |C(1)(qi; t)|2 (dashed), |C(2)(qi; t)|2 (solid), for the time
snapshots shown. The middle and lower panel show the q-
TDPES ε(q, t) and its decomposition into components for the
given time snapshots. The q-BO surfaces are shown in the mid-
dle panel in blue for reference.

to indicate the approximate periodicity of the system dy-
namics. Comparing with Figures 6 and 7, we find a de-
crease of the approximate period with the increase of cou-
pling strength until the periodicity breaks down for the
strong coupling dl = 0.4. Further, we observe from Fig 8
that the periodicity depends on the choice of initial state,
as the time for one period decreases if we choose the
initial state to be fully factorized. The weakest coupling
strength we have chosen is on the borderline of being in
the Rabi regime [57], while the strongest is far from it.

The photonic distribution (middle) and conditional
electronic coefficients (right) are shown in the topmost
panel of Figs. (5) - (10). The photonic system begins in the
vacuum state, while the electronic distribution starts, as
defined in the initial condition, with an electron in the ex-
cited state and no electron in the ground-state, either BO
or field-free. The initial coefficients are C(1)(q, 0) = 1 and
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Fig. 6. As in Figure 5 but with coupling strength degλ = 0.1.

C(2)(q, 0) = 0 when beginning in the BO states. When
beginning in the fully factorized state, these coefficients
deviate from these uniform values, especially for larger
q, with deviation increasing with the coupling strength.

The dynamics depends significantly on whether the
initial state is the correlated qBO state (Figs. 5–7) or a
fully factorized one (Figs. 8–10). The fully factorized ini-
tial state would be the physical one when an excited atom
is instantaneously brought into a closed cavity and just
then its dynamics is studied, while the excited qBO state
results when there is initially an external dissipative cou-
pling together with an applied resonant field to maintain
the atom in that excited state before the dynamics is ex-
amined. We turn now to the dynamics and to the struc-
ture of the exact q-TDPES for this latter case first.

After some time we see a transition of the electron
from the excited state to the ground-state as indicated by
these coefficients. We observe that the transfer begins ear-
lier for higher values of q and then is followed by lower
q-values, but again the conditional amplitude at q = 0
sticks to the upper surface at all times in all cases as there
is no coupling for q = 0. The q-dependence of these co-
efficients has a significant role in shaping the structure
of the q-TDPES that we will shortly discuss. At the same
time, the probability of photon emission increases, as in-
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Fig. 7. As in Figure 5 but with coupling strength degλ = 0.4.

dicated by the morphing of the initial gaussian in χ(q, t)
towards its first-excited profile. For the weakest coupling
strength after a half period, the system begins to move
back approximately to its initial state, as the photon is
reabsorbed and atom becomes excited again. For strong
coupling dl = 0.4 the periodic character is lost and we
find more wells and structure appearing in the
displacement-field density profile. With such strong cou-
pling the qBO surfaces are quite distorted from a pure
harmonic, as evident in the plot (blue lines in the middle
panel), and the anharmonicity brings more frequencies
into play. A one-photon state that is associated with the
lower q-BO surface has a wider profile with density max-
ima further out than a one-photon state associated with
the upper surface would have, for example. In fact the
character of the coupled cavity-matter system becomes
quite mixed, as is evident from the conditional electronic
coefficients shown on the right, and as one goes along
the photonic coordinate q one associates with different
superpositions of the electronic states. This leads to inter-
esting structure in the exact q-TDPES, that, when decom-
posed in terms of the q-BO surfaces, has components that
vary a lot with q (i.e. not just a piecewise combination).

The q-TDPES for initial state prepared in the upper q-
BO state begins with the weighted BO component, εwBO
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Fig. 8. As in Figure 5 with coupling strength degλ = 0.01 but
with the initial purely factorized state.

on top of the upper q-BO surface as expected. For the
weakest coupling, degλ = 0.01, εwBO(q, t) then melts down
to the lower surface over half a cycle, peeling away from
the outer higher q-values first, in a similar way to what
was seen in the Wigner-Weisskopf limit. This potential
approaches the lower surface before returning back to
the upper BO-surface, but the region near q = 0 remains
bound to the upper surface. The time-dependent double-
well structure in the potential is again important in driv-
ing the photon emission. A similar trend is seen for the
stronger coupling 0.1 in Fig. 6, but for the strongest cou-
pling degλ = 0.4, εwBO(q, t) shows a more complicated
correlation in q, with structures mirroring those in the
displacement-field density discussed above. As for the
kinetic component, for the weaker couplings, a peak struc-
ture in εkin(q, t) develops that grows and narrows dur-
ing the photon emission stage, similar to what was seen
in Wigner-Weisskopf, but this then reverses during the
reabsorption here. Again for the stronger coupling, the
structure is more complicated, mirroring the more com-
plicated dynamics. The gauge-dependent part, εGD is gen-
erally a smaller contribution to the total q-TDPES com-
pared to the other components, but again we see step-like
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Fig. 9. As in Figure 6 with coupling strength degλ = 0.1 but
with the initial purely factorized state.

features for the weaker couplings, and more complicated
dynamics for the strongest coupling.

For the fully factorized initial states, although the pho-
tonic field still begins in the vacuum state, the electronic
state is not purely in the upper BO surface; the electronic
state associated with larger q has already some compo-
nent in the ground-state. So at these larger values of q,
the initial εwBO(q, 0) surface dominates the q-TDPES and
is anharmonic from the very start, lying intermediate be-
tween the upper and lower q-BO surface. In the weak
coupling case, the differences are only large at values of q
much larger than shown in the plot, and these are physi-
cally unimportant given there is very little photonic field
probability there; hence Fig. 5 and 8 are almost identical.
For strong couplings, comparing Fig 7 and 10 shows that
the q-TDPES has a tamer structure for the fully-factorized
initial state than for the correlated q-BO initial state, espe-
cially at larger q; this is likely because less energy is avail-
able at these larger q for the system to exchange between
the atomic and photonic systems because the atomic state
correlated with large q is not completely in its excited
state initially.

To summarize: At time zero the exact q-TDPES starts
on the upper q-BO-surface, which, depending on cou-
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Fig. 10. As in Figure 7 with coupling strength degλ = 0.4 but
with the initial purely factorized state.

pling strength and choice of initial state, ranges from ly-
ing directly on top of the upper q-BO surface (weaker
coupling and with q-BO initial state), to in between the
two q-BO surfaces with deviations from the upper be-
ing larger for larger q (stronger coupling, or fully fac-
torized initial state). After some time the potential starts
to melt down onto the lower BO-surface, first starting
at higher q-values and then followed by lower q-values,
with peak structures developing in the interior region.
Around q = 0 the kinetic-component dominates, which
leads to an increasing and after half a period decreasing
peak. For stronger coupling we observe several peak fea-
tures in the potential and significant deviations from the
curvature of the q-BO surfaces throughout q small con-
tribution below the lower BO-surface; the deviations at
larger q arise from the gauge-dependent component.

4 Summary and Outlook

We have introduced here an extension of the exact- fac-
torization approach, that was originally derived for cou-
pled electron-nuclear systems, to light-matter systems in
the non-relativistic limit within the dipole approximation.
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We have presented different possible choices for the fac-
torization but in this work have focussed on the one where
the marginal is chosen as the photonic system and the
matter system is then conditionally-dependent on this.
This choice is particularly relevant when one is primarily
interested in the the state of the radiation field since the
exact factorization yields a time-dependent Schrödinger
equation for the marginal, while the conditional is de-
scribed by an equation with an unusual matter-photon
coupling operator. The equation for the marginal is, in a
sense, simpler than that in the electron-nuclear case, since
the vector potential, q-TDVP, appearing in the equation
can always be gauged away into a scalar potential, the q-
TDPES. We have studied the potential appearing in this
equation in a gauge where the q-TDVP is zero, for a two-
level system coupled to an infinite number of modes in
the Wigner-Weisskopf approximation, and for a two-level
system coupled to a single photonic field mode with a
range of coupling strengths. In all cases we find a very
interesting structure of the potential that drives the pho-
tonic dynamics, and in particular, large deviations from
the harmonic form of the free-photon field. These devia-
tions completely incorporate the effect of the matter sys-
tem on the photonic dynamics. We also studied the effect
of beginning in an initially purely factorized light-matter
state, compared to a q-BO initial state, finding significant
differences for larger coupling strengths in the ensuing
dynamics, implying that in modelling these problems a
careful consideration of the initial state is needed.

To use the exact factorization for realistic light-matter
systems, approximations will be needed, since solving
the exact factorization equations is at least as computa-
tionally expensive as solving the Schrödinger equation
for the fully coupled system. The success of such an ap-
proximation depends on how well the q-TDPES is mod-
elled. The components of the exact q-TDPES beyond the
weighted BO depend significantly on the q-dependence
of the conditional probability amplitude; approximations
that neglect this dependence (Ehrenfest-like) will likely
lead to errors in the dynamics. It has been shown recently
that mixed quantum-classical trajectory methods that are
derived from the exact factorization approach can cor-
rectly capture decoherence effects [58,59,60]. Since pho-
tons are intrinsically non-interacting and therefore even
simpler to treat than nuclei, we expect in analogy to the
electron-nuclear case that semiclassical trajectory meth-
ods derived from systematic and controlled approxima-
tions to the full exact factorization of the light-matter wave-
function will be able to capture decoherence effects be-
yond the Ehrenfest limit for light-matter coupling. This
will be subject of future investigations.
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dar, Nature Photonics (2016)

10. C. Riek, D.V. Seletskiy, A.S. Moskalenko, J.F. Schmidt,
P. Krauspe, S. Eckart, S. Eggert, G. Burkard, A. Leitenstor-
fer, Science 350, 420 (2015)

11. A.S. Moskalenko, C. Riek, D.V. Seletskiy, G. Burkard,
A. Leitenstorfer, Phys. Rev. Lett. 115, 263601 (2015)

12. J. George, T. Chervy, A. Shalabney, E. Devaux, H. Hiura,
C. Genet, T.W. Ebbesen, Physical Review Letters 117,
153601 (2016)

13. T. Byrnes, N.Y. Kim, Y. Yamamoto, Nature Physics 10, 803
(2014)

14. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeam-
brun, J. Keeling, F. Marchetti, M. Szymańska, R. Andre,
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