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Supplementary Text 

 

Section S1. Global fit analysis 

 

To describe the significant parameters of the ∆R/R response, we performed a global fit analysis, 

by selecting nine temporal traces at different photon energies. Since our experimental data were 

measured up to 1 ns, our global fit analysis covered this long temporal window. The temporal 

signal comprises two contributions: i) the incoherent response caused by electron-hole cooling 

and recombination; and ii) The strongly damped sinusoidal modulation caused by the 

propagation of coherent acoustic phonons. These two contributions display very different 

weights across the probed spectral range: The incoherent signal is peaked around the c-axis 

exciton feature at 4.26 eV, whereas the coherent signal shows its maximum amplitude around 

4.11 eV and decreases its weight with increasing probe photon energy. A satisfactory fit could be 

obtained by using two exponential functions (with relaxation time 42 ps and 270 ps) and a 

damped sinusoidal term convolved with a Gaussian response accounting for the temporal shape 

of the pump pulse. 

 

Section S2. Generation mechanism 

 

To quantify the electronic contribution to the photoinduced stress (σDP), we rely on the following 

expression 
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Eq. S1 

 

where δN(k) is the change of the electronic concentration at level k and dEk/dη is the 

deformation potential parameter. Given that after 50 fs (i.e. a much faster timescale than the 

detected coherent acoustic phonon period) the carriers have cooled to the bottom of the 

respective bands at Γ and ∼ X (16), the expression can be simplified as 
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Eq. S2 

 

 

where N is the photoinduced carrier concentration, B is the bulk modulus and de (dh) is the 

electron (hole) deformation potential parameter. 

 

However, due to the extremely fast intraband relaxation of less than 50 fs (16), the electronic 

pressure can compete with the phononic pressure for the coherent acoustic phonon generation 

process. The phononic contribution to the photoinduced stress (σTE) can be written as 

 

 𝜎𝑇𝐸 = −𝛼𝑉𝐵Δ𝑇𝐿 = −𝛼𝑉𝐵𝑁 𝐸𝑒𝑥𝑐 𝐶𝐿⁄  
 

Eq. S3 



where αV is the volumetric thermal expansion coefficient. For a tetragonal crystal, αV = 2α⊥+α∥, 

where α⊥ and α∥ are the in-plane and the out-of-plane thermal expansion coefficients, 

respectively. ∆TL is the lattice temperature, CL is the lattice heat capacity per unit volume and 

Eexc is the excess energy with respect to the optical bandgap energy. The ratio σDP/σTE reads 
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Eq. S4 

 

Substituting the computed values of dh and de yields σDP /σTE = -27.47. Thus, we conclude that 

the deformation potential mechanism provides the dominant contribution to the generation of the 

observed coherent acoustic phonons. Importantly, this result can be obtained only with a reliable 

estimate of the deformation potentials, as the one provided at the GW level. In contrast, when 

relying on the generalized-gradient approximation level of density-functional theory (36), the 

value σDP/σTE = -4.2 is found. 

 

Section S3. Phenomenological description of the observed exciton renormalization 

 

In this section, we describe the origin of the large modulation of the exciton peak energy and 

oscillator strength using simple phenomenological arguments. 

 

The modulation of the exciton peak energy arises from the combination of a large photoinduced 

strain (η0 = 0.1-0.2%) and a large deformation potential parameter. It can be shown that the 

exciton shift can be written as 

 

 𝛿𝐸 = 𝐵(𝑑𝑒 + 𝑑ℎ)𝜂0~30 − 40 𝑚𝑒𝑉 Eq. S5 

 

which is in very good agreement with the experimental observations. However, we remark that 

this simple calculation involves only one energy within the exciton band. A full calculation over 

the whole probed energy range is possible only through our many-body perturbation theory 

calculations (Fig. 3B). In contrast, the modulation of the exciton peak amplitude depends on the 

photoelastic coefficients, which in our work have been computed within the Bethe-Salpeter 

equation (BSE) formalism. These photoelastic coefficients reach values up to 100 (Fig. 3C), 

which are two orders of magnitude larger than those found in GaAs (46). A comparison can be 

provided only with a full calculation, but the relative orders of magnitude can be appreciated by 

simply estimating the strain-induced change in the refractive index at the exciton resonance. For 

that, one can simply estimate the phonon-induced change of the real part of the refractive index n 
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Eq. S6 

 

In our experiments, we have observed around 5% change in the reflectivity (δR/R), which is in 

the same scale. Also our BSE calculation confirms that the variation is of the order of 3.5%. 



Section S4. Perturbative model for coherent acoustic phonons 

 

To simulate the change in the sample reflectivity produced by the propagating acoustic strain 

(δR/R), we rely on the perturbative approach developed in Ref. (46). Specifically, we make use 

of an expression that describes the time-dependent spatial overlap integral of the longitudinal 

coherent acoustic phonon strain field along the [010] direction (η(z, t)) with the back scattered 

light probe electric field (34) 
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Eq. S7 

 

where Re denotes the real part, z = 0 defines the TiO2 surface, k0 is the probe light wave vector 

in vacuum and ñ = n1 + in2 is the complex refractive index. In this expression, the exciton-

phonon coupling parameter is represented by the photoelastic coefficient dñ/dη, which can be 

written as 
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Eq. S8 

 

Here, the quantity dE/dη represents the deformation potential parameter and it is assumed to be 

independent of the probe photon energy and the strain itself. We first utilized the traditional 

approach of ultrafast acoustics by computing the above expression over the probed spectral 

range. Here, we assumed the pulse strain profile to have a bipolar shape, as the carrier diffusion 

is negligible during the timescale of the detected acoustic field and the time window over which 

the phenomena are observed is too short for the acoustic pulse to lead to N-wave or to soliton 

formation. The sound velocity v = 9100 m/s was taken from the literature (47), the deformation 

potential parameter is computed from ab initio calculations, and the terms dn1/dE and dn2/dE are 

generated from our experimental steady-state optical data (fig. S1A). The results, shown in fig. 

S1B, have a poor agreement with the measured temporal traces. 

 

In order to account for acoustic nonlinearities, we employed a more advanced approach, which 

relied on the direct involvement of many-body perturbation theory calculations in the evaluation 

of the photoelastic coefficients dn1/dη and dn2/dη themselves (as described in detail in §S4). The 

results are shown in Fig. 3D of the main text, in which we compare the experimental traces with 

the simulated signal from the coherent acoustic phonon. Here, we only had to multiply by -1 the 

traces above 4.30 eV in order to match the experimental curves. This implies that our refined 

calculation does not reproduce the phase of the signal in a specific portion of the spectrum, 

which is due to an only partial agreement between the theoretical photoelastic coefficient and the 

experimental one. Figure S2 shows the computed acoustic response in an enlarged scale (dotted 

lines), together with its fit to a damped sinusoidal function (solid lines). The frequency extracted 

from the fit to the computed traces are shown in Fig. 2E of the main text. 



Section S5. Additional many-body perturbation theory calculations 

 

We solved the BSE on top of GW electronic structure calculations to compute the 

electrodynamic properties of pristine anatase TiO2. Figure S3A,B shows the real and imaginary 

part of the dielectric function calculated in the case of the unstrained unit cell (blue curves), and 

in the presence of a 0.2% tensile (red curves) and compressive (green curves) strain along the 

[010] axis, respectively. The calculation was performed over the 1.50-5.50 eV energy range, but 

we display the data between 3.50 eV and 5.50 eV for clarity. The resulting photoelastic 

coefficients dn1/dη and dn2/dη for the cases of tensile (red curves) and compressive (green 

curves) strain are presented in fig. S4A,B, as computed with the method of backward and 

forward differences, respectively. We observe an asymmetry between the photoelastic 

coefficients, which suggests a departure from the assumption that the photoelastic coefficients 

are independent of the applied strain direction. This effect can be understood by considering a 

Taylor expansion to the complex refractive index ñ 
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Eq. S9 

 

We note that if the strain η changes its sign (compression-expansion), then the existence of non-

vanishing second-order term explains the asymmetric variation of the refractive index (∆ñ = ñ - 

ñ0) for compression/expansion. We also verified that the solution of the BSE on top of GW 

electronic structure calculations is necessary to reproduce our experimental results. To this aim, 

we computed the optical properties of an equilibrium (unstrained) and of a strained anatase TiO2 

unit cell in the absence of excitonic correlations, i.e. at the random-phase approximation (RPA) 

level on top of the same GW electronic structure calculations. Figure S5A shows the ε1c, ε2c in 

the case of the unstrained and in presence of the strain along the [010] axis. Thereafter, we 

compared these results with those obtained at the BSE level of theory. Figure S5B shows that ε2c 

in the RPA-GW scheme features a large energy gap, which does not find agreement with the 

experimental findings. These results are in accordance to the calculations reported in our 

previous study (7). Finally, in fig. S5C,D, we compare the photoelastic coefficients dn1/dη and 

dn2/dη within the two levels of theory, and observe that their shape and magnitude undergo a 

strong renormalization when excitonic effects are taken into account. Importantly, our 

experimental results can be reproduced just within the BSE-GW level of theory. 

  



Fig. S1. Traditional approach of ultrafast acoustics applied to anatase TiO2. (A) Energy 

derivatives of the real and imaginary parts of the refractive index, as obtained from our 

spectroscopic ellipsometry measurements at RT. (B) Transient acoustic response at different 

probe photon energies (solid lines), as simulated with the traditional approach of ultrafast 

acoustics (i.e. making use of the quantities reported in fig. S1A). The dotted lines are the 

experimental data. 
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Fig. S2. Simulation of the transient acoustic signal. Computed acoustic response (dotted 

lines), together with its fit to a damped sinusoidal function (solid lines). The probe photon 

energies are indicated in the labels. 
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Fig. S3. Many-body perturbation theory calculations on the strained unit cell. Calculated 

(A) real and (B) imaginary part of the dielectric function in the BSE-GW scheme for the 

equilibrium unit cell (blue curve) and in the presence of a 0.2% tensile (red curve) and 

compressive (green curve) strain. 
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Fig. S4. Calculation of the photoelastic coefficients. Calculated (A) real and (B) imaginary part 

of the photoelastic coefficient in the presence of a 0.2% tensile (red curves) and compressive 

(green curves) strain. The red (green) curves have been obtained using the method of the 

backward (forward) differences. 
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Fig. S5. Comparison between the RPA-GW and BSE-GW results. (A) Calculated real 

(dashed lines) imaginary (solid lines) parts of the dielectric function in the RPA-GW scheme for 

the equilibrium (blue curve), strained (red curve) and compressed (green curve) unit cell. (B) 

Comparison between the imaginary part of the dielectric function calculated in the RPA-GW 

(red curve) and BSE-GW (blue curve) schemes for the unstrained unit cell. (C) Calculated real 

part of the photoelastic coefficient in the RPA-GW (red curve) and BSE-GW (blue curve) 

schemes. (D) Calculated imaginary part of the photoelastic coefficient in the RPA-GW (red 

curve) and BSE-GW (blue curve) schemes. 
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