
ar
X

iv
:1

80
2.

09
89

6v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

0 
Ju

n 
20

18

Current fluctuations in periodically driven systems

Andre C Barato1 and Raphael Chetrite2

1 Max Planck Institute for the Physics of Complex Systems,
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Abstract. Small nonequelibrium systems driven by an external periodic protocol

can be described by Markov processes with time-periodic transition rates. In general,

current fluctuations in such small systems are large and may play a crucial role.

We develop a theoretical formalism to evaluate the rate of such large deviations in

periodically driven systems. We show that the scaled cumulant generating function

that characterizes current fluctuations is given by a maximal Floquet exponent.

Comparing deterministic protocols with stochastic protocols, we show that, with

respect to large deviations, systems driven by a stochastic protocol with an infinitely

large number of jumps are equivalent to systems driven by deterministic protocols.

Our results are illustrated with three case studies: a two-state model for a heat engine,

a three-state model for a molecular pump, and a biased random walk with a time-

periodic affinity.

1. Introduction

Periodic external control is used to operate a wide variety of thermodynamic machines

that includes traditional idealized engines. Modern experimental examples of such

machines are molecular pumps [1] and micro-sized heat engines [2]. For these small

systems, thermodynamic currents, such as the work exerted on a molecular pump or the

heat flow in a heat engine, display thermal fluctuations that can be relatively large. For

instance, the prominent fluctuation theorem is a symmetry related to these fluctuations.

Stochastic thermodynamics [3] is an emerging field that applies to small systems

with large fluctuations. Within this theory, periodically driven systems are modeled as

Markov processes with time-dependent transition rates that are periodic. Such modeling

has been used in several works that include: models for stochastic resonance [4], linear

response theory for periodically driven systems [5–11], theoretical studies for small

heat engines far from equilibrium [12–15], necessary conditions for the generation of

a current in a molecular pump [16–20], a mapping relating periodically driven systems

with systems driven by a fixed thermodynamic affinity [21,22], and 2.5 large deviations

for Markov process with time-periodic generators [23,24]. However, a generic formalism

to evaluate the rate of large deviations of single currents is still not available.

http://arxiv.org/abs/1802.09896v2
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Periodically driven systems reach a limiting periodic state that can be contrasted

with nonequilibrium stationary states, which are described by Markov processes with

constant transition rates. Physically, this second case corresponds to a system driven

by a fixed thermodynamic affinity. For nonequilibrium stationary states, a generic

formalism to quantify large deviations of currents is available: The so called scaled

cumulant generating function (SCGF) is determined by the maximum eigenvalue of a

tilted generator [25, 26]. This formalism can be used to calculate the SCGF of systems

subjected to a potential that is periodic in space [27], which is not the case for a time-

periodic potential.

In this paper, we develop a formalism to determine large deviations in periodically

driven systems. We show that a fundamental (or monodromy) matrix from Floquet

theory [28–31], which is related to a time-dependent tilted generator, quantifies current

fluctuations. Specifically, we show that this fundamental matrix is a Perron-Frobenius

matrix and that its maximal eigenvalue gives the SCGF.

Deterministic protocols are commonly used in the study of periodically driven

systems. Nevertheless, such systems can also be driven by a cyclic stochastic protocol

that mimics the periodicity of a deterministic protocol [11, 32–34]. In this case, the

system and protocol together form a bipartite Markov process with time-independent

transition rates. For stochastic protocols, current fluctuations can then be analyzed

within the stationary state of this bipartite Markov process. We prove the equivalence

of current fluctuations between systems driven by a deterministic protocol and systems

driven by a stochastic protocol with an infinitely large number of jumps. Therefore, we

show that a periodic protocol can be seen as a particular limit of a stochastic protocol.

Illustrations of our results are performed with three models. An exactly solvable

model for a heat engine, a model for molecular pump that we use to compare theory with

numerical simulations, and one model for a biased random walk with a time-periodic

affinity that has a particularly simple expression for the SCGF.

The paper is organized in the following way. In Section 2, we define fluctuating

currents in Markov processes with time-periodic transition rates. The formalism for the

calculation of the SCGF is developed in Section 3. In Section 4, we analyze three case

studies. Section 5 contains the results for a stochastic protocol. We conclude in Section

6. In Appendix A, we discuss fluctuating currents such as work, which can be written

in a form that is apparently different from the generic currents we consider in the main

text. We extend our results to diffusion processes in Appendix B. An exact calculation

of the SCGF for systems with two states and a piecewise constant protocol is presented

in Appendix C.

2. General setup and mathematical definitions

We consider a Markov process with a finite number of states Ω. The time-dependent

transition rate from state i to state j at time t is denoted by wij(t). These transition
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rates are time-periodic with a period τ , i.e.,

wij(t+ τ) = wij(t). (1)

In the theoretical framework of stochastic thermodynamics, which we use in our

illustrative examples, the transition rates fulfill the restriction that if wij(t) 6= 0 then

wji(t) 6= 0. However, our mathematical results (in Section 3 and Section 5) do not

rely on this assumption. A physical interpretation for these transition rates based on

the generalized detailed balance relation from stochastic thermodynamics can be found

in [8, 10, 11].

The associated master equation reads

d

dt
P (i, t) =

∑

j

[P (j, t)wji(t)− P (i, t)wij(t)] , (2)

where P (i, t) is the probability to be in state i at time t. This equation can be written

in the vectorial form
d

dt
|Pt〉 = Lt |Pt〉 , (3)

where |Pt〉 is a vector with components P (i, t) and Lt is the stochastic matrix defined

as

[Lt]ji ≡ (1− δij)wij(t)− δij
∑

k

wik(t). (4)

A stochastic trajectory from time 0 to time T = nτ is a sequence of jumps and

waiting times, which is denoted by AT
0 . If a jump takes place at time t, the state before

the jump is denoted a−t and the state after the jump is denoted a+t . A fluctuating current

is a functional of the stochastic trajectory defined as

X [AT
0 ] ≡

∑

0≤t≤T

θa−t ,a+t
(t). (5)

For a current, the increments θi,j(t) are anti-symmetric, i.e.,

θi,j(t) = −θj,i(t). (6)

Fluctuations of this current in the long time limit are characterized by the SCGF

λ(z) ≡ lim
T→∞

1

T
ln〈ezX〉 =

1

τ
lim
n→∞

1

n
ln〈ezX〉, (7)

where the brackets mean an average over stochastic trajectories. The average current J

and diffusion coefficient D are given by

J ≡ lim
T→∞

1

T
〈X〉 = λ′(0) (8)

and

D ≡ lim
T→∞

1

T

(
〈X2〉 − 〈X〉2

)
= λ′′(0), (9)
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respectively. Similarly, higher order moments associated with X can be obtained by

taking higher order derivatives of λ(z) at z = 0.

In the long time limit, the system reaches an invariant limiting periodic distribution

P inv
i (t) = P inv

i (t + τ). The average current can be written in terms of this distribution

as

J =
1

τ

∫ τ

0

∑

i<j

θij(t)
[
P inv
i (t)wij(t)− P

inv
j (t)wji(t)

]
dt, (10)

where
∑

i<j means a sum over all links with non-zero transition rates in the network of

states.

An important observable in stochastic thermodynamics is the work done on the

system due to the periodic variation of energy of the system. This fluctuating current

is typically written as an integral of a function over the time interval T . However, as

we show in appendix Appendix A, observables such as work can also be written in the

form given by Eq. (5).

3. Floquet theory for the SCGF

3.1. General theory

The joint probability that the current is X and the system is in state i at time t

is written as P (i, X, t), whereas the vector |Pt(X)〉 has components P (i, X, t). The

Laplace transform of |Pt(X)〉 is given by

∣∣∣P̃t(z)
〉
≡
∑

X

eXz |Pt(X)〉 . (11)

The average 〈ezX〉 in Eq. (7) is related to this Laplace transform in the following way,

〈ezX〉 =

Ω∑

i=1

P̃ (i, z, T ). (12)

From the master equation (2) and the tilted generator

[Lt(z)]ji ≡ (1− δij)wij(t)e
zθijt − δij

∑

k

wik(t), (13)

we obtain
d

dt

∣∣∣P̃t(z)
〉
= Lt(z)

∣∣∣P̃t(z)
〉
. (14)

Using the periodicity of Lt(z), the formal solution of this equation at time T = nτ is

∣∣∣P̃T (z)
〉
=←−exp

(∫ T

0

Lt(z)dt

) ∣∣∣P̃0(z)
〉
=

[
←−exp

(∫ τ

0

Lt(z)dt

)]n ∣∣∣P̃0(z)
〉
≡M(z)n

∣∣∣P̃0(z)
〉
,

(15)
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where
∣∣∣P̃0(z)

〉
is the initial condition and ←−exp represents a time-reversed ordered

exponential. This ordered exponential can be defined as the solution of the differential

equation
d

dt
←−exp

(∫ t

0

Lt′(z)dt
′

)
= Lt(z)

←−exp

(∫ t

0

Lt′(z)dt
′

)
, (16)

where the initial condition is the identity matrix.

The matrix

M(z) ≡ ←−exp

(∫ τ

0

Lt′(z)dt
′

)
(17)

is a central object that is known as fundamental matrix in Floquet theory [31]. The

eigenvalues of this matrix are denoted by ρk(z), the right eigenvectors by |rk(z)〉, and

the left eigenvectors by 〈lk(z)|. The fundamental matrix can then be written as

M(z) =

Ω∑

k=1

ρk(z) |rk(z)〉 〈lk(z)| . (18)

From Eq. (15), by Setting T = τ , imposing the initial condition a0 = i, and restricting

to trajectories that finish at state aT = j, we obtain

〈ezXδaT ,j|a0 = i〉 = [M(z)]ji. (19)

This equation shows that all elements of the fundamental matrix M(z) are positive.

Hence, from the Perron-Frobenius theorem, the matrix M(z) has a maximal real

eigenvalue defined as ρ1(z). This fact together with the definition of the SCGF in

Eq. (7), Eq. (12), Eq. (15), and Eq. (18) lead to the main result

λ(z) ≃
1

τ
ln ρ1(z), (20)

where the symbol ≃ means asymptotic equality in the limit n → ∞ and τ−1 ln ρ1(z)

is the maximal Floquet exponent. The SCGF λ(z) can be evaluated by first solving

Eq. (16) and then calculating the maximal eigenvalue ofM(z). For z = 0 the matrix

elements in Eq. (19) are transition probabilities, therefore, the maximum eigenvalue of

the matrix is ρ1(0) = 1, which implies λ(0) = 0. It is worth noting that Eq. (20) is

not restricted to currents. This result is also valid for any functional of the stochastic

trajectory with the form given in Eq. (5) that has increments that do not fulfill the anti-

symmetry in Eq. (6). We point out that the SCGF has been obtained as a maximum

Floquet exponent for specific two-state models in [11, 35].

This relation between SCGF and maximal Floquet exponent is also valid for

diffusion processes, as shown in Appendix B. For piecewise protocols, transition rates

wij(t) are piecewise. If the external protocol is piecewise constant, with the period

divided into L pieces and τ = τ0 + τ1 + . . .+ τL−1, the matrixM(z) defined in Eq. (16)

takes the form

M(z) = exp
(
L̃L−1(z)τL−1

)
. . . exp

(
L̃1(z)τ1

)
exp
(
L̃0(z)τ0

)
, (21)



Current fluctuations in periodically driven systems 6

where L̃k(z) is the constant modified generator during the interval τk. In this last

equation, it is assumed that the increments of the current are also piecewise constant.

The SCGF can then be obtained from the maximal eigenvalue of this matrix. For a

piecewise protocol that is not constant, the expression of M(z) becomes a product of

ordered exponentials.

3.2. Expressions for average current and diffusion coefficient

The average current J , diffusion coefficient D, and higher order cumulants can be

obtained without explicit evaluation of the maximum eigenvalue associated withM(z)

in the following way. A similar method for non-equilibrium stationary states has been

introduced by Koza [26] (see also [36, 37]). The characteristic polynomial associated

withM(z) is written as

det (xI −M(z)) =

Ω∑

m=0

cm(z)x
m, (22)

where I is the identity matrix. The maximum eigenvalue ρ1(z) is a root of this

polynomial, which leads to the equation

Ω∑

m=0

cm(z) [ρ1(z)]
m = 0. (23)

Taking a derivative with respect to z and setting z = 0 we obtain

J =
1

τ

ρ′1(0)

ρ1(0)
= −

1

τ

∑Ω
m=0 c

′
m(0)∑Ω

m=0mcm(0)
, (24)

where we used Eq. (8) and ρ1(0) = 1. Taking a second derivative with respect to z of

Eq. (23) and setting z = 0 we obtain

D =
1

τ

{
ρ′′1(0)− [ρ′1(0)]

2
}

= −

∑Ω
m=0 c

′′
m(0) + 2ρ′1(0)

∑Ω
m=0mc

′
m(0) + [ρ′1(0)]

2∑Ω
m=0m

2cm(0)

τ
∑Ω

m=0mcm(0)
, (25)

where we used Eq. (9) and ρ1(0) = 1. Using these expressions, J andD can be evaluated

directly from the coefficients of the characteristic polynomial associated with M(z).

Taking higher order derivatives lead to similar expressions for higher order cumulants.

4. Case studies

4.1. Heat engine

We introduce an exactly solvable two-state model for a heat engine with a piecewise

protocol, which is illustrated in Fig. 1(a). This model is similar to a model for a heat
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engine with a stochastic protocol analyzed in [11]. One of the states has energy 0 and

the other state has a higher energy that depends on time. The protocol is divided in

four steps. First, the energy changes from E to E + ∆E at a cold temperature β−1
c .

Second, the temperature changes from β−1
c to the hot temperature β−1

h . Third, the

energy changes back from E + ∆E to E. Fourth, the temperature changes back from

β−1
h to β−1

c . The inverse temperature takes the form

βk = βc[1− Fqh
k], (26)

where Fq ≡ (βc − βh)/βc ≥ 0, h0 = h1 = 0 and h2 = h3 = 1. Physically, Fq is

the thermodynamic affinity associated with the heat current [11] and the temperature

depends on time through the parameter hk. The energy of the state with higher energy

is given by

Ek = E +∆Efk, (27)

where f 0 = f 3 = 0, f 1 = f 2 = 1. The parameter fk gives the time-dependence of the

energy and ∆E is the amplitude of the time-dependent part of the energy.

The time-intervals of the period are set to τ0 = τ2 = τ/2 and τ1 = τ3 = τ ′ → 0,

i.e., the energy changes happens after a time interval τ/2 and the temperature changes

are instantaneous. Hence, the number of pieces of the protocol is reduced from four to

two. The transition rates for this model, which fulfill the generalized detailed balance

relation [3], are set to

w0
+ = we−βcE/2 and w0

− = weβcE/2, (28)

for the first part of the period;

w1
+ = we−βh(E+∆E)/2 and w1

− = weβh(E+∆E)/2, (29)

for the second part of the period. The subscript + indicates a transition rate from the

state with energy zero to the state with energy Ek, whereas the subscript − indicates

the reversed transition rate. The superscript 0 indicates the first half of the the period

and the superscript 1 indicates the second half of the period.

The basic physics of the model is that part of the heat taken from the hot reservoir

is transformed into extracted work, as explained in [11]. Two currents of interest are

the heat current Xq and the work current Xe. The piecewise version of the modified

generator for a generic current reads

L̃k(z) =

(
−wk

+ wk
−e

−zθk

wk
+e

zθk −wk
−

)
, (30)

where k = 0 for the first half of the period and k = 1 for the second half of

the period. The increments for the heat current Xq are defined as θ0q ≡ 0 and

θ1q ≡ βc(E + ∆E). The increments for the work current Xe are defined as θ0e ≡ 0

and θ1e ≡ −1. Hence, we obtain the relation Xq = −βc(E + ∆E)Xe, which with Eq.
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Figure 1. Model and results for a heat engine. (a) Illustration of the model.

The energy levels in blue (red) are associated with the cold (hot) temperature β−1

c

(β−1

h ). (b) SCGF associated with the heat current λq(z) and the work current λe(z).

Parameters are set to ∆E = E = βc = τ = k = 1 and βh = 1/10, which gives

βc(E +∆E) = 2. The heat and work currents are not independent in this model with

their SCGF following the relation λq(z) = λe(−βc(E +∆E)z).

(7) leads to λq (z) = λe (−βc(E +∆E)z) for the SCGF. In other words, for this simple

model there is tight coupling between the work and heat currents, as shown in Fig. 1(b).

The exact calculation of the SCGF for a generic piecewise two-state model, is

presented in Appendix C. For the present model, the SCGF associated with Xq is

λq(z) =
1

τ
ln


f(z) +

√
[f(z)]2 − 4e−(w0+w1)/2

2


 (31)

where

f(z) ≡4e−τ(w0+w1)/4 sinh
(
w0τ/4

)
sinh

(
w1τ/4

)
[q1+q

0
−e

zβc(E+∆E) + q1−q
0
+e

−zβc(E+∆E)]

+ (e−τw0/2q0+ + q0−)(e
−τw1/2q1+ + q1−) + (q0+ + e−τw0/2q0−)(q

1
+ + q1−e

−τw1/2), (32)

w0 ≡ 2w cosh(βcE/2), w
1 ≡ 2w cosh(βh(E +∆E)/2), q0± ≡ w0

±/w
0, and q1± ≡ w1

±/w
1.

The SCGF plotted in Fig. 1(b) is a concave function of z, which is a generic property

of a SCGF, and it becomes linear in z for large z, which is a peculiarity of two-state

models.

4.2. Molecular pump

We now analyze a three-state model for a molecular pump with states i = 1, 2, 3, which

is similar to a model analyzed in [16]. The key phenomena that happens in such pumps,

is that even though there are no fixed thermodynamic affinities, a suitable time-periodic

variation of energies Ei(t) and energy barriers Bi(t) can lead to net rotation in the three

state system. Periodically driven molecular pumps can be realized experimentally with
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Figure 2. Average current J and diffusion coefficient D for the molecular pump. The

black line was obtained from the numerical evaluation ofM(z) and the red dots from

Monte-Carlo simulations. The period is set to τ = 1.

interlocked molecular rings [1]. The transition rates are set to

wii+1 = weEi(t)−Bi+1(t) and wi+1i = weEi+1(t)−Bi+1(t), (33)

where for i = 3 we have i + 1 = 1 and the inverse temperature is β = 1. The energies

are given by

Ei(t) = −1 + cos[2π(t+ (i− 1)/3)/τ ], (34)

and the energy barriers are given by

Bi(t) = cos[2π(t+ (i− 1)/3)/τ ]. (35)

The increment of the fluctuating current of interest is such that it increases by

one if there is a transition in the clockwise direction (1 → 2, 2 → 3, and 3 → 1)

and it decreases by one if there is a transition in the counter clockwise direction. The

time-dependent modified generator for this current reads

Lt(z) =



−w12(t)− w13(t) w21(t)e

−z w31(t)e
z

w12(t)e
z −w21(t)− w23(t) w32(t)e

−z

w13(t)e
−z w23(t)e

z −w31(t)− w32(t)


 . (36)

We calculated the average current J and diffusion coefficient D using Eq. (24) and Eq.

(25), respectively. The fundamental matrixM(z) was evaluated with numerical solution

of Eq. (16). In Fig. 2 we show that both quantities show perfect agreement with results

obtained from Monte Carlo simulations. Note that the sign of the current depends

on the rate constant w that determines the speed of the transitions in relation to the

period τ : for large enough w the current becomes negative. We have used a discrete-

time algorithm for our simulations with a sufficiently small time-step, a continuous-time

algorithm for time-dependent transition rates can be found in [38].
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4.3. Biased random walk with time-periodic affinity

In this Section, we consider a biased random walk on a ring with Ω states driven by a

time-periodic affinity

F (t) ≡ F cos(2πt/τ). (37)

The transition rate for a jump in the clockwise direction is given by

w+(t) = w exp[ψF (t)/Ω], (38)

whereas the transition rate for a jump in the anti-clockwise direction is

w−(t) = w exp[(ψ − 1)F (t)/Ω], (39)

where 0 ≤ ψ ≤ 1. The parameter ψ determines how F (t) influences forward and

backward rates. We consider the current in the ring, which increases by one if a

jump in the clockwise direction takes place and decreases by one if a jump in the

anti-clockwise direction takes place. For example, for Ω = 3 the modified generator

Lt(z) takes the form in Eq. (36) with w12(t) = w23(t) = w31(t) = w+(t) and

w21(t) = w32(t) = w13(t) = w−(t).

This model has the peculiar property that the uniform vector 〈1| is a left eigenvector

of Lt(z), for all t and z, with eigenvalue

λt(z) = −w−(t)− w+(t) + w−(t)e
−z + w+(t)e

z. (40)

Hence, from the Dyson series of the ordered exponential and Eq. (17) for M(z), we

obtain

〈1|M(z) = 〈1| exp

(∫ τ

0

λt(z)dt

)
. (41)

Since 〈1| is a positive vector, from the Perron-Forbenius theorem, it must be the

eigenvector associated with the maximum eigenvalue of M(z), which leads to ρ1(z) =

exp
(∫ τ

0
λt(z)dt

)
. Using Eq. (20), we then obtain

λ(z) = τ−1

∫ τ

0

λt(z)dt. (42)

Explicit evaluation of the above integral leads to

λ(z) = w(1− e−z)[ezI0(ψF0/Ω)− I0(F0(−1 + ψ)/Ω)], (43)

where I0(x) is a modified Bessel function of the first kind. Interestingly, the average

current in this model is given by

J = λ′(0) = w[I0(ψF/Ω)− I0(F (−1 + ψ)/Ω)]. (44)

Even though the thermodynamic affinity integrated over a period is zero, the average

current can be non-zero: J is positive for ψ > 1/2 and negative for ψ < 1/2.
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Figure 3. Comparison between SCGF obtained with the formalism from Section 3

and the right hand side of Eq. (46). These results were obtained for the model from

Section 4.2 with τ = 1 and w = 5.

The expression in Eq. (42) for λ(z) in terms of an integral of the maximum

eigenvalue associated with Lt(z) is valid not only for the above model but for any

current related to a modified generator that fulfils the property

〈1| Lt(z) = 〈1|λt(z), (45)

for all z and t. Furthermore, from Eq. (42), if the property (45) is satisfied, the SCGF

can be written as

λ(z) = τ−1
∑

ij

∫ τ

0

P inv
i (t)[Lt(z)]jidt, (46)

where this equation is valid not only for P inv
i (t) but for an arbitrary probability

distribution. Expression (46) for the evaluation of the SCGF has been proposed in [22]

as a general expression for the SCGF. While it is correct for this peculiar case, in general,

Eq. (46) does not provide the correct SCGF. In Fig. 3, we show that the right hand

side of Eq. (46) is different from the SCGF for the model for a molecular pump from

Section 4.2.

5. Stochastic Protocol

Hitherto we have restricted to the case of a deterministic protocol. In this section,

we consider a system driven by a stochastic protocol, which is cyclic and, therefore,

mimics periodicity. We show that a stochastic protocol with a infinitely large number

of jumps is equivalent to a deterministic protocol with respect to the large deviations

of fluctuating currents.

For a stochastic protocol, the mathematical model is a bipartite Markov process

with time-independent transition rates [11,33]. The bipartite Markov process has Ω×N

states, where N is the number of jumps of the external protocol. A state of the bipartite

Markov process (i, n) is determined by the variable i that identifies the state of the
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system and the variable n = 0, 1, . . . , N − 1 that identifies the state of the external

protocol. The transition rates for a change in the state of the system are defined as

wn
ij ≡ wij(t = nτ/N), (47)

where wij(t) is the transition rate of a corresponding Markov process with time-

dependent transition rates that describes a deterministic protocol.

Since the external protocol is stochastic, there is a transition rate associated with

changes of the state of the protocol from n to n + 1. The reversed transition rate is

zero. From the periodicity of the protocol, for n = N − 1 the protocol transitions back

to n = 0. The transition rate for a change in the protocol is set to N/τ , hence, the

average time for the protocol to complete a cycle is τ .

The stationary distribution of state (i, n) is denoted P n
i , where the dependence on

the total number of jumps N is not shown for a compact notation. The conditional

probability of state i given that the protocol is in state n is P (i|n) = P n
i /P

n, where

P n ≡
∑

i P
n
i = 1/N is the stationary probability that the protocol is at state n. As

shown in [33], in the limit of N →∞, the stationary distribution of the bipartite Markov

process is equivalent to the invariant periodic distribution of the corresponding Markov

process with time-periodic transition rates, i.e., P (i|n)→ P inv
i (t), where τn/N → t.

A stochastic trajectory of the bipartite process, from time 0 to time T ′, is denoted

by (A,Ξ)T
′

0 , where A represents the state of the system and Ξ represents the state of

the protocol. A generic current, analogous to the current in Eq. (5) for a deterministic

protocol, is defined as

XN [(A,Ξ)
T ′

0 ] ≡
∑

0≤t′≤T ′

θ
ξ′t
a′−t ,a′+t

, (48)

where θnij ≡ θij(t = nτ/N). It can be shown that the SCGF associated with this current

can be obtained from the tilted generator L(z) [33], which is a matrix with dimension

N × Ω given by

L(z) =




L0(z)− IN/τ 0 0 . . . IN/τ

IN/τ L τ
N
(z)− IN/τ . . . 0 0

0 IN/τ L 2τ
N
(z)− IN/τ . . . 0

...
...

...
...

...

0 0 0 . . . L (N−1)τ
N

(z)− IN/τ



,

(49)

where I is the identity matrix with dimension Ω and Lnτ
N

is equivalent to the tilted

generator from Eq. (13) with θnij instead of θij(t).

The maximal eigenvalue associated with (49) is written as ΛN(z). We now show

that limN→∞ ΛN(z) = λ(z). The right eigenvector associated with ΛN(z) is written as

~vN(z). From the equation L(z)~vN (z) = ΛN(z)~vN (z) and Eq. (49) we obtain

N

τ

[
vni (z)− v

n−1
i (z)

]
=
∑

j

[
Lnτ

N
(z)
]
ij
vnj (z)− ΛN(z)v

n
i (z), (50)
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where vni (z) are the components of ~vN(z). We omit the dependence of these components

on N for a compact notation. This equation can be written in the form

N

τ

[
|v(z)〉n − |v(z)〉n−1

]
= Lnτ

N
(z) |v(z)〉n − ΛN(z) |v(z)〉n , (51)

where |v(z)〉n is vector with dimension Ω and components vni (z). In the limit N →∞,

we set nτ/N → t′ and |v(z)〉n → |v(z)〉t′ . Since for n = N − 1 the stochastic protocol

jumps back to n = 0, by construction |v(z)〉t′ = |v(z)〉t′+τ . For N → ∞, the vectorial

form of Eq. (51) then becomes

d

dt′
|v(z)〉t′ =

[
Lt′(z)− lim

N→∞
ΛN(z)

]
|v(z)〉t′ . (52)

The formal solution of this equation reads

|v(z)〉t′ = exp
(
−t′ lim

N→∞
ΛN(z)

)
←−exp

(∫ t′

0

Lu(z)du

)
|v(z)〉0 (53)

Using the periodicity of the eigenvector, i.e., |v(z)〉τ = |v(z)〉0 and setting t′ = τ , we

obtain

M(z) |v(z)〉τ = exp
(
τ lim

N→∞
ΛN(z)

)
|v(z)〉τ , (54)

whereM(z) is the fundamental matrix defined in Eq. (15). Since by construction |v(z)〉τ
is positive, from the Perron-Forbenius theorem exp (τ limN→∞ ΛN(z)) is the maximal

eigenvalue associated withM(z), i.e.,

λ(z) = lim
N→∞

ΛN(z). (55)

In Fig. 4 we provide two numerical illustrations, one with the model from Section

4.2 and the other with the model Section 4.3, of the convergence of the SCGF for a

stochastic protocol with increasing N towards the SCGF for a deterministic protocol.

There is no generic inequality between ΛN(z) and Λ(z).

6. Discussion

For systems driven by an external periodic protocol, which are well described by Markov

processes with time-periodic transition rates, large fluctuations of a thermodynamic

current can now be determined with the formalism developed in Section 3. In particular,

the SCGF can be evaluated by calculating the maximum Floquet exponent associated

with the fundamental matrixM(z). Cumulants such as the average current J and the

diffusion coefficient D can also be directly evaluated from this matrix, which provides

a numerical method that can be more efficient than Monte Carlo simulations for small

systems. Mathematically, beyond fluctuating currents, our formalism also applies to

generic observables that count number of jumps with increments that do not have to be

anti-symmetric.
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Figure 4. Convergence of the SCGF associated with an stochastic protocol with N

jumps towards the SCGF associated with a deterministic protocol. (a) Model for a

molecular pump from Section 4.2 with τ = w = 1. (b) Biased random walk with

time-periodic affinity from Section 4.3 with parameters ψ = 1, τ = 1, w = 20, and

F = 2.

We have calculated analytically the SCGF in two models: A heat engine with

piecewise constant protocol and a biased random walk with a time-periodic affinity.

Furthermore, we have verified our theoretical results by showing agreement between

results obtained from numerical evaluation of the maximal Floquet exponent and results

obtained from Monte Carlo simulations for a model for a molecular pump.

The SCGF associated with a stochastic protocol with an infinitely large number of

jumps is equivalent to the SCGF associated with a deterministic protocol, as proved

in Section 5. This proof provides a rigorous basis to the idea that periodically

driven systems can be analyzed with the use of stochastic protocols, i.e., if a result

about current fluctuations is valid for stochastic protocols than it should be valid for

deterministic protocols, which can be obtained as a particular limit of a stochastic

protocol. The advantage of working with stochastic protocols is that the system and

protocol together form a bipartite Markov process with constant transition rates that

reach a nonequlibrium stationary state, which are quite well known.

Appendix A. Work and related currents

A fluctuating current of interest in stochastic thermodynamics is the work done on the

system due to the time variation of the energy levels. For jump processes, such current

can be written in the form

X ′
[
AT

0

]
≡

∫ T

0

fat(t)dt, (A.1)

where fi(t) = ∂tgi(t) and gi(t) is periodic with period τ . For the case of work gi(t) is

the free energy of state i.

The empirical density ρi(t) and the empirical flow Cij(t) are the number of periods

for which the trajectory is in state i at time t ∈ [0, τ ] and the number of transitions
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from i to j at time t, respectively. They are functionals of the stochastic trajectory from

time 0 to time T = nτ that are defined as

ρi(t) ≡
1

n

n∑

k=0

δakτ+t,i, (A.2)

and

Cij(t) ≡
1

n

n∑

k=0

δa(kτ+t)− ,iδa(kτ+t)+ ,j . (A.3)

As shown in [24], in the large deviation regime, they fulfill the constraint

d

dt
ρ(i, t) =

∑

j

[Cji(t)− Cij(t)] , (A.4)

for every single stochastic trajectory. Moreover, both Cji(t) and ρi(t) are periodic with

period τ .

Using the empirical density in Eq. (A.2) we can rewrite Eq. (A.1) as

X ′
[
AT

0

]
= n

∑

i

∫ τ

0

∂tgi(t)ρi(t)dt, (A.5)

where we used fi(t) = ∂tgi(t). From the constraint in Eq. (A.4) and the definition of

the empirical flow in Eq. (A.3), we obtain

X ′
[
AT

0

]
=

∑

0≤t≤nτ

(
ft(a

+
t )− ft(a

−
t )
)
, (A.6)

which is a current of the form given in Eq. (5). Hence, the current in Eq. (A.1) can

be written as in Eq. (5) if fi(t) = ∂tgi(t). This relation also holds for a stochastic

protocol [11]. In general, if fi(t) is not a derivative of a periodic function, this relation

may not hold. Whereas extending the results from Sec. 3 to such case should be

straightforward, as we have done for diffusion processes in Appendix B, proving the

equivalence with stochastic protocols for this more general current remains an open

challenge.

Appendix B. Diffusion processes

We consider a d−dimensional diffusion process Yt that follows the Fokker-Planck

equation

∂tµt(y) = Lt [µt] (y) (B.1)

where µt(y) is the probability density at time t and the adjoint of the generator is given

by

L†
t = F̂t∇+∇

Dt

2
∇. (B.2)
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where F̂t is a time-periodic the drift vector, Dt is a time-periodic diffusion matrix,

τ is the period, and ∇ is the nabla operator. This generator is then time-periodic.

Hence, the invariant probability density related to the long time limit has the property

µinv
t (y) = µinv

t+τ (y).

A stochastic current is a functional of the stochastic trajectory Y nτ
0 , from time 0

to time nτ , defined as

X [Y nτ
0 ] ≡

∫ nτ

0

(ft (Yt) dt+ gt (Yt) ◦ dYt) , (B.3)

where we use ◦ for the Stratonovich convention, ft = ft+τ is a scalar function, and

gt = gt+τ is a vector field. The Fokker-Planck current associated with ρinvt is a vector

Jρinvt ,t(y) ≡ F̂t(y)ρ
inv
t (y)−

1

2
Dt(y)

(
∇ρinvt

)
(y). (B.4)

The typical behavior of X [Y nτ
0 ] is given by

lim
n→∞

X [Y nτ
0 ]

nτ
=

1

τ

∫ τ

0

dt

(∫
ρinvt (y)ft(y)dy +

∫
Jρinvt ,t(y)gt(y)dy

)
. (B.5)

The SCGF is defined as

λ(z) ≡ lim
n→∞

1

nτ
ln (〈exp [zXnτ ]〉) . (B.6)

Using the Feyman-Kac formula and the Grinasov lemma it can be shown that [39]

〈ezXδ(YT − y
′)|Y0 = y〉 =

[
←−exp

(∫ nτ

0

dtLt(z)

)]
(y′, y). (B.7)

where the tilted generator Lt(z) is the second order differential operator of the form

L†
t(z) = zft + F̂t (∇+ zgt) + (∇+ zgt)

Dt

2
(∇+ zgt) . (B.8)

Eq. (B.7) is analogous to Eq. (19) for jump processes. The fundamental operator is

defined as

M(z) ≡ ←−exp

(∫ τ

0

dtLt(z)

)
. (B.9)

From Eq. (B.7), this operator is also a Perron-Forbenius operator. Similar to the case

for jump processes, M(z) can be expanded in the form given by Eq. (18). The real

maximum eigenvalue ofM(z) is denoted ρ1(z). Following the same procedure for a jump

process one can define a Laplace transform of the probability of current, analogous to Eq.

(11) (with an integral instead of a sum). The time evolution of this Laplace transform

follows Eq. (14). Hence, the SCGF λ(z) can be expressed in terms of the maximum

eigenvalue ρ1(z) trough the formula (20).
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Appendix C. Exact expressions for two-state model with piecewise constant

protocol

We consider a generic two-state model with a piecewise constant protocol (see [35] for

similar calculations for a protocol with two pieces). The transition rates during the

interval τk are denoted by wk
+ and wk

−, where w
k
+ is the transition rate from state 1 to

state 2. The increment of the current from state 1 to state 2 during the interval τk is

θk and the increment for the reversed transition is −θk. The piecewise version of the

modified generator reads

L̃k(z) =

(
−wk

+ wk
−e

−zθk

wk
+e

zθk −wk
−

)
. (C.1)

From this matrix, we obtain

exp
(
−τkL̃n(z)

)
=

1

wk

(
e−τkw

k

wk
+ + wk

− e−zθk(1− e−τkw
k

)wk
−

ezθ
k

(1− e−τkw
k

)wk
+ wk

+ + e−τkw
k

wk
−

)
(C.2)

where wk ≡ wk
− + wk

+. The fundamental matrix for a piecewise protocol in Eq. (21)

is a product of the matrices in Eq. (C.2). Expressing the maximum eigenvalue of the

two by two fundamental matrix in terms of its trace and determinant, and using the

Abel-Jacobi-Liouville identity for the determinant

det (M(z)) = exp

(∫ τ

0

Tr (Lt(z)) dt

)
=

N−1∏

n=0

e−τkw
k

, (C.3)

we obtain the following expression for the scaled cumulant generating function

λ(z) =
1

τ
ln


Tr (M(z)) +

√
[Tr (M(z))]2 − 4

∏N−1
n=0 e−τkwk

2


 . (C.4)

Hence, we can calculate λ(z) from the trace of the fundamental matrix in Eq. (21) with

Eq. (C.2). In particular, for N = 2 the trace of the fundamental matrix is given by

Tr (M(z)) =4e−(τ0w0+τ1w1)/2 sinh
(
w0τ0/2

)
sinh

(
w1τ1/2

)
[q1+q

0
−e

z(θ1−θ0) + q1−q
0
+e

z(θ0−θ1)]

+ (e−τ0w0

q0+ + q0−)(e
−τ1w1

q1+ + q1−) + (q0+ + e−τ0w0

q0−)(q
1
+ + q1−e

−τ1w1

),

(C.5)

where q0± ≡ w0
±/w

0 and q1± ≡ w1
±/w

1.

For the model for a heat engine in Section 4.1 the protocol has N = 4 pieces. Since

the changes in temperature are instantaneous, this number is reduced to N = 2, with

τ0 = τ1 = τ/2. The transition rates for this model w0
+ = we−βcE/2, w0

− = weβcE/2,

w1
+ = we−βh(E+∆E)/2, and w1

− = weβh(E+∆E)/2. For the current Xq the increments, are

θ0q = 0 and θ1q = βc(E+∆E). For the current Xe the increments are θ0e = 0 and θ1e = −1.
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